Shortest Path and
Informed Search

Brian C. Williams

16.410- 13
October 27t 2003

Slides adapted from:

6.034 Tomas Lozano Perez,

Winston, and Russell and Norvig AIMA N |

Assignment
* Reading:
— Shortest path:

Cormen Leiserson & Rivest,
“Introduction to Algorithms™ Ch. 25.1-.2

— Informed search and exploration:
AIMA Ch. 4.1-2

e Homework:

— Online problem set #6 due Monday November
3rd,

Brian Williams, Spring 03

How do we maneuver?

Roadmaps are an effective
state space abstractio

= WAPAES T L R, T T s AT
e 3-’&.?:!" @{Tﬁﬁ% !‘..'I" L % D,Ea_ggﬁ
F= .| Cambridge | “-u:___. S, =
L e Span D03
[h A k:.':*".;*
s o LTI
##"‘: '
i e 85
2 .~;ﬁ.'he_; E ‘*
% EIGEY Iq;,‘
=
i
X
S

Ly R’ 3
2002 MapJuest.com, Inc.; @ 2002 Nawvigation Technolbgies 2 "
Brian Williams, Spring 03 4

Weighted Graphs
and Path Lengths

Graph G=<V,E>
Weight function w: E >R

Path P=<V, V[, ... V>
Path weight w(p) =X w(v,,,V;)

Shortest path weight 6(u,v) = min {w(p) : u =P v } else ©

Brian Williams, Spring 03 5

Outline

* Creating road maps for path S ASREE i_.-.{rah
. R 19¢ sy)L .4 Ty
planning Sy DR e
. z ?',-: ek iy ah P
* Exploring roadmaps: %f o H prs
Shortest Paths e v,

— Single Source
* Dijkstra;s algorithm
— Informed search
* Uniform cost search
* Greedy search
» A* search
* Beam search
* Hill climbing
* Avoiding adversaries
— (Next Lecture)

Brian Williams, Spring 03

Single Source Shortest Path

Problem: Compute shortest path to all vertices from source s

Brian Williams, Spring 03 7

Single Source Shortest Path

Problem: Compute shortest path to all vertices from source s
* estimate d[Vv] estimated shortest path length from s to v

Brian Williams, Spring 03 8

Single Source Shortest Path

Problem: Compute shortest path to all vertices from source s
* estimate d[V] estimated shortest path length from s to v
* predecessor [v] final edge of shortest path to v

* induces shortest path tree

Brian Williams, Spring 03 9

Properties of Shortest Path

* Subpaths of shortest paths are shortest paths.

*S —Pv =<, X, U, v>

ss—pu =<s,X,u>

es—px =<s,x>

*Xx—>pv =<x,u,Vv>

*X—=pvV = <X, u> Brian Williams, Spring 03 10

*u—pv =<u, v>

Properties of Shortest Path

Corollary: Shortest paths are grown from shortest paths.

* The length of shortest path s =P u — v
1s 8(s,v) = &(s,u) + w(u,v).
* V <u,v> e E 8(s,v) £8(s,u) + w(u,v)

Brian Williams, Spring 03 11

Idea: Start With Upper Bound

Initialize-Single-Source(G, s)
for each vertex v € V/GJ
do d[u] «
n[v] «— NIL

1.

2
3.
4

dfs] — 0

O(v)

Brian Williams, Spring 03 12

Relax Bounds to Shortest Path

u v u v
O—0 Ol
l Relax(u, v) l Relax(u, v)

u) 1% u) v
—0 66 ©

Relax (u, v, w)

1. ifd[u]+w(,v)<d[v]

2. do d/v] <« d[u] + w(u,v)
3. n/v] «— u

Brian Williams, Spring 03 13

Properties of Relaxing Bounds

Relax(u, v) l Relax(u, v)

u) 1% u) 14
sl e
After calling Relax(u, v, w)

o dlu]+w(u,v)>d[v]
d remains a shortest path upperbound after repeated calls

to Relax.
Once d[v] 1s the shortest path its value persists

Brian Williams, Spring 03 14

Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q = {s,u,v,x,y} Vertices to relax
S ={} Vertices with shortest path value
Brian Williams, Spring 03 15

Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q = {X,y,“,V} Vertices to relax
S ={s} Vertices with shortest path value

Brian Williams, Spring 03 16

Dijkstra’s Algorithm

Assume all edges are non-negative.

