Shortest Path and
Informed Search

Brian C. Williams

16.410- 13
October 27t 2003

Slides adapted from:

6.034 Tomas Lozano Perez,

Winston, and Russell and Norvig AIMA N |

Assignment
* Reading:
— Shortest path:

Cormen Leiserson & Rivest,
“Introduction to Algorithms™ Ch. 25.1-.2

— Informed search and exploration:
AIMA Ch. 4.1-2

e Homework:

— Online problem set #6 due Monday November
3rd,
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How do we maneuver?

Roadmaps are an effective
state space abstractio
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Weighted Graphs
and Path Lengths

Graph G=<V,E>
Weight function w: E >R

Path P=<V, V[, ... V>
Path weight w(p) =X w(v,,,V;)

Shortest path weight 6(u,v) = min {w(p) : u =P v } else ©
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Outline

* Creating road maps for path S ASREE i_.-.{rah
. R 19¢ sy )L .4 Ty
planning Sy DR e
. z ?',-: ek iy ah P
* Exploring roadmaps: %f o H prs
Shortest Paths e v,

— Single Source
* Dijkstra;s algorithm
— Informed search
* Uniform cost search
* Greedy search
» A* search
* Beam search
* Hill climbing
* Avoiding adversaries
— (Next Lecture)
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Single Source Shortest Path

Problem: Compute shortest path to all vertices from source s
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Single Source Shortest Path

Problem: Compute shortest path to all vertices from source s
* estimate d[Vv] estimated shortest path length from s to v
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Single Source Shortest Path

Problem: Compute shortest path to all vertices from source s
* estimate d[ V] estimated shortest path length from s to v
* predecessor [v] final edge of shortest path to v

* induces shortest path tree
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Properties of Shortest Path

* Subpaths of shortest paths are shortest paths.

*S —Pv =<, X, U, v>

ss—pu  =<s,X,u>

es—px  =<s,x>

*Xx—>pv  =<x,u,Vv>

*X—=pvV = <X, u> Brian Williams, Spring 03 10

*u—pv =<u, v>




Properties of Shortest Path

Corollary: Shortest paths are grown from shortest paths.

* The length of shortest path s =P u — v
1s 8(s,v) = &(s,u) + w(u,v).
* V <u,v> e E 8(s,v) £8(s,u) + w(u,v)
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Idea: Start With Upper Bound

Initialize-Single-Source(G, s)
for each vertex v € V/GJ
do d[u] «
n[v] «— NIL

1.

2
3.
4

dfs] — 0

O(v)
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Relax Bounds to Shortest Path

u v u v
O—0 Ol
l Relax(u, v) l Relax(u, v)

u ) 1% u ) v
—0 66 ©

Relax (u, v, w)

1. ifd[u]+w(,v)<d[v]

2. do d/v] <« d[u] + w(u,v)
3. n/v] «— u
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Properties of Relaxing Bounds

Relax(u, v) l Relax(u, v)

u ) 1% u ) 14
sl e
After calling Relax(u, v, w)

o dlu]+w(u,v)>d[v]
d remains a shortest path upperbound after repeated calls

to Relax.
Once d[v] 1s the shortest path its value persists
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Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q = {s,u,v,x,y} Vertices to relax
S ={} Vertices with shortest path value
Brian Williams, Spring 03 15

Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q = {X,y,“,V} Vertices to relax
S ={s} Vertices with shortest path value
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Dijkstra’s Algorithm

Assume all edges are non-negative.

Idea: Greedily relax out arcs of minimum cost nodes
u \%

Q = {x,y,u,v} Vertices to relax
S ={s} Vertices with shortest path value
Shortest path edge II[v] = arrows
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Dijkstra’s Algorithm

Assume all edges are non-negative.

Idea: Greedily relax out arcs of minimum cost nodes
u \%

Q = {x,y,u,v} Vertices to relax
S ={s} Vertices with shortest path value
Shortest path edge II[v] = arrows
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Dijkstra’s Algorithm

Assume all edges are non-negative.

