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Historical aspects
•Historical contributor: G. Dantzig, late 1940’s (Now at Stanford 
University. Realize many real-world design problems can be formulated 
as linear programs and solved efficiently. Finds algorithm, the Simplex 
method to solve LP’s. As of 1997, still best algorithm for most 

applications.

•So important for world economy that any new algorithmic development 
on LP’s is likely to make the Front Page of major newspapers (e.g. NY 
times, Wall Street Journal). Example: 1979 L. Khachyan’s adaptation of 
ellipsoid algorithm, N. Karmarkar’s new interior-point algorithm.

•A remarkably practical and theoretical framework: LPs eat a large chunk
of total scientific computational power expended today. It is crucial for 
economic success of most distribution/transport industries and to 
manufacturing.

•Now becomes suitable for real-time applications.
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Examples of Linear programs
•Example 1: Revenue maximization problem.

Wage is $8 / hour

Stock Profit is 

and number of hours spent is never greater than 10 hours/day 
(3 hours Max on stock market)

– Call x1  the number of hours spent @ work, x2 the number of 
hours spent working on the stock market.

•Problem formulation:

Our first LP

capital
30

spent hours#
  yield %daily ×=

32                  

1021   Subject to
    3000

capital2
18   Maximize

≤
≤+

×
+

x

xx

x
x

16.410:  MIT, Fall 2003

Example 1: Graphical Representation
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Answer depends upon gradient orientation

Cost function
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Example 2: Resource Allocation

An aircraft company makes two aircraft engines.  Engine 
parts are made at three plants: A, B, C.

– Engine 1 is made of elements produced in A and C

– Engine 2 is made of elements of B and C

•Plants A,B, C have limited throughput

•What mix of product 1 and 2 will bring maximum profit? 
Another resource allocation problem.
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Example 2 Ct’d
• Add’l data:

x1: # of Engine 1

x2: # Engine 2

Profit (in KKK$): 3x1 + 5x2

Constraints:

Plant Production 
time per 
engine 1 

Production 
time per 
engine 2 

Production time  
Available 
Per week 

 

A 1 0 4  

B 0 2 12  

C 3 2 18  

Profit/
engine 

$300,000 $500,000   
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Example 2, Ct’dx2
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Standard Linear Programming Model

• Notations:
– Z: Overall measure of performance

– xj: Activity level for product j

– cj: Marginal improvement of Z associated with product j

– bi: Available resource I

– aij: Amount of resource I to produce j. 

• General LP:

• Standard form for LP.
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Standard form of LP
•Other forms of LPs:

– Arbitrary signs on ci, bj, aij, xi.

– Equality constraints

– Require technicalities but may be cast in standard form

•Feasible/unfeasible solutions

The set of solutions that satisfy all the constraints is said 
feasible. It is the intersection of many half planes (m of them) 
with the positive orthant (what’s that?). It’s a polytope.
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Graphical Depiction of LP constraints

x1

x2

and x2>0

and constraint 1

and constraint 2

and constraint 3

x1>0
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This is not an LP!

x1

x2

and x2>0

and constraint 1

and constraint 2
or constraint 3

x1>0
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Some vocabulary (ct’d)
• Vocabulary

– Polytope may be empty: No feasible solutions

– Polytope may be unbounded: possibility for infinite optimal costs

– Sure signs of problem misunderstanding

Infeasible set of constraints
(Nonstandard LP)
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LP Assumptions

• Proportionality
– Does twice the activity result in twice the profit, or twice the

shipment size result in twice the cost?

• Additivity
– Does opening a store in Cambridge and one in Boston result in the 

sum of projected profits?

• Divisibility
– Can you manufacture half an aircraft?

• Certainty
– What do we really know about the problem?
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Addressing these issues

• Divisibility is a real problem in decision-making LPs; 
integer programming is the solution.   Some important 
integer programs luckily are also solvable as LPs!
– Theorem: The solution to any transportation problem with integer

supplies and demands is integer.

– Transportation problems include the class of assignment problems.