Idea: Greedily relax out arcs of minimum cost nodes
u \%

Q = {x,y,u,v} Vertices to relax
S ={s} Vertices with shortest path value
Shortest path edge II[v] = arrows

Brian Williams, Spring 03 17

Dijkstra’s Algorithm

Assume all edges are non-negative.

Idea: Greedily relax out arcs of minimum cost nodes
u \%

Q = {x,y,u,v} Vertices to relax
S ={s} Vertices with shortest path value
Shortest path edge II[v] = arrows

Brian Williams, Spring 03 18

Dijkstra’s Algorithm

Assume all edges are non-negative.

Idea: Greedily relax out arcs of minimum cost nodes
u \%

Q = {x,y,u,v} Vertices to relax
S ={s} Vertices with shortest path value
Shortest path edge II[v] = arrows

Brian Williams, Spring 03 19

Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q = {y,u,v} Vertices to relax
S ={s, x} Vertices with shortest path value
Shortest path edge II[v] = arrows

Brian Williams, Spring 03 20

Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q = {y,u,v} Vertices to relax
S ={s, x} Vertices with shortest path value
Shortest path edge II[v] = arrows

Brian Williams, Spring 03 21

Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q= {u,v} Vertices to relax
S ={s,x,y} Vertices with shortest path value
Shortest path edge II[v] = arrows

Brian Williams, Spring 03 22

Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q= {v} Vertices to relax
S ={s,x,y, u} Vertices with shortest path value
Shortest path edge II[v] = arrows

Brian Williams, Spring 03 23

Dijkstra’s Algorithm

Assume all edges are non-negative.
Idea: Greedily relax out arcs of minimum cost nodes

Q={ Vertices to relax
S ={s,X,y, u, v} Vertices with shortest path value
Shortest path edge II[v] = arrows

Brian Williams, Spring 03 24

Dijkstra’s Algorithm

Repeatedly select minimum cost node and relax out arcs

DIJKSTRA(G,w,s)
1. Initialize-Single-Source(G, s) O(V)
2. S«
3. 0 V[G]
4. while Q #J
5. do u < Extract-Min(Q) OV) orO(gV)
6. S—S U w fib heap
7. for each vertex v € Adj[u] *O(V)
8. do Relax(u, v, w) O(E)
= O(V*+E)
prom il Spmets = O(VIgV+EY)
Outline
* Creating road maps for path if_gg
planning ““*’“;if’eﬁ

* Exploring roadmaps:
Shortest Paths
— Single Source
* Dijkstra;s algorithm
— Informed search
* Uniform cost search
* Greedy search
* A* search
» Beam search
* Hill climbing
* Avoiding adversaries
— (Next Lecture)

Brian Williams, Spring 03

Informed Search

Extend search tree nodes
to include path length g
L

0

@* T
£ Ko

9 @ s s O (s

Problem: Find the path to the goal G with
the shortest path length g.

Brian Williams, Spring 03 27

Classes of Search

Blind Depth-First Systematic exploration of whole tree
(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost Using path “length” as a measure,
(informed) Greedy finds “shortest” path.
A*

Brian Williams, Spring 03 28

Uniform cost search
spreads evenly from
start

A/ | y '\B ‘\goal

sta

Does uniform cost search find the shortest path?

Brian Williams, Spring 03 29

Uniform Cost

path length

0
&

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

Brian Williams, Spring 03 30

Uniform Cost

edge cost

path length —

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

Brian Williams, Spring 03 31

Uniform Cost

edge cost

path length —

Q‘z/o®\‘s
e S

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

Brian Williams, Spring 03 32

Uniform Cost

edge cost

path length — 0

S
@y> &5

&S &

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

Brian Williams, Spring 03 33

Uniform Cost

edge cost

path length —

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

Brian Williams, Spring 03 34

Uniform Cost

path length —, . edge cost
s
9 2 9 5
6 é)4 6 @ (1w
@ @ : O

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

Brian Williams, Spring 03 35

Uniform Cost

edge cost

path Iength -

0 (O @8 &

Expands nodes already visited

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

Brian Williams, Spring 03 36

Uniform Cost

edge cost

path Iength -

3
2
i/
s .8 &

Expands nodes already visited

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

Brian Williams, Spring 03 37

Uniform Cost

edge cost
3
6 1o i/
9 (D . 8 &)

Expands nodes already visited

path Iength -

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

Brian Williams, Spring 03 38

Why Expand a Vertex More Than Once?

edge cost
path length —

0
1
o "o [Ploe
4

* The shortest path from S to G
is(GDAS).

