
Brian Williams, Spring 03 1

Shortest Path and 
Informed Search
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16.410 - 13

October 27th, 2003

Slides adapted from:
6.034 Tomas Lozano Perez,
Winston, and Russell and Norvig AIMA
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Assignment

• Reading: 
– Shortest path: 

Cormen Leiserson & Rivest, 
“Introduction to Algorithms” Ch. 25.1-.2

– Informed search and exploration: 
AIMA Ch. 4.1-2

• Homework:
– Online problem set #6 due Monday November 

3rd.
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courtesy NASA Ames courtesy NASA Lewis

How do we maneuver?
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Roadmaps are an effective 
state space abstraction
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Weighted Graphs
and Path Lengths

Graph G = <V, E>
Weight function w: E →ℜ
Path p = < vo, v1, … vk >

Path weight w(p) = Σ w(vi-1,vi)
Shortest path weight δ(u,v) = min {w(p) : u →p v } else ∞
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Outline
• Creating road maps for path 

planning
• Exploring roadmaps: 

Shortest Paths
– Single Source

• Dijkstra;s algorithm

– Informed search
• Uniform cost search
• Greedy search
• A* search
• Beam search
• Hill climbing

• Avoiding adversaries
– (Next Lecture)
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Single Source Shortest Path

Problem: Compute shortest path to all vertices from source s
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Single Source Shortest Path

Problem: Compute shortest path to all vertices from source s
• estimate d[v] estimated shortest path length from s to v
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Single Source Shortest Path

Problem: Compute shortest path to all vertices from source s
• estimate d[v] estimated shortest path length from s to v
• predecessor π[v] final edge of shortest path to v

• induces shortest path tree
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Properties of Shortest Path

• Subpaths of shortest paths are shortest paths.

• s →p v = <s, x, u, v>

• s →p u = <s, x, u>

• s →p x = <s, x>

• x →p v = <x, u, v>

• x →p v = <x, u>

• u →p v = <u, v>
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Properties of Shortest Path

Corollary: Shortest paths are grown from shortest paths.

• The length of shortest path s →p u → v

is δ(s,v) = δ(s,u) + w(u,v).
• ∀ <u,v> ∈ E δ(s,v) ≤ δ(s,u) + w(u,v)
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Initialize-Single-Source(G, s)
1. for each vertex v ∈ V[G] 
2. do d[u] ← ∞
3. π[v] ← NIL
4. d[s] ← 0

Idea: Start With Upper Bound

O(v)
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Relax Bounds to Shortest Path

Relax (u, v, w)
1. if d[u] + w(u,v) < d[v] 
2. do d[v] ← d[u] + w(u,v) 
3. π[v] ← u
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Properties of Relaxing Bounds

After calling Relax(u, v, w) 
• d[u] + w(u,v) ≥ d[v] 

d remains a shortest path upperbound after repeated calls 
to Relax.

Once d[v] is the shortest path its value persists
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Q = {s,u,v,x,y}
S  = {}

Vertices to relax
Vertices with shortest path value

Dijkstra’s Algorithm

Idea: Greedily relax out arcs of minimum cost nodes
Assume all edges are non-negative.
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Q = {x,y,u,v}
S  = {s}

s

Vertices to relax
Vertices with shortest path value

Dijkstra’s Algorithm

Idea: Greedily relax out arcs of minimum cost nodes
Assume all edges are non-negative.
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Q = {x,y,u,v}
S  = {s}

s

Vertices to relax
Vertices with shortest path value
Shortest path edge Π[v] = arrows

Dijkstra’s Algorithm

Idea: Greedily relax out arcs of minimum cost nodes
Assume all edges are non-negative.