Idea: Greedily relax out arcs of minimum cost nodes
u \%

Q = {x,y,u,v} Vertices to relax
S ={s} Vertices with shortest path value
Shortest path edge II[v] = arrows
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Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q = {y,u,v} Vertices to relax
S ={s, x} Vertices with shortest path value
Shortest path edge II[v] = arrows
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Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q = {y,u,v} Vertices to relax
S ={s, x} Vertices with shortest path value
Shortest path edge II[v] = arrows
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Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q= {u,v} Vertices to relax
S ={s,x,y} Vertices with shortest path value
Shortest path edge II[v] = arrows
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Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q= {v} Vertices to relax
S ={s,x,y, u} Vertices with shortest path value
Shortest path edge II[v] = arrows
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Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q={ Vertices to relax
S ={s,X,y, u, v} Vertices with shortest path value
Shortest path edge II[v] = arrows
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Dijkstra’s Algorithm

Repeatedly select minimum cost node and relax out arcs

DIJKSTRA(G,w,s)
1. Initialize-Single-Source(G, s) O(V)
2. S«
3. 0 V[G]
4. while Q #J
5. do u < Extract-Min(Q) OV)  orO(gV)
6. S—S U w fib heap
7. for each vertex v € Adj[u] *O(V)
8. do Relax(u, v, w) O(E)
= O(V*+E)
prom il Spmets = O(VIgV+EY)
Outline
* Creating road maps for path if_gg
planning ““*’“;if’eﬁ

* Exploring roadmaps:
Shortest Paths
— Single Source
* Dijkstra;s algorithm
— Informed search
* Uniform cost search
* Greedy search
* A* search
» Beam search
* Hill climbing
* Avoiding adversaries
— (Next Lecture)
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Informed Search

Extend search tree nodes
to include path length g
L

0

@* T
£ Ko

9 @ s s O (s

Problem: Find the path to the goal G with
the shortest path length g.
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Classes of Search

Blind Depth-First Systematic exploration of whole tree
(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost Using path “length” as a measure,
(informed) Greedy finds “shortest” path.
A*
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Uniform cost search
spreads evenly from
start

A/ | y '\B ‘\goal

sta

Does uniform cost search find the shortest path?
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Uniform Cost

path length

0
&

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Uniform Cost

edge cost

path length —

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Uniform Cost

edge cost

path length —

Q‘z/o®\‘s
e S

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Uniform Cost

edge cost

path length — 0

S
@y> &5

&S &

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Uniform Cost

edge cost

path length —

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Uniform Cost

path length —, . edge cost
s
9 2 9 5
6 é)4 6 @ (1w
@ @ : O

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Uniform Cost

edge cost

path Iength -

0 (O @8 &

Expands nodes already visited

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Uniform Cost

edge cost

path Iength -

3
2
i/
s .8 &

Expands nodes already visited

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Uniform Cost

edge cost
3
6 1o i/
9 (D . 8 &)

Expands nodes already visited

path Iength -

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Why Expand a Vertex More Than Once?

edge cost
path length —

0
1
o "o [Ploe
4

*  The shortest path from S to G
is(GDAS).

+ Dis reached first using
path (D S).

Suppose we expanded only the
first path to visit each vertex X?
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Why Expand a Vertex More Than Once?

edge cost
path length —

; Y
Lo Shew

*  The shortest path from S to G
is(GDAS).

+ Dis reached first using
path (D S).
This prevents path (D A S)
from being expanded.

Suppose we expanded only the
first path to visit each vertex X?
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Why Expand a Vertex More Than Once?

edge cost
path length —

*  The shortest path from S to G
is(GDAS).

+ Dis reached first using
path (D S).
This prevents path (D A S)

Suppose we expanded only the from being expanded.

first path to visit each vertex X?
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Why Expand a Vertex More Than Once?

edge cost

path length — 0

*  The shortest path from S to G
is(GDAS).

+ Dis reached first using
path (D S).
This prevents path (D A S)
from being expanded.

«  The suboptimal path (GD S)
is returned.

Brian Williams, Spring 03 42

Suppose we expanded only the
first path to visit each vertex X?




Uniform Cost Search Algorithm

Let Q be a list of partial paths,

Let S be the start node and

Let G be the Goal node.

Let g be the path length from S to N.

Initialize Q with partial path (S) as only entry; set-isited—={—
If Q is empty, fail. Else, pick partial path N from Q with best ¢
If head(N) = G, return N (we've reached the goal!)
(Otherwise) Remove N from Q

Find all children of head(N) #etin-\isited-and create all the
one-step extensions of N to each child.