+ Dis reached first using
path (D S).

Suppose we expanded only the
first path to visit each vertex X?

Brian Williams, Spring 03 39

Why Expand a Vertex More Than Once?

edge cost
path length —

; Y
Lo Shew

* The shortest path from S to G
is(GDAS).

+ Dis reached first using
path (D S).
This prevents path (D A S)
from being expanded.

Suppose we expanded only the
first path to visit each vertex X?

Brian Williams, Spring 03 40

Why Expand a Vertex More Than Once?

edge cost
path length —

* The shortest path from S to G
is(GDAS).

+ Dis reached first using
path (D S).
This prevents path (D A S)

Suppose we expanded only the from being expanded.

first path to visit each vertex X?

Brian Williams, Spring 03 41

Why Expand a Vertex More Than Once?

edge cost

path length — 0

* The shortest path from S to G
is(GDAS).

+ Dis reached first using
path (D S).
This prevents path (D A S)
from being expanded.

« The suboptimal path (GD S)
is returned.

Brian Williams, Spring 03 42

Suppose we expanded only the
first path to visit each vertex X?

Uniform Cost Search Algorithm

Let Q be a list of partial paths,

Let S be the start node and

Let G be the Goal node.

Let g be the path length from S to N.

Initialize Q with partial path (S) as only entry; set-isited—={—
If Q is empty, fail. Else, pick partial path N from Q with best ¢
If head(N) = G, return N (we've reached the goal!)
(Otherwise) Remove N from Q

Find all children of head(N) #etin-\isited-and create all the
one-step extensions of N to each child.

6. Add to Q all the extended paths;
2 A chitd Freadthi-to-Visited

8- Go to Step 2- Brian Williams, Spring 03 43

A

Implementing the
Search Strategies

Depth-first:
Pick first element of Q Uses visited list
Add path extensions to front of Q

Breadth-first:
Pick first element of Q Uses visited list

Add path extensions to end of Q
Uniform-cost:

Pick first element of Q No visited list

Add path extensions to Q in order of
increasing path length g.

Brian Williams, Spring 03 44

Uniform Cost using BFS

Pick first element of Q; Insert path extensions, sorted by g.

Q |
1](08)
2 |[12AS)(5B9)
3
4
5
6
7
Here we:

* Insert on queue in order of g.
* Remove first element of queue.

Brian Williams, Spring 03 45

Uniform Cost using BFS

Pick first element of Q; Insert path extensions, sorted by g.

Q |
11031,
2 |25 (5B9)
3 |(4CAS)(5BS)(6DAS)
4
5
6
7
Here we:

* Insert on queue in order of g.
* Remove first element of queue.

Brian Williams, Spring 03 46

Uniform Cost using BFS

Pick first element of Q; Insert path extensions, sorted by g.

Q
09),

24s)(5B)

(40/AS)(5BS)(6DAS)

(5BS)(6DAS)

OO | A~ WINI—

Here we:
* Insert on queue in order of g.
* Remove first element of queue.

Brian Williams, Spring 03 47

Uniform Cost using BFS

Pick first element of Q; Insert path extensions, sorted by g.

Q
08),

24s)(5BS)

(40/AS)(5BS)(6DAS)

(5B5)(6DAS)

16DES)(6DAS)(10GBS)

OO |~ IOWIN -

(6DAS)(8GDBS)(9CDBS)(10GBS)

(8GDAS)[8GDBS)(9CDAS)(9CDBS)
(10GBS)

Brian Williams, Spring 03 48

Can we stop as soon as
the goal 1s enqueued?

Q 4
(05),
124s)(5BS)
(40/As)(5BS)(6DAS)
(5B'S) (6 DATS)
(6DB5S)(6DAS)(10GBS)
(6DAS)8GDBS)(9CDBS)(10GBS)

(8GDAS)(8GDBS)(9CDAS)(9CDBS)
(f0GBY)

OO |~ IWOWIN| -

7

« Other paths to the goal that are shorter may not yet be enqueued.