Brian Williams, Spring 03 18

10 ∞

u v
1

5 ∞
x y

2

0

10

5

7

9
2 3 4 6

Q = {x,y,u,v}
S  = {s}

s

Vertices to relax
Vertices with shortest path value
Shortest path edge Π[v] = arrows

Dijkstra’s Algorithm

Idea: Greedily relax out arcs of minimum cost nodes
Assume all edges are non-negative.
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Q = {x,y,u,v}
S  = {s}

s

Vertices to relax
Vertices with shortest path value
Shortest path edge Π[v] = arrows

Dijkstra’s Algorithm

Idea: Greedily relax out arcs of minimum cost nodes
Assume all edges are non-negative.
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Q = {y,u,v}
S  = {s, x}

s

Vertices to relax
Vertices with shortest path value
Shortest path edge Π[v] = arrows

Dijkstra’s Algorithm

Idea: Greedily relax out arcs of minimum cost nodes
Assume all edges are non-negative.
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Q = {y,u,v}
S  = {s, x}

s

Vertices to relax
Vertices with shortest path value
Shortest path edge Π[v] = arrows

Dijkstra’s Algorithm

Idea: Greedily relax out arcs of minimum cost nodes
Assume all edges are non-negative.
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Q = {u,v}
S  = {s, x, y}

s

Vertices to relax
Vertices with shortest path value
Shortest path edge Π[v] = arrows

Dijkstra’s Algorithm

Idea: Greedily relax out arcs of minimum cost nodes
Assume all edges are non-negative.
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Q = {v}
S  = {s, x, y, u}

s

Vertices to relax
Vertices with shortest path value
Shortest path edge Π[v] = arrows

Dijkstra’s Algorithm

Idea: Greedily relax out arcs of minimum cost nodes
Assume all edges are non-negative.
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Q = {}
S  = {s, x, y, u, v}

s

Vertices to relax
Vertices with shortest path value
Shortest path edge Π[v] = arrows

Dijkstra’s Algorithm

Idea: Greedily relax out arcs of minimum cost nodes
Assume all edges are non-negative.
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Dijkstra’s Algorithm

DIJKSTRA(G,w,s)
1. Initialize-Single-Source(G, s)
2. S ←∅
3. Q ← V[G]
4. while Q ≠ ∅
5. do u ← Extract-Min(Q)
6. S ← S  ∪ {u}
7. for each vertex v ∈ Adj[u] 
8. do Relax(u, v, w)

Repeatedly select minimum cost node and relax out arcs

O(V)

O(V)

* O(V)
O(E)

= O(V2+E)

or O(lg V)
w fib heap

= O(VlgV+E)
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Outline
• Creating road maps for path 

planning
• Exploring roadmaps: 

Shortest Paths
– Single Source

• Dijkstra;s algorithm

– Informed search
• Uniform cost search
• Greedy search
• A* search
• Beam search
• Hill climbing

• Avoiding adversaries
– (Next Lecture)
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Problem: Find the path to the goal G with 
the shortest path length g.

g = 8
S

D
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C G
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D
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Extend search tree nodes
to include path length g
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Classes of Search

Blind Depth-First Systematic exploration of whole tree

(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost Using path “length” as a measure,  

(informed) Greedy finds  “shortest” path.

A*
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Uniform cost search 
spreads evenly from 
start

Does uniform cost search find the shortest path?
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0

edge cost

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.

path length
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Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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0

edge costpath length

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.



Brian Williams, Spring 03 33

C

S

B

G
A

D2

5

4

2
3

2

5
1

S

D

BA

C

2 5

6 4

Uniform Cost
0

edge costpath length

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Uniform Cost
0

edge costpath length

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Uniform Cost
0

edge costpath length

Expands nodes already visited

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Uniform Cost
0

edge costpath length

Expands nodes already visited

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Uniform Cost
0

edge costpath length

Expands nodes already visited

Enumerates partial paths in order of increasing path length g.

May expand vertex more than once.
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Why Expand a Vertex More Than Once?

0
path length

S

A

D2
1

4
G

• The shortest path from S to G 
is (G D A S).

1

edge cost

• D is reached first using 
path (D S).

Suppose we expanded only the 
first path to visit each vertex X?
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Why Expand a Vertex More Than Once?

0
path length

S

A

D2
1

4
G

• The shortest path from S to G 
is (G D A S).

1

edge cost

• D is reached first using 
path (D S).

• This prevents path (D A S) 
from being expanded.