6. Add to Q all the extended paths;
2 A chitd Freadthi-to-Visited

8- Go to Step 2- Brian Williams, Spring 03 43

A

Implementing the
Search Strategies

Depth-first:
Pick first element of Q Uses visited list
Add path extensions to front of Q

Breadth-first:
Pick first element of Q Uses visited list

Add path extensions to end of Q
Uniform-cost:

Pick first element of Q No visited list

Add path extensions to Q in order of
increasing path length g.

Brian Williams, Spring 03 44




Uniform Cost using BFS

Pick first element of Q; Insert path extensions, sorted by g.

Q |
1 ](08)
2 |[12AS)(5B9)
3
4
5
6
7
Here we:

* Insert on queue in order of g.
* Remove first element of queue.
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Uniform Cost using BFS

Pick first element of Q; Insert path extensions, sorted by g.

Q |
11031,
2 |25 (5B9)
3 |(4CAS)(5BS)(6DAS)
4
5
6
7
Here we:

* Insert on queue in order of g.
* Remove first element of queue.
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Uniform Cost using BFS

Pick first element of Q; Insert path extensions, sorted by g.

Q
09),

24s)(5B)

(40/AS)(5BS)(6DAS)

(5BS)(6DAS)

OO | A~ WINI—

Here we:
* Insert on queue in order of g.
* Remove first element of queue.
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Uniform Cost using BFS

Pick first element of Q; Insert path extensions, sorted by g.

Q
08),

24s)(5BS)

(40/AS)(5BS)(6DAS)

(5B5)(6DAS)

16DES)(6DAS)(10GBS)

OO |~ IOWIN -

(6DAS)(8GDBS)(9CDBS)(10GBS)

(8GDAS)[8GDBS)(9CDAS)(9CDBS)
(10GBS)
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Can we stop as soon as
the goal 1s enqueued?

Q 4
(05),
124s)(5BS)
(40/As)(5BS)(6DAS)
(5B'S) (6 DATS)
(6DB5S)(6DAS)(10GBS)
(6DAS)8GDBS)(9CDBS)(10GBS)

(8GDAS)(8GDBS)(9CDAS)(9CDBS)
(f0GBY)

OO |~ IWOWIN| -

7

«  Other paths to the goal that are shorter may not yet be enqueued.

*  Only when a path is pulled off the Q are we guaranteed that
no shorter path will be added.

+  This assumes all edges are positive.
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Implementing the
Search Strategies

Depth-first:
Pick first element of Q Uses visited list
Add path extensions to front of Q

Breadth-first:
Pick first element of Q Uses visited list

Add path extensions to end of Q
Uniform-cost:

Pick first element of Q No visited list
Add path extensions to Q in increasing order of path length g.

Best-first: (generalizes uniform-cost)
Pick first element of Q No visited list

Add path extensions in increasing order of any cost function f

Brian Williams, Spring 03 50




a k0o bd -~

o

Best-first Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and

Let G be the Goal node.

Let f be a cost function on N.

Initialize Q with partial path (S) as only entry
If Q is empty, fail. Else, pick partial path N from Q with best f
If head(N) = G, return N

(Otherwise) Remove N from Q

(we've reached the goal!)

Find all children of head(N) and create all the one-step
extensions of N to each child.

Add to Q all the extended paths;
Go to step 2.

Brian Williams, Spring 03
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Classes of Search

Blind Depth-First Systematic exploration of whole tree
(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost Using path “length” as a measure,
Greedy finds “shortest” path.
A*

Brian Williams, Spring 03
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Chicago, Il

Uniform cost search
spreads evenly from
start
Rapid City, ND / \ Boston, Ma
| N ,
s / X
A B goal
sta Greedy search is directed
towards the goal.

Uniform cost search explores the direction away
from the goal as much as with the goal.

Brian Williams, Spring 03
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Greedy Search

Search in an order imposed by a heuristic function, measuring cost to go.

Heuristic function h - is a function of the current node n,
not the partial path s to n.

« Estimated distance to goal - h (n,G)

«  Example: straight-line distance in a road network.