* Only when a path is pulled off the Q are we guaranteed that
no shorter path will be added.

+ This assumes all edges are positive.

Brian Williams, Spring 03 49

Implementing the
Search Strategies

Depth-first:
Pick first element of Q Uses visited list
Add path extensions to front of Q

Breadth-first:
Pick first element of Q Uses visited list

Add path extensions to end of Q
Uniform-cost:

Pick first element of Q No visited list
Add path extensions to Q in increasing order of path length g.

Best-first: (generalizes uniform-cost)
Pick first element of Q No visited list

Add path extensions in increasing order of any cost function f

Brian Williams, Spring 03 50

a k0o bd -~

o

Best-first Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and

Let G be the Goal node.

Let f be a cost function on N.

Initialize Q with partial path (S) as only entry
If Q is empty, fail. Else, pick partial path N from Q with best f
If head(N) = G, return N

(Otherwise) Remove N from Q

(we've reached the goal!)

Find all children of head(N) and create all the one-step
extensions of N to each child.

Add to Q all the extended paths;
Go to step 2.

Brian Williams, Spring 03

51

Classes of Search

Blind Depth-First Systematic exploration of whole tree
(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost Using path “length” as a measure,
Greedy finds “shortest” path.
A*

Brian Williams, Spring 03

52

Chicago, Il

Uniform cost search
spreads evenly from
start
Rapid City, ND / \ Boston, Ma
| N ,
s / X
A B goal
sta Greedy search is directed
towards the goal.

Uniform cost search explores the direction away
from the goal as much as with the goal.

Brian Williams, Spring 03

53

Greedy Search

Search in an order imposed by a heuristic function, measuring cost to go.

Heuristic function h - is a function of the current node n,
not the partial path s to n.

« Estimated distance to goal - h (n,G)

« Example: straight-line distance in a road network.

+ “Goodness” of a node - h (n)
« Example: elevation

« Foothills, plateaus and ridges are problematic.

Brian Williams, Spring 03

54

Greedy

Pick first element of Q; Insert path extensions, sorted by h.

(10S)

(3, I I~ B SC I A I

Heuristic values in red
Added paths in blue; heuristic value of head is in front. Order of nodes in blue.

Brian Williams, Spring 03 55

Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q

oSy

(2AS)(3BS)

(3, I I~ B SC I A G B

Heuristic values in red
Added paths in blue; heuristic value of head is in front. Order of nodes in blue.

Brian Williams, Spring 03 56

Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q
Lpes)
(24S)(3BS)

(1CAS)(3BS)(4DAS)

(3, I I~ B SC I A I

Heuristic values in red
Added paths in blue; heuristic value of head is in front. Order of nodes in blue.

Brian Williams, Spring 03 57

Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q

Luos)

(24S)(3BS)
(L6KS)(3BS) (4DAS)

(3BS)(4DAYS)

(3, I I~ B SC I A G B

Heuristic values in red
Added paths in blue; heuristic value of head is in front. Order of nodes in blue.

Brian Williams, Spring 03 58

Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q

Lpesy

(24S)(3BS)
(1L6KS)(3BS) (4DAS)
|(3BS)(4DAS)

(0GBS)(4DAS)(4DBS)

(3, I I~ B SC I A I

Heuristic values in red
Added paths in blue; heuristic value of head is in front. Order of nodes in blue.

Brian Williams, Spring 03 59

Greedy

Pick first element of Q; Insert path extensions, sorted by h.

Q

Lpesy

(24S)(3BS)
(1L6KS)(3BS) (4DAS)
|(3BS)(4DAS)

(0GBS)[4DAS))(4DBS)

(3, I I~ B SC I A G B

Heuristic values in red
Added paths in blue; heuristic value of head is in front. Edge cost in green.

Was the shortest path produced?

