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Assignments

• Remember: 
Problem Set #2: Simple Scheme and Search 
due Monday, September 27th, 2004.

• Reading: 
– Uninformed search: more of AIMA Ch. 3
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Outline

• Recap
• Analysis

– Depth-first search
– Breadth-first search

• Iterative deepening
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Complex missions must carefully:

• Plan complex sequences of actions

• Schedule tight resources

• Monitor and diagnose behavior

• Repair or reconfigure hardware.

Most AI problems, like these, may be formulated as 
state space search.



Problem Solving: 
Formulate Graph and Find Paths
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• Formulate Goal
• Formulate Problem

– States
– Operators

• Generate Solution
– Sequence of states

Brian Williams, Fall  04 5



Elements of Algorithm Design
Description: (last Wednesday)

– stylized pseudo code, sufficient to analyze and implement the algorithm
– Implementation (last Monday).
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Depth First Search (DFS)
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Depth-first:

Add path extensions to front of Q

Pick first element of Q

S

D

BA

C G

C G

D

C G

Breadth First Search (BFS)
Breadth-first:

Add path extensions to back of Q

Pick first element of Q
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Issue: Starting at S and moving top to bottom, 
will depth-first search ever reach G?
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(C D A S)(G D A S)
(B S)
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4

Depth-First
Effort can be wasted in more mild cases

• C visited multiple times
• Multiple paths to C, D & G

How much wasted effort can be incurred in the worst case?
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How Do We Avoid Repeat Visits?
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Idea:

• Keep track of nodes already visited.

• Do not place visited nodes on Q.

Does this maintain correctness?

• Any goal reachable from a node that was visited a second 
time would be reachable from that node the first time.

Does it always improve efficiency?  

• Visits only a subset of the original paths, such that
each node appears at most once at the head of a path in Q.



How Do We Modify
Simple Search Algorithm

Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.

1. Initialize Q with partial path (S) as only entry; 
2. If Q is empty, fail.  Else, pick some partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else

a) Remove N from Q
b) Find all children of head(N) and 

create all the one-step extensions of N to each child.
c) Add to Q all the extended paths; 
d) Go to step 2.
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Simple Search Algorithm
Let Q be a list of partial paths, 
Let S be the start node and 
Let G be the Goal node.
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1. Initialize Q with partial path (S) as only entry; set Visited = ( )
2. If Q is empty, fail.  Else, pick some partial path N from Q
3. If head(N) = G, return N (goal reached!)
4. Else

a) Remove N from Q
b) Find all children of head(N) not in Visited and 

create all the one-step extensions of N to each child.
c) Add to Q all the extended paths; 
d) Add children of head(N) to Visited
e) Go to step 2.



Note: Testing for the Goal

• Algorithm stops (in step 3) when head(N) = G.

• Could have performed test in step 6,
as each extended path is added to Q.  

• But, performing test in step 6 will be incorrect for 
optimal search, discussed later.  

We chose step 3 to maintain uniformity with these 
future searches.
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Outline

• Analysis
– Depth-first search
– Breadth-first search

• Iterative deepening
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Elements of Algorithm Design
Description: (last Wednesday)

– stylized pseudo code, sufficient to analyze and implement the algorithm
– Implementation (last Monday).

Analysis: (today)
• Soundness: 

– when a solution is returned, is it guaranteed to be correct?
• Completeness: 

– is the algorithm guaranteed to find a solution when there is one?

• Time complexity: 
– how long does it take to find a solution?

• Space complexity: 
– how much memory does it need to perform search?

Brian Williams, Fall  04 15



Characterizing Search Algorithms
b = 3

Level 1

Level 2

Level 0
d = 1

m = 2

b = maximum branching factor, number of children
d = depth of the shallowest goal node
m = maximum length of any path in the state space
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Cost and Performance
Which is better, depth-first or breadth-first?
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C G
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C
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G
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D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first

Breadth-first
Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Worst Case Time for Depth-first
Worst case time T is proportional to number of nodes visited

1Level 0

b*1Level 1

b*bLevel 2

b*bm-1

. . .
Level m

Tdfs =            [bm + … b + 1]*cdfs where cdfs is time per node
b * Tdfs = [bm+1 + bm + … b]*cdfs Solve recurrence

[b – 1] * Tdfs = [bm+1 – 1]*cdfs

Tdfs = [bm+1 – 1] / [b – 1] *cdfs
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Cost Using Order Notation
Worst case time T is proportional to number of nodes visited

1

Level 1

Level 2

Level 0

b*1

b*b

b*bm-1

. . .

Order Notation
• T = O(e) if T ≤ c * e for some constant c

Tdfs = [bm+1 – 1] / [b – 1] *cdfs

= O(bm+1)
~ O(bm) for large b

Brian Williams, Fall  04 19



Cost and Performance
Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~ bm

Breadth-first
Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Worst Case Space for Depth-first
Worst case space Sdfs is proportional to maximal length of Q

Level 1

Level m

Level 0
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Worst Case Space for Depth-first
Worst case space Sdfs is proportional to maximal length of Q

Level 1

Level m

Level 0

b-1

b-1

b
. . .

• If a node is queued its parent and siblings have been queued, 
and its parent dequeued.          

