
Analysis of Uninformed
Search Methods

Brian C.
Williams
16.410-13
Sep 21st, 2004Slides adapted from:

6.034 Tomas Lozano Perez,
Russell and Norvig AIMA Brian Williams, Fall 04 1

Assignments

• Remember:
Problem Set #2: Simple Scheme and Search
due Monday, September 27th, 2004.

• Reading:
– Uninformed search: more of AIMA Ch. 3

Brian Williams, Fall 04 2

Outline

• Recap
• Analysis

– Depth-first search
– Breadth-first search

• Iterative deepening

Brian Williams, Fall 04 3

Brian Williams, Fall 04 4

Complex missions must carefully:

• Plan complex sequences of actions

• Schedule tight resources

• Monitor and diagnose behavior

• Repair or reconfigure hardware.

Most AI problems, like these, may be formulated as
state space search.

Problem Solving:
Formulate Graph and Find Paths

Astronaut
Goose
Grain
Fox

Grain
Fox

Astronaut
Goose

Astronaut
Grain
Fox

Goose

Goose

Astronaut
Fox

Grain

Astronaut
Goose

Grain
Fox

Astronaut
Goose
Grain
Fox

Grain

Astronaut
Goose
Fox

Astronaut
Goose
Grain

Fox

Fox

Astronaut
Goose
Grain

Astronaut
Goose
Fox

Grain

Goose
Fox

Astronaut
Grain

Goose
Grain

Astronaut
Fox

Astronaut
Grain

Goose
Fox

Astronaut
Fox

Goose
Grain

Goose
Grain
Fox

Astronaut

Astronaut

Goose
Grain
Fox

• Formulate Goal
• Formulate Problem

– States
– Operators

• Generate Solution
– Sequence of states

Brian Williams, Fall 04 5

Elements of Algorithm Design
Description: (last Wednesday)

– stylized pseudo code, sufficient to analyze and implement the algorithm
– Implementation (last Monday).

Brian Williams, Fall 04 6

Depth First Search (DFS)
S

D

BA

C G

C G

D

C G

Depth-first:

Add path extensions to front of Q

Pick first element of Q

S

D

BA

C G

C G

D

C G

Breadth First Search (BFS)
Breadth-first:

Add path extensions to back of Q

Pick first element of Q

Brian Williams, Fall 04 7

Issue: Starting at S and moving top to bottom,
will depth-first search ever reach G?

C

S

B

G
A

D

Brian Williams, Fall 04 8

C

S

B

G
A

D

Q

6 (G D A S)(B S)

1 (S)
2
3
4

5

(A S) (B S)
(C A S) (D A S) (B S)
(D A S) (B S)
(C D A S)(G D A S)
(B S)

1

2

3

4

Depth-First
Effort can be wasted in more mild cases

• C visited multiple times
• Multiple paths to C, D & G

How much wasted effort can be incurred in the worst case?
Brian Williams, Fall 04 9

How Do We Avoid Repeat Visits?

Brian Williams, Fall 04 10

Idea:

• Keep track of nodes already visited.

• Do not place visited nodes on Q.

Does this maintain correctness?

• Any goal reachable from a node that was visited a second
time would be reachable from that node the first time.

Does it always improve efficiency?

• Visits only a subset of the original paths, such that
each node appears at most once at the head of a path in Q.

How Do We Modify
Simple Search Algorithm

Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

1. Initialize Q with partial path (S) as only entry;
2. If Q is empty, fail. Else, pick some partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else

a) Remove N from Q
b) Find all children of head(N) and

create all the one-step extensions of N to each child.
c) Add to Q all the extended paths;
d) Go to step 2.

Brian Williams, Fall 04 11

Simple Search Algorithm
Let Q be a list of partial paths,
Let S be the start node and
Let G be the Goal node.

Brian Williams, Fall 04 12

1. Initialize Q with partial path (S) as only entry; set Visited = ()
2. If Q is empty, fail. Else, pick some partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else

a) Remove N from Q
b) Find all children of head(N) not in Visited and

create all the one-step extensions of N to each child.
c) Add to Q all the extended paths;
d) Add children of head(N) to Visited
e) Go to step 2.