• Uncertainty in the data is a huge problem.  The right way 
to address it is either by sensitivity analysis if the data 
might be off by small amounts or by multiple case analysis 
if the scenarios range widely.
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SIMPLEX method of solving LPs

• Maximize   3x1 + 5x2, 
subject to

x1 > 0, x2 > 0
• Standard (= ) form: min z-3x1 -5x2 = 0

x1         +x3              = 4
x2        +x4       = 6

3x1+2x2              +x5 =18
x1, x2, x3, x4, x5 > 0
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Basis solution to a system of equations

• Standard (= ) form:   min z-3x1 -5x2 = 0
x1         +x3              = 4

x2        +x4       = 6
3x1+2x2              +x5 =18

• The variables whose coefficients are an identity matrix are 
x3, x4, x5.  These are slack variables, and at this step in the 
Simplex method they are also the basic variables

• The other variables are nonbasic and are set to zero at this 
corner point.  Let x1=0, x2=0.

• So x3=4, x4=6, and x5=18.    At each basic solution you 
can read the values of basic variables off the equations
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Pivot step

• Choose most negative reduced cost:  z -3x1 -5x2

• So pivot on column x2

• Choose smallest positive ratio test:
x1         +x3              = 4 blank

x2        +x4       = 6 6 ÷1 = 6
3x1+2x2              +x5 =18        18 ÷ 2 = 9

• So pivot on row 2, which means: set the coefficient of x2 
in row 2 to 1, and eliminate x2 from the objective and the 
other constraint rows
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Pivot step

• Choose most negative reduced cost:  z -3x1 +5x4 = -30

• So pivot on column x1

• Choose smallest positive ratio test:
x1         +x3                = 4 4 ÷ 1 = 4

x2        +x4        = 6 blank
3x1                -2x4+x5 = 6        6 ÷ 3 = 2

• So pivot on row 3, which means: set the coefficient of x1 
in row 3 to 1, and eliminate x1 from the objective and the 
other constraint rows
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Pivot step

• Choose most negative reduced cost:  z +3x4 +x5 = -36

• No more improvement in z possible because all reduced 
costs are positive

• Read off solution:
x3 +2/3x4 +1/3x5 = 4

x2          +x4              = 6
x1            -2/3x4+1/3x5  = 2

• z = -36, so original objective is 36.  x1=2, x2=6, x3=4

• Positive slack variable x3 indicates that original constraint 
x1 < 4 is not tight; the other two constraints are tight
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Simplex algorithm steps

• Convert to standard form

• Add slack variables

• Pivot
– choose most negative reduced cost (identifies new basic variable)

– choose lowest positive ratio in ratio test

– eliminate new basic variable from objective and all rows except 
lowest positive ratio in ration test row

• Stop if optimal and read solution.  Otherwise, pivot again.
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Simplex algorithm analysis

• Does every pivot step decrease cost?  Answer: almost yes!
Min:z               -8x4              = 20

• Cost has not decreased! This is a degenerate basis, with 
one basic variable (x4) having value zero
Min:z          +8x2                          = 20

x3 +2/3x4 +1/3x5  = 4     4 ÷2/3 = 6 
x2          +x4               = 0 0 ÷ 1 = 0   

x1            -2/3x4+1/3x5  = 2     2 ÷ -2/3  Not valid

-2/3x2+ x3    +1/3x5  = 4     
x2      +x4             = 0

x1 +2/3x2           +1/3x5  = 2    
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Simplex algorithm analysis

• If there are no degenerate bases (true in random instances 
of LP), then it is impossible to return to a basis that has 
already been visited, because the objective function must 
decrease at every step

• If there are degenerate bases, it is possible to cycle, which 
would mean that the same series of bases repeats as you 
pivot, so one could pivot forever.  

• Smart rules about disambiguating ties in the lowest cost 
coefficient test and minimum positive ratio test can rule 
out possibility of infinite cycling

• Number of pivot steps < Number of corner point solutions
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Simplex algorithm analysis

• With n variables, each bounded >0,  <1, there are 2n  corner 
point feasible solutions

• Pathological examples force examination of all of these

• Each pivot (Gaussian elimination) takes  m n time 

• Simplex algorithm is exponential in worst-case analysis, 
yet is remarkably successful in practice

• In fact, linear programming can be solved in polynomial 
time by interior point methods.  Recently these have 
become competitive in practice with simplex.


