More Notes on Search for 16.410 and 16.413

Uniform Cost Search

Qis a priority queue sorted on the current cost from the start to the goal.

UNI FORM COST(start, goal, cost)
Q = init_queue()
push Q start
while ! enpty(Q
current = pop_mn Q
if (current contains goal)
return current
foreach child in children(current)
push Q child using value[current] + cost(current, child)

Space and time complexity: O(b'+1¢" /<)) where C'* is the cost of the optimal solution, e is the minimum cost of any
arc, and b is the branching factor.

Dijkstra’s Algorithm

I NI T_NODES(val ue, parent)
for each state n
value[n] = infinity
parent[n] = null

DI JKSTRA(goal)
I NI T_NODES(val ue, parent)
val ue[goal] =0
for each state
push Q state using val ue[state]
while I empty(Q
current = pop_mn Q
for each child in children(current)
RELAX (current, child, value, cost, Q

RELAX (current, child, value, parent, cost, Q
if (value[child] > value[current] + cost[current, child])
val ue[child] = value[current] + cost[current, child]
update Q child using value[child]
parent[child] = current

Complexity: O(n?) for n states if the graph is dense O(e log n) for n states and e edges if the graph is sparse

I nformed Search - A* Search

In A* search, we order the search based on
f(state) = g(state) + h(state) (1)

where g(n) is the current cost from the start to n, and h(n) is the current heuristic estimate of the cost from n to the
goal. f(state) is the estimate of the lowest-cost path that goes from start to the goal through 7.

If we represent the search state as the path from the start to state n, then we can compute g(n) directly from the search
state, otherwise we have to follow parent pointers from n back to the start to compute g(n), but in both cases we know
g(n) exactly.

A* search involves the notion of admissibility. An admissible heuristic i (n) is a function that is never greater than the
actual cost from n to the goal — that is, it never overestimates the cost.

Qis a priority queue sorted on the A* cost function f(state).

I NI T_NODES(val ue, parent)
for each node n
value[n] <- infinity
parent[n] <- null

A* - COST(node)
return val ue[node] + heuristic(node)

A*(start, goal, costs)
I NI T_NODES(val ue, parent)
val ue[start] =0
push Q start
while ! enmpty(Q
current <- pop_mn Q
if (current contains goal)
return current
for each child in children(current)
if value[child] > value[current] + cost(current, child)
val ue[child] = value[current] + cost(current, child)
push Q children(current) using A*-COST(chil d)

Space and time complexity: O(b™) where b is the branching factor and m is the maximum depth of the search space.

Things you should know:

e Breadth-first, depth-first, iteratively-deepening and A* search

e Complexities in time and space

e Bi-directional search

e Relationship between dynamic programming and search

Criterion | Breadth- Uniform- Depth- Depth- Iterative Bidirectional
First Cost First Limited Deepening (if applicable)
Complete?
Time
Space
Optimal?