Suppose we expanded only the 
first path to visit each vertex X?
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Why Expand a Vertex More Than Once?

0
path length

S

A
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• The shortest path from S to G 
is (G D A S).

1

edge cost

• D is reached first using 
path (D S).

• This prevents path (D A S) 
from being expanded.

Suppose we expanded only the 
first path to visit each vertex X?

10G

Brian Williams, Spring 03 42

S

D

DA 2 5

3

Why Expand a Vertex More Than Once?

0
path length
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• The shortest path from S to G 
is (G D A S).

1

edge cost

• D is reached first using 
path (D S).

• This prevents path (D A S) 
from being expanded.

Suppose we expanded only the 
first path to visit each vertex X?

10G

• The suboptimal path (G D S) 
is returned.
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Uniform Cost Search Algorithm
Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.
Let g  be the path length from S to N.

1. Initialize Q with partial path (S) as only entry; set Visited = ( )

2. If Q is empty, fail.  Else, pick partial path N from Q with best g

3. If head(N) = G, return N (we’ve reached the goal!)

4. (Otherwise) Remove N from Q

5. Find all children of head(N) not in Visited and create all the 
one-step extensions of N to each child.

6. Add to Q all the extended paths; 

7. Add children of head(N) to Visited

8. Go to step 2.
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Implementing the 
Search Strategies

Depth-first:

Pick first element of Q

Add path extensions to front of Q
Breadth-first:

Pick first element of Q

Add path extensions to end of Q
Uniform-cost:

Pick first element of Q 

Add path extensions to Q in order of 
increasing path length g.

Uses visited list

Uses visited list

No visited list
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Uniform Cost using BFS
Pick first element of Q;  Insert path extensions, sorted by g.
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Here we:
• Insert on queue in order of g.
• Remove first element of queue.
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Uniform Cost using BFS
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Pick first element of Q;  Insert path extensions, sorted by g.

Here we:
• Insert on queue in order of g.
• Remove first element of queue.
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Uniform Cost using BFS
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Pick first element of Q;  Insert path extensions, sorted by g.

Here we:
• Insert on queue in order of g.
• Remove first element of queue.
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Uniform Cost using BFS

(6 D B S) (6 D A S) (10 G B S) 5

(8 G D A S) (8 G D B S) (9 C D A S) (9 C D B S) 
(10 G B S)
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Pick first element of Q;  Insert path extensions, sorted by g.
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Can we stop as soon as 
the goal is enqueued?

• Other paths to the goal that are shorter may not yet be enqueued.

• Only when a path is pulled off the Q are we guaranteed that 
no shorter path will be added.

• This assumes all edges are positive.

(6 D B S) (6 D A S) (10 G B S)5

(8 G D A S) (8 G D B S) (9 C D A S) (9 C D B S) 
(10 G B S)

7

(6 D A S)(8 G D B S) (9 C D B S) (10 G B S)6

Q

4

3

2

1

(5 B S) (6 D A S)

(4 C A S) (5 B S) (6 D A S)

(2 A S) (5 B S)

(0 S)
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Implementing the 
Search Strategies

Depth-first:

Pick first element of Q

Add path extensions to front of Q
Breadth-first:

Pick first element of Q

Add path extensions to end of Q
Uniform-cost:

Pick first element of Q 

Add path extensions to Q in increasing order of path length g.

Uses visited list

Uses visited list

No visited list

Best-first: (generalizes uniform-cost)

Pick first element of Q 

Add path extensions in increasing order of any cost function f

No visited list
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Best-first Search Algorithm
Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.
Let f  be a cost function on N.

1. Initialize Q with partial path (S) as only entry

2. If Q is empty, fail.  Else, pick partial path N from Q with best f

3. If head(N) = G, return N (we’ve reached the goal!)

4. (Otherwise) Remove N from Q

5. Find all children of head(N) and create all the one-step 
extensions of N to each child.

6. Add to Q all the extended paths; 

7. Go to step 2.
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Classes of Search

Blind Depth-First Systematic exploration of whole tree

(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost  Using path “length” as a measure,  

Greedy finds  “shortest” path.