Note: Testing for the Goal

• Algorithm stops (in step 3) when head(N) = G.

• Could have performed test in step 6,
as each extended path is added to Q.

• But, performing test in step 6 will be incorrect for
optimal search, discussed later.

We chose step 3 to maintain uniformity with these
future searches.

Brian Williams, Fall 04 13

Outline

• Analysis
– Depth-first search
– Breadth-first search

• Iterative deepening

Brian Williams, Fall 04 14

Elements of Algorithm Design
Description: (last Wednesday)

– stylized pseudo code, sufficient to analyze and implement the algorithm
– Implementation (last Monday).

Analysis: (today)
• Soundness:

– when a solution is returned, is it guaranteed to be correct?
• Completeness:

– is the algorithm guaranteed to find a solution when there is one?

• Time complexity:
– how long does it take to find a solution?

• Space complexity:
– how much memory does it need to perform search?

Brian Williams, Fall 04 15

Characterizing Search Algorithms
b = 3

Level 1

Level 2

Level 0
d = 1

m = 2

b = maximum branching factor, number of children
d = depth of the shallowest goal node
m = maximum length of any path in the state space

Brian Williams, Fall 04 16

Cost and Performance
Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first

Breadth-first
Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Fall 04 17

Worst Case Time for Depth-first
Worst case time T is proportional to number of nodes visited

1Level 0

b*1Level 1

b*bLevel 2

b*bm-1

. . .
Level m

Tdfs = [bm + … b + 1]*cdfs where cdfs is time per node
b * Tdfs = [bm+1 + bm + … b]*cdfs Solve recurrence

[b – 1] * Tdfs = [bm+1 – 1]*cdfs

Tdfs = [bm+1 – 1] / [b – 1] *cdfs

Brian Williams, Fall 04 18

Cost Using Order Notation
Worst case time T is proportional to number of nodes visited

1

Level 1

Level 2

Level 0

b*1

b*b

b*bm-1

. . .

Order Notation
• T = O(e) if T ≤ c * e for some constant c

Tdfs = [bm+1 – 1] / [b – 1] *cdfs

= O(bm+1)
~ O(bm) for large b

Brian Williams, Fall 04 19

Cost and Performance
Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~ bm

Breadth-first
Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Fall 04 20

Worst Case Space for Depth-first
Worst case space Sdfs is proportional to maximal length of Q

Level 1

Level m

Level 0

Brian Williams, Fall 04 21

Worst Case Space for Depth-first
Worst case space Sdfs is proportional to maximal length of Q

Level 1

Level m

Level 0

b-1

b-1

b
. . .

• If a node is queued its parent and siblings have been queued,
and its parent dequeued.

Sdfs≥ [(b-1)*m+1] *cdfs where cdfs is space per node

The children of at most one sibling is expanded at each level.
Sdfs = [(b-1)*m+1] *cdfs

• Sdfs = O(b*m)
Brian Williams, Fall 04 22

Cost and Performance
Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m
Breadth-first

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Fall 04 23

Cost and Performance
Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No
Breadth-first

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Fall 04 24

Cost and Performance
Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first
Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Fall 04 25

Cost and Performance

S

D

BA

C G

C G

D

C G

Which is better, depth-first or breadth-first?

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first
Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Fall 04 26

Worst Case Time for Breadth-first
Worst case time T is proportional to number of nodes visited

Level 0

Level 1

Level d

Level d+1
Level m . . .

Consider case where solution is at level d:

Brian Williams, Fall 04 27

Worst Case Time for Breadth-first
Worst case time T is proportional to number of nodes visited

Level 0

b

bd+1- b

. . .

1

bd

Level 1

Level d

Consider case where solution is at level d:
Tbfs = [bd+1 + bd + … b + 1 - b]*cbfs

~ O(bd+1) for large b

. . .
Level d+1
Level m

Brian Williams, Fall 04 28

Cost and Performance

S

D

BA

C G

C G

D

C G

Which is better, depth-first or breadth-first?

