Notes on AMPL for 16.410 and 16.413
(Adapted from notes by Sommer Gentry)

User Guidesfor M S-Dos and UNI X:

http://ww. anpl . com REFS/ i ndex. ht ml #0S_Li nks

About AMPL/CPLEX

AMPL stands for A Mathematical Programming Language, and it was invented at AT&T’s Bell Labs by a group in-
cluding Brian Kernighan, of C fame. AMPL is a scripting language that allows you to express mathematical programs
in an intuitive manner. AMPL can translate those programs, if they are linear programs, integer programs, or quadratic
programs, into a format that can be read by a number of dierent solvers including CPLEX and LP-SOLVE.

Gaining accessto AMPL/CPLEX or AMPL/LPSOLVE

You have two options: download the student version of AMPL/CPLEX for your Windows or Unix computer at
http:// wav. anpl . com DOANLOADS/ cpl ex71. ht m , or run your AMPL programs on the web at

http: //www. anpl . com TRYAMPL/ startup. ht ml . If you use the latter option, you must choose the | psol ve
solver. The default solver will be m nos, and m nos does not solve integer programs such as the one on your
homework. CPLEX is not available through the online version.

Writing Model and Data Files

AMPL separates the model, which describes the mathematical program to be solved; from the data, the numbers that
specify one instance of the problem. The best way to gain experience is to look at some prewritten model and data
files and try modifying them. You can find an entire directory full of sample model and data files listed for you at
http://ww. anpl . conf BOOK/ EXAMPLES/ i ndex_figs. htm

The model file generally consists of three sections: the declaration of types, the objective function, and constraints.

Declarations

There are three types of declarations you will need for this assignment: set , par amand var . All that we do in the
declaration section is declare what things are. For instance:

set NAMES;

declares that NAMVES is a set, and should be treated as such wherever it appears. Sets are typically collections of names,
places, numbers, etc. We don’t say what’s in the set in the model file: that is done in the data file.

A par amis a fixed parameters of the problem. Again, we don’t give the specific value here: we do that in the data
file.

paramtinme_limt;

declares that there is a parameter called t i me_I i mi t . We can say that a param might be an array of values, such as
in

par am COSTS {| NPUT} ;

which says that we will have a COSTS param, and in fact we will have a separate COSTS value for each different value
of | NPUT. We can do multi-dimensional arrays as well:

param COSTS {| NPUT, OQUTPUT};
We could also add constraints on the range of values a par amcan have, such as in
param COSTS {| NPUT, QUTPUT} >=0;

which says that COSTS means an array of specific values, to be specified in the data file, which all have to be non-
negative.

A var is a decision variable of the optimization. The form of its declaration is basically the same as a par am For
instance,

var ASS| GN { ROBOTS, M SSI ONS};

declares that the optimization has to choose appropriate values for ASSI GNfor each value of ROBOTSand M SSI ONS.
A var can also be restricted by qualifiers following its definition, such as >=0, i nt eger, or bi nary.

Objective function

The objective value is indicated by a line beginning maxi mi ze bj ecti veNane: The format is usually

maxi m ze CbjectiveNane: sum{i in set} some function of variable

You can replace maxi m ze with mi ni m ze, and you can do objectives involving multiple variables. For example,
m ni m ze TOTAL_COST: sum{i in ROBOTS, j in M SSIONS} COST[i,]j]

is the same thing as minimizing:
> i M
i=1 j=1

where z; ; is the cost of assigning robot 7 to mission j.

Constraints

The constraints (in this file there is only one constraint) are named separately on lines beginning with
subj ect toConstrai nt Name: The format is very similar to that for the objective function, except that there is
an inequality to be tested in the function. For example,

subject to TOTAL_COST: sum{i in ROBOTS, j in MSSIONS} COST[i,j] <= 100
would say that the TOTAL_COST is subject to the constraint that it sum to less than 100, that is

n m

3w < 100. @

i=1 j=1

There are also constructs for all of the standard elements of mathematical programs, like upper and lower bounds
on variables and sets of variables indexed by members of another set (like Make, indexed by members of a set like
ROBOTS).

Data File

For each set you declared in the model, you provide a list of values. For instance:
set ROBOTS : = HAL R2D2 C3PO;
now says that ROBOTS is a set of length 3. Notice the different equality (: =).