A*
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A B

xx

start

goal

Uniform cost search 
spreads evenly from 
start

Chicago, Il

Boston, MaRapid City, ND

Uniform cost search explores the direction away 
from the goal as much as with the goal.

Greedy search is directed 
towards the goal.
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Greedy Search

Search in an order imposed by a heuristic function, measuring cost to go.

Heuristic function h – is a function of the current node n, 
not the partial path s to n.

• Estimated distance to goal – h (n,G) 

• Example: straight-line distance in a road network. 

• “Goodness” of a node – h (n)

• Example: elevation

• Foothills, plateaus and ridges are problematic.
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Greedy
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Added paths in blue; heuristic value of head is in front.
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Heuristic values in red
Order of nodes in blue.

Pick first element of Q;  Insert path extensions, sorted by h.
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Heuristic values in red
Order of nodes in blue.

Pick first element of Q;  Insert path extensions, sorted by h.
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Greedy
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Heuristic values in red
Order of nodes in blue.

Pick first element of Q;  Insert path extensions, sorted by h.
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Greedy
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Order of nodes in blue.

Pick first element of Q;  Insert path extensions, sorted by h.
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Greedy
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Order of nodes in blue.

Pick first element of Q;  Insert path extensions, sorted by h.
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Greedy
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Pick first element of Q;  Insert path extensions, sorted by h.
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Was the shortest path produced?

Edge cost in green.
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Classes of Search

Blind Depth-First Systematic exploration of whole tree

(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Best-first Uniform-cost  Using path “length” as a measure,  

Greedy finds  “shortest” path.

A*
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A B

xx

start

goal

Uniform cost search 
spreads evenly from 
start



Brian Williams, Spring 03 63

start

goal

A* biases uniform cost 
towards the goal by using h

• f = g + h

• g = distance from start

• h = estimated distance 
to goal.

A B

xx

Uniform cost search 
spreads evenly from 
the start

A* finds an optimal solution 
if h never over estimates.

Then h is called “admissible”

Greedy goes for the 
goal, but forgets its 
past.
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Simple Optimal Search Algorithm
BFS + Admissible Heuristic

1. Initialize Q with partial path (S) as only entry; 

2. If Q is empty, fail.  Else, use f to pick “best” partial path N from Q

3. If head(N) = G, return N (we’ve reached the goal)

4. (Otherwise) Remove N from Q;

5. Find all the descendants of head(N) and create all the one-step extensions 
of N to each descendant.

6. Add to Q all the extended paths.

7. Go to step 2.

Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.
Let f = g + h be an admissible heuristic function
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In the example, is h
an admissible heuristic?
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Heuristic Values of h in Red

Edge cost in Green

• A is ok
• B is ok
• C is ok
• D is too big, needs to be ≤ 2
• S is too big, can always use 0 for start

10

2

1

0
4

3

A* finds an optimal solution 
if h never over estimates.

Then h is called “admissible”
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Admissible heuristics for 8 puzzle?

174

53

826

567

48

321

S G

What is the heuristic?

• An underestimate of number of moves to the goal.

Examples:

1. Number of misplaced tiles (7)

2. Sum of Manhattan distance of each tile to its goal location 
(17)
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A* Incorporates the
Dynamic Programming Principle

The shortest path from S through X to G
= shortest path from S to X + shortest path from X to G.

• Idea: when shortest from S to X is found, ignore other S to X paths.

• When BFS dequeues the first partial path with head node X, 
this path is the shortest path from S to X.

Given the first path to X, we don’t need to extend other paths to X; 
delete them.

S GX

+

=
S GX Xshortest shortest

shortest
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Simple Optimal Search Algorithm
How do we add dynamic programming?

