More Notes on Search for 16.410 and 16.413

Uniform Cost Search

Q is a priority queue sorted on the current cost from the start to the goal.

```
UNIFORM_COST(start, goal, cost)
  Q = init_queue()
  push Q, start
  while ! empty(Q)
    current = pop_min Q
    if (current contains goal)
      return current
  foreach child in children(current)
      push Q, child using value[current] + cost(current, child)
```

Space and time complexity: $O(b^{1+\lfloor C^{\star}/\epsilon \rfloor})$ where C^{\star} is the cost of the optimal solution, ϵ is the minimum cost of any arc, and b is the branching factor.

Dijkstra's Algorithm

```
INIT_NODES(value, parent)
  for each state n
   value[n] = infinity
   parent[n] = null
DIJKSTRA(goal)
  INIT_NODES(value, parent)
  value[goal] = 0
  for each state
   push Q, state using value[state]
  while ! empty(Q)
   current = pop_min Q
    for each child in children(current)
      RELAX (current, child, value, cost, Q)
RELAX (current, child, value, parent, cost, Q)
  if (value[child] > value[current] + cost[current, child])
     value[child] = value[current] + cost[current, child]
     update Q, child using value[child]
     parent[child] = current
```

Complexity: $O(n^3)$ for n states if the graph is dense $O(e \log n)$ for n states and e edges if the graph is sparse

Informed Search - A* Search

In A* search, we order the search based on

$$f(state) = g(state) + h(state) \tag{1}$$

where g(n) is the current cost from the start to n, and h(n) is the current heuristic estimate of the cost from n to the goal. f(state) is the estimate of the lowest-cost path that goes from start to the goal through n.

If we represent the search state as the path from the start to state n, then we can compute g(n) directly from the search state, otherwise we have to follow parent pointers from n back to the start to compute g(n), but in both cases we know g(n) exactly.

A* search involves the notion of *admissibility*. An admissible heuristic h(n) is a function that is never greater than the actual cost from n to the goal – that is, it never overestimates the cost.

Q is a priority queue sorted on the A* cost function f(state).

```
INIT_NODES(value, parent)
  for each node n
    value[n] <- infinity</pre>
    parent[n] <- null</pre>
A*-COST(node)
  return value[node] + heuristic(node)
A*(start, goal, costs)
INIT_NODES(value, parent)
 value[start] = 0
 push Q, start
while ! empty(Q)
   current <- pop_min Q
   if (current contains goal)
     return current
   for each child in children(current)
       if value[child] > value[current] + cost(current, child)
          value[child] = value[current] + cost(current, child)
         push Q, children(current) using A*-COST(child)
```

Space and time complexity: $O(b^m)$ where b is the branching factor and m is the maximum depth of the search space.

Things you should know:

- Breadth-first, depth-first, iteratively-deepening and A* search
- Complexities in time and space
- Bi-directional search
- Relationship between dynamic programming and search

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Complete?						
Time						
Space						
Optimal?						