For each parameter you declared in the model, you also provide values. AMPL provides a very compact notation
which can be hard to wrap your head around: you can actually create tables of values and set multiple parameters
simultaneously.

If we had defined a set PROD and the parans rate profit conmmit market, then we could set all the
params in the following table:

set PROD : = bands coils plate;

par am rate profit commit nmarket :=
bands 200 25 1000 6000
coils 140 30 500 4000
plate 160 29 750 3500 ;

Note that if you set multiple par ans simultaneously using a table like this, you have to make sure that all the par ans
are over the same sets. You couldn’t mix r at e and pr of i t if r at e was defined in the model over the PROD set ,
but pr of i t was defined in the model over something else like TI ME.

AMPL is often finicky about transposing matrix data elements, so if you are having trouble with a two-dimensional data
set, you might try adding (t r), as in param anmount (tr): ROBOT1 ROBOT2 : =when declaring numerical
values in a matrix.

Solving

If you are running over the web, the web interface is pretty self-explanatory. (Don’t forget to choose the appropriate
solver.) But, if you are running locally, then you will need the following commands:

1. option solver [solver];
If you have downloaded cplex, then you would choose that.

2. nodel [fil enane];

3. data [fil enane];

4. sol ve;

5. di splay [variabl e];
ExampleFile

Choose the files st eel . nod and st eel . dat . These files implement a simple production decision model. The
steel factory modelled has to decide which types of steel products to manufacture given profit, market limits, and
production rates for each product. Notice that there are constructs for set s, par ans and var sThe # mark denotes
the rest of that line as a comment. The data file, then defines the elements included in a set and the numeric values of
each par am

BHHHBHHHBH R R AR STEEL. MOD ###H#HHHBHHHBHHHRHHH
STARTI NG DECLARATI ONS HERE

set PROD;, # PRODis a set that will have a specific
set of val ues

paramrate {PROD} > O; # tons produced per hour
param avail >= 0; # hours avail able in week
param profit {PROD}; # profit per ton

param nmarket {PROD} >= 0; # limt on tons sold in week
var Make {p in PROD} >= 0, <= market[p]; # tons produced
END OF DECLARATI ONS
STARTI NG OBJECTI VE HERE
maxi mze total _profit: sum{p in PROD} profit[p] * Make[p];
onjective: total profits fromall products
STARTI NG CONSTRAI NT HERE
subject to Tine: sum{p in PROD} (1l/rate[p]) * Make[p] <= avail;

Constraint: total of hours used by all
products may not exceed hours avail abl e

HHHHBHH R R RHHE STEEL. DAT ######HHRHHHRHH AR HHH

set PROD : = bands coils;

par am rate profit market :=
bands 200 25 6000
coils 140 30 4000 ;
param avail := 40;

Example Execution

ni ckroy@i | er: [ni ckroy] 25>anpl

anmpl : option sol ver cplex;

anmpl : nodel steel.nod

anmpl : data steel.dat;

anmpl : sol ve;

CPLEX 8.0.0: optimal solution; objective 192000
0 dual sinplex iterations (0 in phase I)
anpl : display Mke;

Make [*] :=

bands 6000

coils 1400

anpl :

Running AMPL

The online version of AMPL shows the run commands to which the online version defaults in the AMPL comands:
box. The default run commands will solve the optimization problem and then display the values of the decision
variables. Remember to set the solver to be | psol ve instead of m nos.

Explore

Play around with the steel model, adding a new product or a new constraint (like minimum production values for each
product) to try to get a dierent optimal solution. To impose integrality constraints, just add the word i nt eger to the
variable declaration in the model file, like var Buy {j in FOOD} integer >=0 ; Another good example
file to explore would be nul t m p1. nod, which implements a network shipping model with fixed costs for using
each route.

MorelInfo

For more information about AMPL, see www.ampl.com. The website for AMPL contains an online version of the
first chapter of the user’s manual and all of the sample files used in the book. You can glean many hints on AMPL
syntax and shortcuts by studying the sample files. The FAQ is also helpful when you get stuck. The user’s manual,
[1], describes both AMPL and linear programming and is available in the MIT libraries.

References

[1] Robert Fourer, David M. Gay, and Brian W. Kernighan. AMPL: A Modeling Language for Mathematical Pro-
gramming, 1993.