+ “Goodness” of a node - h (n)
«  Example: elevation

«  Foothills, plateaus and ridges are problematic.

Brian Williams, Spring 03
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Greedy

Pick first element of Q; Insert path extensions, sorted by h.

(10S)

(3, I I~ B SC I A I

Heuristic values in red
Added paths in blue; heuristic value of head is in front.  Order of nodes in blue.
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Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q

oSy

(2AS)(3BS)

(3, I I~ B SC I A G B

Heuristic values in red
Added paths in blue; heuristic value of head is in front.  Order of nodes in blue.
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Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q
Lpes)
(24S)(3BS)

(1CAS)(3BS)(4DAS)

(3, I I~ B SC I A I

Heuristic values in red
Added paths in blue; heuristic value of head is in front.  Order of nodes in blue.
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Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q

Luos)

(24S)(3BS)
(L6KS)(3BS) (4DAS)

(3BS)(4DAYS)

(3, I I~ B SC I A G B

Heuristic values in red
Added paths in blue; heuristic value of head is in front.  Order of nodes in blue.

Brian Williams, Spring 03 58




Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q

Lpesy

(24S)(3BS)
(1L6KS)(3BS) (4DAS)
|(3BS)(4DAS)

(0GBS)(4DAS)(4DBS)

(3, I I~ B SC I A I

Heuristic values in red
Added paths in blue; heuristic value of head is in front.  Order of nodes in blue.
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Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q

Lpesy

(24S)(3BS)
(1L6KS)(3BS) (4DAS)
|(3BS)(4DAS)

(0GBS)[4DAS))(4DBS)

(3, I I~ B SC I A G B

Heuristic values in red
Added paths in blue; heuristic value of head is in front. Edge cost in green.

Was the shortest path produced?
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Classes of Search

Blind

(uninformed)

Depth-First Systematic exploration of whole tree
Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost Using path “length” as a measure,
Greedy finds “shortest” path.
A*
Brian Williams, Spring 03 61
Uniform cost search
spreads evenly from
/‘ start
s L/ X
A B
goal
sta

Brian Williams, Spring 03
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Uniform cost search
spreads evenly from
the start

Greedy goes for the
goal, but forgets its

M
~ _

A B

goal
sta A* biases uniform cost
towards the goal by using h

A* finds an optimal solutior of=g+h
if h never over estimates.

+ g = distance from start

Then h is called “admissible” R :
s winiams, spingos ® N = €Stimated distance

to goal.

Simple Optimal Search Algorithm
BFS + Admissible Heuristic

Let Q be a list of partial paths,

Let S be the start node and

Let G be the Goal node.

Let f = g + h be an admissible heuristic function

Initialize Q with partial path (S) as only entry;

If Q is empty, fail. Else, use fto pick “best” partial path N from Q

If head(N) = G, return N (we’ve reached the goal)
(Otherwise) Remove N from Q;

o B w0 bdh =

Find all the descendants of head(N) and create all the one-step extensions
of N to each descendant.

Add to Q all the extended paths.
7. Go to step 2.

o
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In the example, 1s h
an admissible heuristic?

*Ais ok

*Bis ok

«Cis ok

* D is too big, needs to be <2

* S is too big, can always use 0 for start

Heuristic Values of h in Red

A* finds an optimal solution Edge costin Green

if h never over estimates.

Then h is called “admissible”

Brian Williams, Spring 03 65

Admissible heuristics for 8 puzzle?

6 [2 |8 I (2 |3

5 |:> 8 4

4 |7 |1 7 16 |5
S G

What is the heuristic?
* An underestimate of number of moves to the goal.
Examples:

1. Number of misplaced tiles (7)

2. Sum of Manhattan distance of each tile to its goal location
(17)

Brian Williams, Spring 03 66




A* Incorporates the
Dynamic Programming Principle

S X shortest o G
@ ®
shortest X X  shortest
So ® + e ‘G

The shortest path from S through X to G
= shortest path from S to X + shortest path from X to G.

Idea: when shortest from S to X is found, ignore other S to X paths.

«  When BFS dequeues the partial path with head node X,
this path is the shortest path from S to X.

Given the first path to X, we don’t need to extend other paths to X;

Brian Williams, Spring 03 67

Simple Optimal Search Algorithm

How do we add dynamic programming?