1. Initialize Q with partial path (S) as only entry; 

2. If Q is empty, fail.  Else, use f to pick the “best” partial path N from Q

3. If head(N) = G, return N (we’ve reached the goal)

4. (Else) Remove N from Q;

5. Find all children of head(N) and 
create all the one-step extensions of N to each child.

6. Add to Q all the extended paths.

7. Go to step 2.

Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.
Let f = g + h be an admissible heuristic function
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A* Optimal Search Algorithm
BFS + Dyn Prog + Admissible Heuristic

1. Initialize Q with partial path (S) as only entry; set Expanded = ( )

2. If Q is empty, fail.  Else, use f to pick “best” partial path N from Q

3. If head(N) = G, return N (we’ve reached the goal)

4. (Else) Remove N from Q; 

5. if head(N) is in Expanded, go to step 2, otherwise add head(N) to Expanded.

6. Find all the children of head(N) (not in Expanded) 
and create all the one-step extensions of N to each child.

7. Add to Q all the extended paths.

8. Go to step 2.

Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.
Let f = g + h be an admissible heuristic function
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A* (BFS + DynProg + Admissible Heuristic)

Q

1 (0 S)

1

Added paths in blue; cost f at head of each path.

C

S

B

G
A

D2

5

4

2
3

2

5
1

Heuristic Values of g in Red

Edge cost in Green

0

2

1

0
1

3

Expanded

Pick first element of Q;  Insert path extensions, sorted by path length + heuristic.
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A* (BFS + DynProg + Admissible Heuristic)

Q

2

1 (0 S)

Added paths in blue; cost f at head of each path

1

C

S

B

G
A

D2

5

4

2
3

2

5
10

2

1

0
1

3

Heuristic Values of g in Red

Edge cost in Green

Expanded

S

Pick first element of Q;  Insert path extensions, sorted by path length + heuristic.
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A* (BFS + DynProg + Admissible Heuristic)

Q

3

2

1

(4 A S) (8 B S)

(0 S)

1

2

Added paths in blue; cost f at head of each path

C

S

B

G
A

D2

5

4

2
3

2

5
10

2

1

0
1

3

Heuristic Values of g in Red

Edge cost in Green

Expanded

S

S A

Pick first element of Q;  Insert path extensions, sorted by path length + heuristic.
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A* (BFS + DynProg + Admissible Heuristic)

Q

4

3

2

1

(5 C A S) (7 D A S) (8 B S)

(4 A S) (8 B S)

(0 S)

1

2

3

Added paths in blue; cost f at head of each path

C

S

B

G
A

D2

5

4

2
3

2

5
10

2

1

0
1

3

Heuristic Values of g in Red

Edge cost in Green

Expanded

S

S A

S A C

Pick first element of Q;  Insert path extensions, sorted by path length + heuristic.
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A* (BFS + DynProg + Admissible Heuristic)

5

Q

4

3

2

1

(7 D A S) (8 B S)

(5 C A S) (7 D A S) (8 B S)

(4 A S) (8 B S)

(0 S)

1

2

3

4

Added paths in blue; cost f at head of each path

C

S

B

G
A

D2

5

4

2
3

2

5
10

2

1

0
1

3

Heuristic Values of g in Red

Edge cost in Green

Expanded

S

S A

S A C

S A C D

Pick first element of Q;  Insert path extensions, sorted by path length + heuristic.
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A* (BFS + DynProg + Admissible Heuristic)

(8 G D A S) (8 B S)5

Q

4

3

2

1

(7 D A S) (8 B S)

(5 C A S) (7 D A S) (8 B S)

(4 A S) (8 B S)

(0 S)

1

2

3

4

5

Added paths in blue; cost f at head of each path

C

S

B

G
A

D2

5

4

2
3

2

5
10

2

1

0
1

3

Heuristic Values of g in Red

Edge cost in Green

Expanded

S

S A

S A C

S A C D

Pick first element of Q;  Insert path extensions, sorted by path length + heuristic.
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Cost and Performance

Yes for unit edge cost

No

Optimal?

Beam
(beam width = k)

Best-First

Hill-Climbing
(backup)

Hill-Climbing
(no backup)

Yesbd+1bd+1Breadth-First

Yesb*mbmDepth-First

Guaranteed to

find a path?

Worst

Space

Worst

Time

Search

Method

Searching a tree with branching factor b, solution depth d, and max depth m

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

Yes for unit edge cost

No

Optimal?