Sdfs≥ [(b-1)*m+1] *cdfs where cdfs is space per node

The children of at most one sibling is expanded at each level.  
Sdfs = [(b-1)*m+1] *cdfs

• Sdfs = O(b*m)
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Cost and Performance
Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m
Breadth-first

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance
Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D

C G

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No
Breadth-first

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance
Which is better, depth-first or breadth-first?

S

D

BA

C G

C G

D
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S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first
Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance
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Which is better, depth-first or breadth-first?

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first
Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Worst Case Time for Breadth-first
Worst case time T is proportional to number of nodes visited

Level 0

Level 1

Level d

Level d+1
Level m . . .

Consider case where solution is at level d:
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Worst Case Time for Breadth-first
Worst case time T is proportional to number of nodes visited

Level 0

b

bd+1- b

. . .

1

bd

Level 1

Level d

Consider case where solution is at level d:
Tbfs = [bd+1 + bd + … b + 1 - b]*cbfs

~ O(bd+1)     for large b

. . .
Level d+1
Level m
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Cost and Performance
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Which is better, depth-first or breadth-first?

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Worst Case Space for Breadth-first
Worst case space Sdfs is proportional to maximal length of Q

Level 0

Level 1

Level d

Level d+1
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Worst Case Space for Breadth-first
Worst case space Sdfs is proportional to maximal length of Q

Level 0

b

bd+1- b

. . .

1

bd

Level 1

Level d

Level d+1

Sbfs = [bd+1- b + 1]*cbfs

= O(bd+1)
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Cost and Performance
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Which is better, depth-first or breadth-first?

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1 bd+1

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Breadth-first Finds Shortest Path
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G

Level 1

Level d

Level 0

G

First
reached

Nodes visited earlier 
can’t include G

Assuming each edge is length 1, 
other paths to G must be at least as long as first found

Level d+1



Cost and Performance
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Which is better, depth-first or breadth-first?

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1 bd+1 Yes unit lngth

Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Cost and Performance
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Which is better, depth-first or breadth-first?

C

S

B

G
A

D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1 bd+1 Yes unit lngth Yes
Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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The Worst of The Worst

S

D

BA

C G

C G

D

C G

Which is better, depth-first or breadth-first?
C

S
B

G
A

D

• Assume d = m in the worst case, and call both m.

• Take the conservative estimate: bm + … 1 = O(bm+1)

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first bm+1 b*m No Yes for finite graph

Breadth-first bm+1 bm Yes unit lngth Yes
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Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q



For best first search, which runs out first – time or memory?

Growth for Best First Search
b = 10; 10,000 nodes/sec; 1000 bytes/node
Depth Nodes Time Memory

2 1,100 .11 seconds 1 megabyte

4 111,100 11 seconds 106 megabytes

6 107 19 minutes 10 gigabytes

8 109 31 hours 1 terabyte

10 1011 129 days 101 terabytes

12 1013 35 years 10 petabytes

14 1015 3,523 years 1 exabyte
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How Do We Get The 
Best of Both Worlds?

S
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S
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G
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D

Search
Method

Worst
Time

Worst
Space

Shortest
Path?

Guaranteed to
find path?

Depth-first ~bm b*m No Yes for finite graph

Breadth-first ~bd+1 bd+1 Yes unit lngth Yes
Worst case time is proportional to number of nodes visited
Worst case space is proportional to maximal length of Q
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Outline

• Analysis
• Iterative deepening
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Iterative Deepening (IDS)
Idea: 
• Explore tree in breadth-first order, using depth-first search.

Search tree to depth 1, ….

Level 0
S

D

BA

C G

C G

D

C G

Level 1

Level 2

Level 3
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Iterative Deepening (IDS)
Idea: 
• Explore tree in breadth-first order, using depth-first search.

Search tree to depth 1, then 2, ….

Level 0
S

D

BA

C G

C G

D

C G

Level 1

Level 2

Level 3
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Iterative Deepening (IDS)
Idea: 
• Explore tree in breadth-first order, using depth-first search.

Search tree to depth 1, then 2, then 3….

Level 0
S

D

BA

C G

C G

D

C G

Level 1

Level 2

Level 3

Brian Williams, Fall  04 42



Speed of Iterative Deepening
d+1Level 0

S

D

BA

C G

C G

D

C G

Level 1
d*b
. . .
2*bd-1Level 2

Level d 1*bd

Compare speed of BFS vs IDS:
• Tbfs = 1+b + b2 + . . . bd + (bd+1 – b) = O(bd+2)
• Tids = (d + 1)1 + (d)b + (d - 1)b2 +. . . bd = O(bd+1) 

Iterative deepening performs better than breadth-first!
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Summary
• Most problem solving tasks may be encoded as state space 

search.
• Basic data structures for search are graphs and search trees.
• Depth-first and breadth-first search may be framed, 

among others, as instances of a generic search strategy.
• Cycle detection is required to achieve efficiency and 

completeness.
• Complexity analysis shows that breadth-first is preferred in 

terms of optimality and time, while depth-first is preferred 
in terms of space.

• Iterative deepening draws the best from depth-first and 
breadth-first search.
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