Brian Williams, Spring 03 60

Classes of Search

Blind

(uninformed)

Depth-First Systematic exploration of whole tree
Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost Using path “length” as a measure,
Greedy finds “shortest” path.
A*
Brian Williams, Spring 03 61
Uniform cost search
spreads evenly from
/‘ start
s L/ X
A B
goal
sta

Brian Williams, Spring 03

62

Uniform cost search
spreads evenly from
the start

Greedy goes for the
goal, but forgets its

M
~ _

A B

goal
sta A* biases uniform cost
towards the goal by using h

A* finds an optimal solutior of=g+h
if h never over estimates.

+ g = distance from start

Then h is called “admissible” R :
s winiams, spingos ® N = €Stimated distance

to goal.

Simple Optimal Search Algorithm
BFS + Admissible Heuristic

Let Q be a list of partial paths,

Let S be the start node and

Let G be the Goal node.

Let f = g + h be an admissible heuristic function

Initialize Q with partial path (S) as only entry;

If Q is empty, fail. Else, use fto pick “best” partial path N from Q

If head(N) = G, return N (we’ve reached the goal)
(Otherwise) Remove N from Q;

o B w0 bdh =

Find all the descendants of head(N) and create all the one-step extensions
of N to each descendant.

Add to Q all the extended paths.
7. Go to step 2.

o

Brian Williams, Spring 03 64

In the example, 1s h
an admissible heuristic?

*Ais ok

*Bis ok

«Cis ok

* D is too big, needs to be <2

* S is too big, can always use 0 for start

Heuristic Values of h in Red

A* finds an optimal solution Edge costin Green

if h never over estimates.

Then h is called “admissible”

Brian Williams, Spring 03 65

Admissible heuristics for 8 puzzle?

6 [2 |8 I (2 |3

5 |:> 8 4

4 |7 |1 7 16 |5
S G

What is the heuristic?
* An underestimate of number of moves to the goal.
Examples:

1. Number of misplaced tiles (7)

2. Sum of Manhattan distance of each tile to its goal location
(17)

Brian Williams, Spring 03 66

A* Incorporates the
Dynamic Programming Principle

S X shortest o G
@ ®
shortest X X shortest
So ® + e ‘G

The shortest path from S through X to G
= shortest path from S to X + shortest path from X to G.

Idea: when shortest from S to X is found, ignore other S to X paths.

« When BFS dequeues the partial path with head node X,
this path is the shortest path from S to X.

Given the first path to X, we don’t need to extend other paths to X;

Brian Williams, Spring 03 67

Simple Optimal Search Algorithm

How do we add dynamic programming?

Let Q be a list of partial paths,

Let S be the start node and

Let G be the Goal node.

Let f = g + h be an admissible heuristic function

o~ w0 bdh =

L4

Initialize Q with partial path (S) as only entry;

If Q is empty, fail. Else, use f to pick the “best” partial path N from Q

If head(N) = G, return N (we’ve reached the goal)
(Else) Remove N from Q;

Find all children of head(N) and
create all the one-step extensions of N to each child.

Add to Q all the extended paths.
Go to step 2.

Brian Williams, Spring 03 68

A* Optimal Search Algorithm
BFS + Dyn Prog + Admissible Heuristic

Let Q be a list of partial paths,

Let S be the start node and

Let G be the Goal node.

Let f = g + h be an admissible heuristic function

Initialize Q with partial path (S) as only entry; set Expanded = ()

If Q is empty, fail. Else, use f to pick “best” partial path N from Q

If head(N) =G, return N (we’ve reached the goal)
(Else) Remove N from Q;

if head(N) is in Expanded, go to step 2, otherwise add head(N) to Expanded.

Find all the children of head(N) (not in Expanded)
and create all the one-step extensions of N to each child.

Add to Q all the extended paths.
8. Goto step 2.

I L S o

~

Brian Williams, Spring 03 69

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded
1 1(09)

Heuristic Values of g in Red
Edge cost in

Added paths in blue; cost f at head of each path.

Brian Williams, Spring 03 70

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path

Brian Williams, Spring 03 71

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded

L(os]
|4KS)(8BS)

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path

Brian Williams, Spring 03 72

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded
108
2 |(4KS)(8BS) S
3 |(56KS)(7TDAS)(8BS) SA
4 SAC

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path

Brian Williams, Spring 03 73

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded
1o
2 |(4KS)(8BS) s
3 |(56KS)(7TDAS)(8BS) SA
4 |(LBAS)(8BS) SAC
5 SACD

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path

Brian Williams, Spring 03 74

A* (BFS + DynProg + Admissible Heuristic)

Pick first element of Q; Insert path extensions, sorted by path length + heuristic.

