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*Historical contributor: G. Dantzig, late 1940’s (Now at Stanford
University. Realize many real-world design problems can be formulated
as linear programs and solved efficiently. Finds algorithm, the Simplex
method to solve LP’s. As of 1997, still best algorithm for most

applications.

*So important for world economy that any new algorithmic development
on LP’s is likely to make the Front Page of major newspapers (e.g. NY
times, Wall Street Journal). Example: 1979 L. Khachyan’s adaptation of
ellipsoid algorithm, N. Karmarkar’s new interior-point algorithm.

A remarkably practical and theoretical framework: LPs eat a large chunk
of total scientific computational power expended today. It is crucial for
economic success of most distribution/transport industries and to
manufacturing.

*Now becomes suitable for real-time applications.

16.410: MIT, Fall 2003




Examples of Linear programs
*Example 1: Revenue maximization problem.
Wage is $8 / hour
Stock Profit is daily % yield =

and number of hours spent is never greater than 10 hours/day
(3 hours Max on stock market)

— Call x1 the number of hours spent @ work, x2 the number of
hours spent working on the stock market.

*Problem formulation:

#hour n .
Lspetx Cap|ta|

X2 x capital
3000
Subjectto x1+x2<10

X2<3

Maximize 8x1+

Our first LP
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Example 1: Graphical Representation

x1 ¢

Cost function

X2

. . .
Answer depends upon gradient orientation
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An aircraft company makes two aircraft engines. Engine
parts are made at three plants: A, B, C.

— Engine 1 is made of elements produced in A and C

— Engine 2 is made of elements of B and C
*Plants A,B, C have limited throughput

*What mix of product 1 and 2 will bring maximum profit?
Another resource allocation problem.
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? . Plant [Production Production  Production time
°
Add I data time per time per Available
engine 1 engine 2 Per week
A 1 0 4
B 0 2 12
c 3 2 18

Profit/ |$300,000 $500,000
engine

x1: # of Engine 1
X2: # Engine 2
Profit (in KKK$): 3x1 + 5x2
Constraints: x1<4
2x2 <12
3x1+2x2<18
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X2 Example 2, Ct’d

3x1+2x2 <18 2x2<12

(0.6)

R ""l < A
Feasiblexegion
~4.3)
1.6]
3 x1
o] 1 ]
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Standard Linear Programming Model
+ Notations:

— Z: Overall measure of performance

xj: Activity level for product j

cj: Marginal improvement of Z associated with product j
bi: Available resource |

— aij: Amount of resource | to produce j.

General LP:  Maximize Z =c¢,x, +...4+¢C X,
Subjectto a, X, +...+a,X, <b,

A X .+ a X, <b,

mn-®n

X 20,---,x, 20.

1 n —

Standard form for LP.  Minimize Z = —¢,x —...—¢,x

n-'n
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*Other forms of LPs:
— Arbitrary signs on ci, bj, aij, xi.
— Equality constraints
— Require technicalities but may be cast in standard form

eFeasible/unfeasible solutions

The set of solutions that satisfy all the constraints is said
feasible. It is the intersection of many half planes (m of them)
with the positive orthant (what’s that?). It’s a polytope.
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N

X

Wil

x1

x1>0 and x2>0

and constraint 1

and constraint 2

and constraint 3 16.410: MIT, Fall 2003




This is not an LP!

x1

x1>0 and x2>0

and constraint 1

and constraint 2
or constraint 3
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Some vocabulary (ct’d)

» Vocabulary
— Polytope may be empty: No feasible solutions
— Polytope may be unbounded: possibility for infinite optimal costs
— Sure signs of problem misunderstanding

Infeasible set of constraints
(Nonstandard LP)
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Proportionality

— Does twice the activity result in twice the profit, or twice the
shipment size result in twice the cost?

Additivity
— Does opening a store in Cambridge and one in Boston result in the
sum of projected profits?
Divisibility
— Can you manufacture half an aircraft?
Certainty
— What do we really know about the problem?
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Divisibility is a real problem in decision-making LPs;
integer programming is the solution. Some important
integer programs luckily are also solvable as LPs!