Beam
(beam width = k)

bd+1bd+1Best-First

Hill-Climbing
(backup)

Hill-Climbing
(no backup)

Yesbd+1bd+1Breadth-First

Yesb*mbmDepth-First

Guaranteed to

find a path?

Worst

Space

Worst

Time

Search

Method

Searching a tree with branching factor b, solution depth d, and max depth m

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

Yes if uniform cost or 
A* w admissible heuristic.

Yes for unit edge cost

No

Optimal?

Beam
(beam width = k)

Yesbd+1bd+1Best-First

Hill-Climbing
(backup)

Hill-Climbing
(no backup)

Yesbd+1bd+1Breadth-First

Yesb*mbmDepth-First

Guaranteed to

find a path?

Worst

Space

Worst

Time

Search

Method

Searching a tree with branching factor b, solution depth d, and max depth m

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Classes of Search

Blind Depth-First Systematic exploration of whole tree

(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Variants Beam

Hill-Climbing (w backup)

ID A*

Best-first Uniform-cost Uses path “length” measure.  Finds

Greedy “shortest” path.

A*
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C

S

B

G
A

D

Q

4

3

2

1

(2 A S) (3 B S)

(10 S)

1

Added paths in blue; heuristic value of head is in front.

Heuristic Values

A=2 C=1 S=10

B=3 D=4 G=0

Hill-Climbing
Pick first element of Q;  Replace Q with extensions (sorted by heuristic value)
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C

S

B

G
A

D

Q

4

3

2

1

(1 C A S) (4 D A S)

(2 A S) (3 B S)

(10 S)

1

2

Added paths in blue; heuristic value of head is in front.

Heuristic Values

A=2 C=1 S=10

B=3 D=4 G=0

Hill-Climbing
Pick first element of Q;  Replace Q with extensions (sorted by heuristic value)

Removed
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C

S

B

G
A

D

Q

4

3

2

1

( )

(1 C A S) (4 D A S)

(2 A S) (3 B S)

(10 S)

1

2

3

Added paths in blue; heuristic value of head is in front.

Heuristic Values

A=2 C=1 S=10

B=3 D=4 G=0

Fails to find a path!

Hill-Climbing
Pick first element of Q;  Replace Q with extensions (sorted by heuristic value)
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Cost and Performance

Yes if uniform cost or 
A* w admissible heuristic.

Yes for unit edge cost

No

Optimal?

Beam
(beam width = k)

Yesbd+1bd+1Best-First

Hill-Climbing
(backup)

Hill-Climbing
(no backup)

Yesbd+1bd+1Breadth-First

Yesb*mbmDepth-First

Guaranteed to

find a path?

Worst

Space

Worst

Time

Search

Method

Searching a tree with branching factor b, solution depth d, and max depth m

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

Yes if uniform cost or 
A* w admissible heuristic.

Yes for unit edge cost

No

Optimal?

Beam
(beam width = k)

Yesbd+1bd+1Best-First

Hill-Climbing
(backup)

b*m
Hill-Climbing
(no backup)

Yesbd+1bd+1Breadth-First

Yesb*mbmDepth-First

Guaranteed to

find a path?

Worst

Space

Worst

Time

Search

Method

Searching a tree with branching factor b, solution depth d, and max depth m

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

Yes if uniform cost or 
A* w admissible heuristic.

Yes for unit edge cost

No

Optimal?

Beam
(beam width = k)

Yesbd+1bd+1Best-First

Hill-Climbing
(backup)

bb*m
Hill-Climbing
(no backup)

Yesbd+1bd+1Breadth-First

Yesb*mbmDepth-First

Guaranteed to

find a path?

Worst

Space

Worst

Time

Search

Method

Searching a tree with branching factor b, solution depth d, and max depth m

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

No

Yes if uniform cost or 
A* w admissible heuristic.

Yes for unit edge cost

No

Optimal?

Beam
(beam width = k)

Yesbd+1bd+1Best-First

Hill-Climbing
(backup)

Nobb*m
Hill-Climbing
(no backup)

Yesbd+1bd+1Breadth-First

Yesb*mbmDepth-First

Guaranteed to

find a path?