Q Expanded
1o
2 |(4KS)(8BS) S
3 |(56KS)(7TDAS)(8BS) SA
4 |(LBAS)(8BS) SAC
5 [(BGDAS)[8BS) SACD

Heuristic Values of g in Red
Edge cost in Green

Added paths in blue; cost f at head of each path

Brian Williams, Spring 03 75

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to

Optimal?
Method Time Space find a path? pHma

Depth-First bm b*m Yes No

Breadth-First pd+l pd+! Yes Yes for unit edge cost

Best-First

Beam
(beam width = k)

Hill-Climbing
(no backup)

Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03 76

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. , Optimal?
Method Time Space find a path?
Depth-First pm b*m Yes No
Breadth-First pd+! pd+! Yes Yes for unit edge cost
Best-First b+l pa+l
Beam
(beam width = k)
Hill-Climbing
(no backup)
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03

77

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+l pd+! Yes Yes for unit edge cost
BestFirst b+! b+! Yes A w acmissbl heursic
Beam
(beam width = k)
Hill-Climbing
(no backup)
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03

78

Classes of Search

Blind Depth-First Systematic exploration of whole tree
(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost Uses path “length” measure. Finds
Greedy “shortest” path.
A*
Variants Beam
Hill-Climbing (w backup)
ID A*

Brian Williams, Spring 03 79

Hill-Climbing

Pick first element of Q; Replace Q with extensions (sorted by heuristic value)

Q

(2AS)(3BS)

Dl INdD| -

Heuristic Values

A=2 C=1 S$=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.

Brian Williams, Spring 03 80

Hill-Climbing

Pick first element of Q; Replace Q with extensions (sorted by heuristic value)

Q

M 5@ B S)j Removed

(1CAS)(4DAS)

W INd| -

Heuristic Values
A=2 C=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.

Brian Williams, Spring 03 81

Hill-Climbing

Pick first element of Q; Replace Q with extensions (sorted by heuristic value)
3

Q 2 ©
1
2 |2#%)(3BS) D)
3 |4 CAS)(4DAS) 1
40 (B>

Heuristic Values
A=2 C=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.

Fails to find a path!

Brian Williams, Spring 03 82

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. , Optimal?
Method Time Space find a path?
Depth-First pm b*m Yes No
Breadth-First pd+! pd+! Yes Yes for unit edge cost
Best First b o es aapn
Beam
(beam width = k)
Hill-Climbing
(no backup)
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03

83

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+l pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
b bdﬂ Yes A* w admissible heuristic.
Beam
(beam width = k)
Hill-Climbing N
(no backup) b¥m
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03

84

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. , Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+! pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
bdﬂ bdﬂ Yes A* w admissible heuristic.
Beam
(beam width = k)
Hill-Climbing N
(no backup) b*m b
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03

85

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+l pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
de bdﬂ Yes A* w admissible heuristic.

Beam
(beam width = k)
Hill-Climbin

g b*m b No No
(no backup)
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03

86

Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

Q

(2AS)(3BS)

(S| W I IN|—-

Heuristic Values
A=2 C=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.

Brian Williams, Spring 03 87

Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

)3BS)

(1CASKADAS)(3BS) O

All new nodes before old

(3, I I~ B SC I A G B

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Added paths in blue; heuristic value of head is in front.

Brian Williams, Spring 03 88

Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

3
Q 2 ©
1
2)(3BS) €Y
3 [(+CAS)(4DAS)(3BS) 1
4 [(4DAS)(3BS) &)
5 Heuristic Values

A=2 C=1 S=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.

Brian Williams, Spring 03 89

Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

)(3BS)
(+CAS)(4DAS)(3BS)
(4BAS)(3BS)

(OGDAS)(1CAS)(3BYS) Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

(3, I I~ B SC I A G B

Added paths in blue; heuristic value of head is in front.

Brian Williams, Spring 03 90

Hill-Climbing (with backup)

Pick first element of Q; Add path extensions (sorted by heuristic value) to front of Q

)(3BS)
(+CAS)(4DAS)(3BS)
S)(3BS)
(0GDAS)(1ICAS)(3BS) Heuristic Values
A=2 C=1 $=10
B=3 D=4 G=0

| O —-

Added paths in blue; heuristic value of head is in front.