— Theorem: The solution to any transportation problem with integer
supplies and demands is integer.

— Transportation problems include the class of assignment problems.
Uncertainty in the data is a huge problem. The right way
to address it is either by sensitivity analysis if the data
might be off by small amounts or by multiple case analysis
if the scenarios range widely.
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e Maximize 3x1 + 5x2,

subject to Wl< 4
2x2 <12
3x1+2x2<18
x1>0,x2>0
e Standard (=) form: min z-3x1 -5x2 =0
x1 +Xx3 =4
X2 +x4 =6
3x1+2x2 +x5 =18
x1, X2, X3, x4, x5>0
16.410: MIT, Fall 2003
o Standard (=) form: min z-3x1 -5x2 =
x1 +x3 =
X2 +x4 =
3x1+2x2 +x5 =18

The variables whose coefficients are an identity matrix are
x3, x4, x5. These are slack variables, and at this step in the
Simplex method they are also the basic variables

The other variables are nonbasic and are set to zero at this
corner point. Let x1=0, x2=0.

So x3=4, x4=6, and x5=18. At each basic solution you
can read the values of basic variables off the equations
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Choose most negative reduced cost: z -3x1 -5x2
So pivot on column x2
Choose smallest positive ratio test:

x1 +Xx3 =4 blank
X2 +x4 =6 6=-1=6
3x1+2x2 +x5 =18 18+2=9

So pivot on row 2, which means: set the coefficient of x2
in row 2 to 1, and eliminate x2 from the objective and the
other constraint rows

16.410: MIT, Fall 2003

Choose most negative reduced cost: z-3x1 +5x4 =-30
So pivot on column x1
Choose smallest positive ratio test:

x1 +x3 =4 4+1=4
X2 +x4 =6 blank
3x1 -2X4+x5 =6 6+3=2

So pivot on row 3, which means: set the coefficient of x1
in row 3 to 1, and eliminate x1 from the objective and the
other constraint rows
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Choose most neqgative reduced cost: z +3x4 +x5 = -36

No more improvement in z possible because all reduced
Costs are positive

Read off solution:
X3 +2/3x4 +1/3x5 =4
X2 +x4 =6
x1 -2/3x4+1/3x5 =2

z = -36, so original objective is 36. x1=2, x2=6, x3=4

Positive slack variable x3 indicates that original constraint
x1 < 4 is not tight; the other two constraints are tight
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Convert to standard form
Add slack variables
Pivot
— choose most negative reduced cost (identifies new basic variable)

— choose lowest positive ratio in ratio test

— eliminate new basic variable from objective and all rows except
lowest positive ratio in ration test row

Stop if optimal and read solution. Otherwise, pivot again.
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» Does every pivot step decrease cost? Answer: almost yes!

Min:z -8x4 =20
X3 +2/3x4 +1/3x5 =4 4-+2/3=6
X2 +Xx4 =0 0+1=0
x1 -2/3x4+1/3x5 =2 2 +-2/3 Not valid

» Cost has not decreased! This is a degenerate basis, with
one basic variable (x4) having value zero

Min:z +8x2 =20
-2/3x2+ x3  +1/3x5 =4
X2  +x4 =0
x1 +2/3x2 +1/3x5 =2
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* If there are no degenerate bases (true in random instances
of LP), then it is impossible to return to a basis that has
already been visited, because the objective function must
decrease at every step

 If there are degenerate bases, it is possible to cycle, which
would mean that the same series of bases repeats as you
pivot, so one could pivot forever.

» Smart rules about disambiguating ties in the lowest cost
coefficient test and minimum positive ratio test can rule
out possibility of infinite cycling

* Number of pivot steps < Number of corner point solutions
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With n variables, each bounded >0, <1, there are 2" corner
point feasible solutions

Pathological examples force examination of all of these
Each pivot (Gaussian elimination) takes m n time

Simplex algorithm is exponential in worst-case analysis,
yet is remarkably successful in practice

In fact, linear programming can be solved in polynomial
time by interior point methods. Recently these have
become competitive in practice with simplex.
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