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Fall 04 29

Worst Case Space for Breadth-first
Worst case space Sdfs is proportional to maximal length of Q

Level 0

Level 1

Level d

Level d+1

Brian Williams, Fall 04 30

Worst Case Space for Breadth-first
Worst case space Sdfs is proportional to maximal length of Q

Level 0

b

bd+1- b

. . .

1

bd

Level 1

Level d

Level d+1

Sbfs = [bd+1- b + 1]*cbfs

= O(bd+1)

Brian Williams, Fall 04 31

Cost and Performance

S

D

BA

C G

C G

D

C G

Which is better, depth-first or breadth-first?

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1 bd+1

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Fall 04 32

Breadth-first Finds Shortest Path

Brian Williams, Fall 04 33

G

Level 1

Level d

Level 0

G

First
reached

Nodes visited earlier
can’t include G

Assuming each edge is length 1,
other paths to G must be at least as long as first found

Level d+1

Cost and Performance

S

D

BA

C G

C G

D

C G

Which is better, depth-first or breadth-first?

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1 bd+1 Yes unit lngth

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Fall 04 34

Cost and Performance

S

D

BA

C G

C G

D

C G

Which is better, depth-first or breadth-first?

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1 bd+1 Yes unit lngth Yes
Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Fall 04 35

The Worst of The Worst

S

D

BA

C G

C G

D

C G

Which is better, depth-first or breadth-first?
C

S
B

G
A

D

• Assume d = m in the worst case, and call both m.

• Take the conservative estimate: bm + … 1 = O(bm+1)

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first bm+1 b*m No Yes for finite graph

Breadth-first bm+1 bm Yes unit lngth Yes

Brian Williams, Fall 04 36

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

For best first search, which runs out first – time or memory?

Growth for Best First Search
b = 10; 10,000 nodes/sec; 1000 bytes/node
Depth Nodes Time Memory

2 1,100 .11 seconds 1 megabyte

4 111,100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 1015 3,523 years 1 exabyte

Brian Williams, Fall 04 37

How Do We Get The
Best of Both Worlds?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1 bd+1 Yes unit lngth Yes
Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q

Brian Williams, Fall 04 38

Outline

• Analysis
• Iterative deepening

Brian Williams, Fall 04 39

Iterative Deepening (IDS)
Idea:
• Explore tree in breadth-first order, using depth-first search.

Search tree to depth 1, ….

Level 0
S

D

BA

C G

C G

D

C G

Level 1

Level 2

Level 3

Brian Williams, Fall 04 40

Iterative Deepening (IDS)
Idea:
• Explore tree in breadth-first order, using depth-first search.

Search tree to depth 1, then 2, ….

Level 0
S

D

BA

C G

C G

D

C G

Level 1

Level 2

Level 3

Brian Williams, Fall 04 41

Iterative Deepening (IDS)
Idea:
• Explore tree in breadth-first order, using depth-first search.

Search tree to depth 1, then 2, then 3….

Level 0
S

D

BA

C G

C G

D

C G

Level 1

Level 2

Level 3

Brian Williams, Fall 04 42

Speed of Iterative Deepening
d+1Level 0

S

D

BA

C G

C G

D

C G

Level 1
d*b
. . .
2*bd-1Level 2

Level d 1*bd

Compare speed of BFS vs IDS:
• Tbfs = 1+b + b2 + . . . bd + (bd+1 – b) = O(bd+2)
• Tids = (d + 1)1 + (d)b + (d - 1)b2 +. . . bd = O(bd+1)

Iterative deepening performs better than breadth-first!

Brian Williams, Fall 04 43

Summary
• Most problem solving tasks may be encoded as state space

search.
• Basic data structures for search are graphs and search trees.
• Depth-first and breadth-first search may be framed,

among others, as instances of a generic search strategy.
• Cycle detection is required to achieve efficiency and

completeness.
• Complexity analysis shows that breadth-first is preferred in

terms of optimality and time, while depth-first is preferred
in terms of space.

• Iterative deepening draws the best from depth-first and
breadth-first search.

Brian Williams, Fall 04 44

