
More Notes on Search for 16.410 and 16.413

Uniform Cost Search

Q is a priority queue sorted on the current cost from the start to the goal.

UNIFORM_COST(start, goal, cost)
Q = init_queue()
push Q, start
while ! empty(Q)

current = pop_min Q
if (current contains goal)
return current

foreach child in children(current)
push Q, child using value[current] + cost(current, child)

Space and time complexity: O(b1+bC?/εc) where C? is the cost of the optimal solution, ε is the minimum cost of any
arc, and b is the branching factor.

Dijkstra’s Algorithm

INIT_NODES(value, parent)
for each state n

value[n] = infinity
parent[n] = null

DIJKSTRA(goal)
INIT_NODES(value, parent)
value[goal] = 0
for each state

push Q, state using value[state]
while ! empty(Q)

current = pop_min Q
for each child in children(current)
RELAX (current, child, value, cost, Q)

RELAX (current, child, value, parent, cost, Q)
if (value[child] > value[current] + cost[current, child])

value[child] = value[current] + cost[current, child]
update Q, child using value[child]
parent[child] = current

Complexity: O(n3) for n states if the graph is dense O(e log n) for n states and e edges if the graph is sparse

1



Informed Search - A* Search

In A* search, we order the search based on

f(state) = g(state) + h(state) (1)

where g(n) is the current cost from the start to n, and h(n) is the current heuristic estimate of the cost from n to the
goal. f(state) is the estimate of the lowest-cost path that goes from start to the goal through n.

If we represent the search state as the path from the start to state n, then we can compute g(n) directly from the search
state, otherwise we have to follow parent pointers from n back to the start to compute g(n), but in both cases we know
g(n) exactly.

A* search involves the notion of admissibility. An admissible heuristic h(n) is a function that is never greater than the
actual cost from n to the goal – that is, it never overestimates the cost.

Q is a priority queue sorted on the A* cost function f(state).

INIT_NODES(value, parent)
for each node n

value[n] <- infinity
parent[n] <- null

A*-COST(node)
return value[node] + heuristic(node)

A*(start, goal, costs)
INIT_NODES(value, parent)
value[start] = 0
push Q, start
while ! empty(Q)

current <- pop_min Q
if (current contains goal)
return current

for each child in children(current)
if value[child] > value[current] + cost(current, child)

value[child] = value[current] + cost(current, child)
push Q, children(current) using A*-COST(child)

Space and time complexity: O(bm) where b is the branching factor and m is the maximum depth of the search space.

2



Things you should know:

• Breadth-first, depth-first, iteratively-deepening and A* search

• Complexities in time and space

• Bi-directional search

• Relationship between dynamic programming and search

Criterion Breadth-
First

Uniform-
Cost

Depth-
First

Depth-
Limited

Iterative
Deepening

Bidirectional
(if applicable)

Complete?

Time

Space

Optimal?

3