Let Q be a list of partial paths,

Let S be the start node and

Let G be the Goal node.

Let f = g + h be an admissible heuristic function

o~ w0 bdh =

L4

Initialize Q with partial path (S) as only entry;

If Q is empty, fail. Else, use f to pick the “best” partial path N from Q

If head(N) = G, return N (we’ve reached the goal)
(Else) Remove N from Q;

Find all children of head(N) and
create all the one-step extensions of N to each child.

Add to Q all the extended paths.
Go to step 2.
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A* Optimal Search Algorithm
BFS + Dyn Prog + Admissible Heuristic

Let Q be a list of partial paths,

Let S be the start node and

Let G be the Goal node.

Let f = g + h be an admissible heuristic function

Initialize Q with partial path (S) as only entry; set Expanded = ()

If Q is empty, fail. Else, use f to pick “best” partial path N from Q

If head(N) =G, return N (we’ve reached the goal)
(Else) Remove N from Q;

if head(N) is in Expanded, go to step 2, otherwise add head(N) to Expanded.

Find all the children of head(N) (not in Expanded)
and create all the one-step extensions of N to each child.

Add to Q all the extended paths.
8. Goto step 2.

I L S o

~
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A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded
1 1(09)

Heuristic Values of g in Red
Edge cost in

Added paths in blue; cost f at head of each path.
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A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path
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A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded

L(os]
|4KS)(8BS)

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path
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A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded
108
2 |(4KS)(8BS) S
3 |(56KS)(7TDAS)(8BS) SA
4 SAC

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path
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A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded
1o
2 |(4KS)(8BS) s
3 |(56KS)(7TDAS)(8BS) SA
4 |(LBAS)(8BS) SAC
5 SACD

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path
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A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded
1o
2 |(4KS)(8BS) S
3 |(56KS)(7TDAS)(8BS) SA
4 |(LBAS)(8BS) SAC
5 [(BGDAS)[8BS) SACD

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path

Brian Williams, Spring 03 75

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to

Optimal?
Method Time Space find a path? pHma

Depth-First bm b*m Yes No

Breadth-First pd+l pd+! Yes Yes for unit edge cost

Best-First

Beam
(beam width = k)

Hill-Climbing
(no backup)

Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03 76




Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. , Optimal?
Method Time Space find a path?
Depth-First pm b*m Yes No
Breadth-First pd+! pd+! Yes Yes for unit edge cost
Best-First b+l pa+l
Beam
(beam width = k)
Hill-Climbing
(no backup)
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03
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Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+l pd+! Yes Yes for unit edge cost
BestFirst b+! b+! Yes A w acmissbl heursic
Beam
(beam width = k)
Hill-Climbing
(no backup)
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03
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Classes of Search

Blind Depth-First Systematic exploration of whole tree
(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost Uses path “length” measure. Finds
Greedy “shortest” path.
A*
Variants Beam
Hill-Climbing (w backup)
ID A*

Brian Williams, Spring 03 79

Hill-Climbing

Pick first element of Q; Replace Q with extensions (sorted by heuristic value)

Q

(2AS)(3BS)

Dl INdD| -

Heuristic Values

A=2 C=1 S$=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.
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Hill-Climbing

Pick first element of Q; Replace Q with extensions (sorted by heuristic value)

Q

M 5@ B S)j Removed

(1CAS)(4DAS)

W INd| -

Heuristic Values
A=2 C=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.
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Hill-Climbing

Pick first element of Q; Replace Q with extensions (sorted by heuristic value)
3

Q 2 ©
1
2 |2#%)(3BS) D)
3 |4 CAS)(4DAS) 1
40 (B>

Heuristic Values
A=2 C=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.

Fails to find a path!
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Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. , Optimal?
Method Time Space find a path?
Depth-First pm b*m Yes No
Breadth-First pd+! pd+! Yes Yes for unit edge cost
Best First b o es aapn
Beam
(beam width = k)
Hill-Climbing
(no backup)
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+l pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
b bdﬂ Yes A* w admissible heuristic.
Beam
(beam width = k)
Hill-Climbing N
(no backup) b¥m
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. , Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+! pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
bdﬂ bdﬂ Yes A* w admissible heuristic.
Beam
(beam width = k)
Hill-Climbing N
(no backup) b*m b
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+l pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
de bdﬂ Yes A* w admissible heuristic.