Worst

Space

Worst

Time

Search

Method

Searching a tree with branching factor b, solution depth d, and max depth m

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q



Brian Williams, Spring 03 87

Hill-Climbing (with backup)

C

S

B

G
A

D

Q

5

4

3

2

1

(2 A S) (3 B S)

(10 S)

1

Added paths in blue; heuristic value of head is in front.

Heuristic Values

A=2 C=1 S=10

B=3 D=4 G=0

Pick first element of Q;  Add path extensions (sorted by heuristic value) to front of Q
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Hill-Climbing (with backup)

C

S

B

G
A

D

Q

5

4

3

2

1

(1 C A S) (4 D A S) (3 B S) 

(2 A S) (3 B S)

(10 S)

1

2

Added paths in blue; heuristic value of head is in front.

Heuristic Values

A=2 C=1 S=10

B=3 D=4 G=0

Pick first element of Q;  Add path extensions (sorted by heuristic value) to front of Q

All new nodes before old
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Hill-Climbing (with backup)

C

S

B

G
A

D

Q

5

4

3

2

1

(4 D A S) (3 B S)

(1 C A S) (4 D A S) (3 B S) 

(2 A S) (3 B S)

(10 S)

1

2

3

Added paths in blue; heuristic value of head is in front.

Heuristic Values

A=2 C=1 S=10

B=3 D=4 G=0

Pick first element of Q;  Add path extensions (sorted by heuristic value) to front of Q
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Hill-Climbing (with backup)

C

S

B

G
A

D

Q

5

4

3

2

1

(0 G D A S) (1 C A S) (3 B S)

(4 D A S) (3 B S)

(1 C A S) (4 D A S) (3 B S) 

(2 A S) (3 B S)

(10 S)

1

2

3

4

Added paths in blue; heuristic value of head is in front.

Heuristic Values

A=2 C=1 S=10

B=3 D=4 G=0

Pick first element of Q;  Add path extensions (sorted by heuristic value) to front of Q
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Hill-Climbing (with backup)

C

S

B

G
A

D

Q

5

4

3

2

1

(0 G D A S) (1 C A S) (3 B S)

(4 D A S) (3 B S)

(1 C A S) (4 D A S) (3 B S) 

(2 A S) (3 B S)

(10 S)

1

2

3

4

Added paths in blue; heuristic value of head is in front.

5

Heuristic Values

A=2 C=1 S=10

B=3 D=4 G=0

Pick first element of Q;  Add path extensions (sorted by heuristic value) to front of Q

Brian Williams, Spring 03 92

Cost and Performance

No

Yes if uniform cost or 
A* w admissible heuristic.

Yes for unit edge cost

No

Optimal?

Beam
(beam width = k)

Yesbd+1bd+1Best-First

Hill-Climbing
(backup)

Nobb*m
Hill-Climbing
(no backup)

Yesbd+1bd+1Breadth-First

Yesb*mbmDepth-First

Guaranteed to

find a path?

Worst

Space

Worst

Time

Search

Method

Searching a tree with branching factor b, solution depth d, and max depth m

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

No

No

Yes if uniform cost or 
A* w admissible heuristic.

Yes for unit edge cost

No

Optimal?

Beam
(beam width = k)

Yesbd+1bd+1Best-First

Yesb*mbmHill-Climbing
(backup)

Nobb*m
Hill-Climbing
(no backup)

Yesbd+1bd+1Breadth-First

Yesb*mbmDepth-First

Guaranteed to

find a path?

Worst

Space

Worst

Time

Search

Method

Searching a tree with branching factor b, solution depth d, and max depth m

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Classes of Search

Blind Depth-First Systematic exploration of whole tree

(uninformed) Breadth-First until the goal is found.

Iterative-Deepening

Variants Beam

Hill-Climbing (w backup)

ID A*

Best-first Uniform-cost Uses path “length” measure.  Finds

Greedy “shortest” path.