Brian Williams, Spring 03 91

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+l pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
de bdﬂ Yes A* w admissible heuristic.

Beam
(beam width = k)
Hill-Climbin

g b*m b No No
(no backup)
Hill-Climbing
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03 92

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+! pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
bdﬂ bdﬂ Yes A* w admissible heuristic.

Beam
(beam width = k)
Hill-Climbin

r-ulimbing b*m b No No
(no backup)
Hill-Climbi

r-uAmaing pm b*m Yes No
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03

93

Classes of Search

Blind

(uninformed)

Depth-First
Breadth-First

Iterative-Deepening

Systematic exploration of whole tree

until the goal is found.

Best-first Uniform-cost Uses path “length” measure. Finds
Greedy “shortest” path.
A*

Variants Beam

Hill-Climbing (w backup)
ID A*

Brian Williams, Spring 03

94

Beam

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Idea: Incrementally expand the k best paths

Added paths in blue; heuristic value of head is in front.

Letk=2

Brian Williams, Spring 03 95

Beam

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Q

2 [(2AS)(3BS)

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Idea: Incrementally expand the k best paths

Added paths in blue; heuristic value of head is in front.

Letk=2

Brian Williams, Spring 03 96

Beam

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Q 2

2 | (2K5) (387
(0GBS)(1CAS) Keep 1
HDASIADBS— k best

Idea: Incrementally expand the k best paths

Heuristic Values
A=2 C=1 $=10
B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.

Letk=2

Brian Williams, Spring 03 97

Beam

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Q

2 | (2K5) (3B7)
(0GBS)[(1CAS) Keep
#DAS DB S k best

Idea: Incrementally expand the k best paths

Heuristic Values
A=2 C=1 S=10
B=3 D=4 G=0

Added paths in blue; heuristic value of head is in front.

Letk=2

Brian Williams, Spring 03 98

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. , Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+! pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
bdﬂ bdﬂ Yes A* w admissible heuristic.

Beam
(beam width = k)
Hill-Climbin

r-ulimbing b*m b No No
(no backup)
Hill-Climbi

r-uAmaing pm b*m Yes No
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03 99

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+l pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
de bdﬂ Yes A* w admissible heuristic.
Beam
sk
(beam width = k) k*b
Hill-Climbin
g b*m b No No
(no backup)
Hill-Climbin
F-uAmoing pm b*m Yes No
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03 100

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. , Optimal?
Method Time Space find a path?
Depth-First bm b*m Yes No
Breadth-First pd+! pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or
bdﬂ bdﬂ Yes A* w admissible heuristic.
Beam
*kyk %

(beamwidth=k) | < om KD
Hill-Climbin

r-ulimbing b*m b No No
(no backup)
Hill-Climbi

r-uAmaing pm b*m Yes No
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03 101

Cost and Performance

Searching a tree with branching factor b, solution depth d, and max depth m

Search Worst Worst Guaranteed to .
. . Optimal?

Method Time Space find a path?

Depth-First bm b*m Yes No

Breadth-First pd+l pd+! Yes Yes for unit edge cost
Best-First Yes if uniform cost or

b bdﬂ Yes A* w admissible heuristic.
Beam
kyk %

(beamwidth=k) | < om KD No No

Hill-Climbi

ri-ulimbing b*m b No No
(no backup)

Hill-Climbi

rrvimbing pm b*m Yes No
(backup)

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Spring 03 102

Outline

S WA PAVES T e, T 7 He T
B 2B, Gﬁd h S gl "Séuo%

« Creating road maps for path o T N
i SN R i o
planning VNS NS
: Fi;fa" e
* Exploring roadmaps: Shortest SeelnalsesE s, "y
Path I i "'-1" - = ; "I ‘._' D el\oui:-{‘li_}:rg
— Single Source . " ﬁ%;

* Dijkstra;s algorithm VB ol e e

— Informed search
* Uniform cost search
* Greedy search

A* search

Beam search

Hill climbing

* Avoiding adversaries
— (Next Lecture)

Brian Williams, Spring 03