Beam
(beam width = k)
Hill-Climbin

g b*m b No No
(no backup)
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03
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Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

Q

(2AS)(3BS)

(S| W I IN|—-

Heuristic Values
A=2 C=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.
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Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

)3BS)

(1CASKADAS)(3BS) O

All new nodes before old

(3, I I~ B SC I A G B

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Added paths in blue; heuristic value of head is in front.
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Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

3
Q 2 ©
1
2 )(3BS) €Y
3 [(+CAS)(4DAS)(3BS) 1
4 [(4DAS)(3BS) &)
5 Heuristic Values

A=2 C=1 S=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.
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Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

)(3BS)
(+CAS)(4DAS)(3BS)
(4BAS)(3BS)

(OGDAS)(1CAS)(3BYS) Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

(3, I I~ B SC I A G B

Added paths in blue; heuristic value of head is in front.
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Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

)(3BS)
(+CAS)(4DAS)(3BS)
S)(3BS)
(0GDAS)(1ICAS)(3BS) Heuristic Values
A=2 C=1  $=10
B=3 D=4  G=0

| O —-

Added paths in blue; heuristic value of head is in front.
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Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+l pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
de bdﬂ Yes A* w admissible heuristic.

Beam
(beam width = k)
Hill-Climbin

g b*m b No No
(no backup)
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+! pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
bdﬂ bdﬂ Yes A* w admissible heuristic.

Beam
(beam width = k)
Hill-Climbin

r-ulimbing b*m b No No
(no backup)
Hill-Climbi

r-uAmaing pm b*m Yes No
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Classes of Search

Blind

(uninformed)

Depth-First
Breadth-First

Iterative-Deepening

Systematic exploration of whole tree

until the goal is found.

Best-first Uniform-cost Uses path “length” measure. Finds
Greedy “shortest” path.
A*

Variants Beam

Hill-Climbing (w backup)
ID A*

Brian Williams, Spring 03
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Beam

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Idea: Incrementally expand the k best paths

Added paths in blue; heuristic value of head is in front.

Letk=2
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Beam

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Q

2 [(2AS)(3BS)

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Idea: Incrementally expand the k best paths

Added paths in blue; heuristic value of head is in front.

Letk=2
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Beam

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Q 2

2 | (2K5) (387
(0GBS)(1CAS) Keep 1
HDASIADBS— k best

Idea: Incrementally expand the k best paths

Heuristic Values
A=2 C=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.

Letk=2
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Beam

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Q

2 | (2K5) (3B7)
(0GBS)[(1CAS) Keep
#DAS DB S k best

Idea: Incrementally expand the k best paths

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Added paths in blue; heuristic value of head is in front.

Letk=2
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Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. , Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+! pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
bdﬂ bdﬂ Yes A* w admissible heuristic.

Beam
(beam width = k)
Hill-Climbin

r-ulimbing b*m b No No
(no backup)
Hill-Climbi

r-uAmaing pm b*m Yes No
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+l pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
de bdﬂ Yes A* w admissible heuristic.
Beam
sk
(beam width = k) k*b
Hill-Climbin
g b*m b No No
(no backup)
Hill-Climbin
F-uAmoing pm b*m Yes No
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. , Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+! pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
bdﬂ bdﬂ Yes A* w admissible heuristic.
Beam
*kyk %

(beamwidth=k) | < om KD
Hill-Climbin

r-ulimbing b*m b No No
(no backup)
Hill-Climbi

r-uAmaing pm b*m Yes No
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?

Method Time Space find a path?

Depth-First bm b*m Yes No

Breadth-First pd+l pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or

b bdﬂ Yes A* w admissible heuristic.
Beam
kyk %

(beamwidth=k) | < om KD No No

Hill-Climbi

ri-ulimbing b*m b No No
(no backup)

Hill-Climbi

rrvimbing pm b*m Yes No
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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* Exploring roadmaps: Shortest SeelnalsesE s, "y
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* Dijkstra;s algorithm VB ol e e

— Informed search
* Uniform cost search
* Greedy search

A* search

Beam search

Hill climbing

* Avoiding adversaries
— (Next Lecture)
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