A*
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Q

2

1 (10 S)

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

C

S

B

G
A

D

1

Heuristic Values

A=2 C=1 S=10

B=3 D=4 G=0
Added paths in blue; heuristic value of head is in front.

Idea: Incrementally expand the k best paths

Let k = 2

Beam
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C

S

B

G
A

D

Q

2

1

(2 A S) (3 B S)

(10 S)

1

Added paths in blue; heuristic value of head is in front.

Heuristic Values

A=2 C=1 S=10

B=3 D=4 G=0

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Idea: Incrementally expand the k best paths

Let k = 2

Beam
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C

S

B

G
A

D

Q

3

2

1

(0 G B S) (1 C A S) 

(4 D A S) (4 D B S) 

(2 A S) (3 B S)

(10 S)

1

2

Added paths in blue; heuristic value of head is in front.

Heuristic Values

A=2 C=1 S=10

B=3 D=4 G=0

2Keep 
k best

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Idea: Incrementally expand the k best paths

Let k = 2

Beam
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C

S

B

G
A

D

Q

3

2

1

(0 G B S) (1 C A S) 

(4 D A S) (4 D B S) 

(2 A S) (3 B S)

(10 S)

1

2
3

Added paths in blue; heuristic value of head is in front.

Heuristic Values

A=2 C=1 S=10

B=3 D=4 G=0

Beam

2Keep 
k best

Expand all Q elements; Keep the k best extensions (sorted by heuristic value)

Idea: Incrementally expand the k best paths

Let k = 2
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Cost and Performance

No

No

Yes if uniform cost or 
A* w admissible heuristic.

Yes for unit edge cost

No

Optimal?

Beam
(beam width = k)

Yesbd+1bd+1Best-First

Yesb*mbmHill-Climbing
(backup)

Nobb*m
Hill-Climbing
(no backup)

Yesbd+1bd+1Breadth-First

Yesb*mbmDepth-First

Guaranteed to

find a path?

Worst

Space

Worst

Time

Search

Method

Searching a tree with branching factor b, solution depth d, and max depth m

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

No

No

Yes if uniform cost or 
A* w admissible heuristic.

Yes for unit edge cost

No

Optimal?

k*b
Beam
(beam width = k)

Yesbd+1bd+1Best-First

Yesb*mbmHill-Climbing
(backup)

Nobb*m
Hill-Climbing
(no backup)

Yesbd+1bd+1Breadth-First

Yesb*mbmDepth-First

Guaranteed to

find a path?

Worst

Space

Worst

Time

Search

Method

Searching a tree with branching factor b, solution depth d, and max depth m

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q



Brian Williams, Spring 03 101

Cost and Performance

No

No

Yes if uniform cost or 
A* w admissible heuristic.

Yes for unit edge cost

No

Optimal?

k*bk*b*m
Beam
(beam width = k)

Yesbd+1bd+1Best-First

Yesb*mbmHill-Climbing
(backup)

Nobb*m
Hill-Climbing
(no backup)

Yesbd+1bd+1Breadth-First

Yesb*mbmDepth-First

Guaranteed to

find a path?

Worst

Space

Worst

Time

Search

Method

Searching a tree with branching factor b, solution depth d, and max depth m

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance

No

No

No

Yes if uniform cost or 
A* w admissible heuristic.

Yes for unit edge cost

No

Optimal?

Nok*bk*b*m
Beam
(beam width = k)

Yesbd+1bd+1Best-First

Yesb*mbmHill-Climbing
(backup)

Nobb*m
Hill-Climbing
(no backup)

Yesbd+1bd+1Breadth-First

Yesb*mbmDepth-First

Guaranteed to

find a path?

Worst

Space

Worst

Time

Search

Method

Searching a tree with branching factor b, solution depth d, and max depth m

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Outline
• Creating road maps for path 

planning 
• Exploring roadmaps: Shortest 

Path
– Single Source

• Dijkstra;s algorithm

– Informed search
• Uniform cost search
• Greedy search
• A* search
• Beam search
• Hill climbing

• Avoiding adversaries
– (Next Lecture)


