Notes on Markov Models for 16.410 and 16.413

1 Markov Chains

A Markov chain is described by the following:

e asetof states S = {s1,82,... 8}
e aset of transition probabilities T'(s;, s;) = p(s;]|s;)
e aninitial state s € S

The Markov Assumption

The state at time ¢, s;, depends only on the previous state s;_; and not the previous history. That is,

p(8t]8t—1, St—2, 513, 50) = p(s¢]s1-1) 1)
Things you might want to know about Markov chains:

e Probability of being in state s; at time ¢
e Stationary distribution

2 Markov Decision Processes

The extension of Markov chainsto decision making

A Markov decision process (MDP) is a model for deciding how to act in “an accessible, stochastic environment with
a known transition model” (Russell & Norvig, pg 500.). A Markov decision process is described by the following:

a set of states S = {s1, s2,...5,}

a set of actions A = {a1,a2,...,am}

a set of transition probabilities T'(s;, a, s;) = p(s;|si, a)
asetofrewards R: S x A — R

a discount factor € [0, 1]

an initial state sp € S

Things you might want to know about M DPs:
e The optimal policy

One way to compute the optimal policy:

Define the optimal value function V'(s;) by the Bellman equation:
S|
Vis;) = max R(si,a) + WZp(sﬂsi,a) -V (sj) (2
j=1

The value iteration algorithm using Bellman’s equation:



1.t=0

2. V5, €S8:V%s;) =0

3. do

4. change =0

5 Vs; € S:

6 Vi(ss) = max (R(si,a) +7 X psjlsia) - Vii(s))
7. change = change + Vi(s;) — Vi~ 1(s;)

8. while not converged

3 Hidden Markov Models

The extension of Markov chainsto partially observable worlds
A Hidden Markov Model is described by the following:

a set of states S = {s1, $2,...5,}

a set of observations Z = {z1, z2,... 2, }

a set of transition probabilities T'(s;, s;) = p(s;|si)
a set of emission probabilities O(z;, s;) = p(zi|s;)
an initial state distribution pg(s)

We never know the true state of the system. Even at the start, we are given only an initial distribution over states,
po(s). At each point in time, we get some observation z. We can infer the posterior distribution

p(St\Zt, Bt—15Rt—2,Rt—35- -+ 2’0) = Oép(Zt|8t)p(St\Zt—1, Zt—2yZt—3y -y Zo) (3)
= ap(zlst) Y p(silsi)p(se-1lzi-1, 212, 213, , 20) (4)
St—1

Equation 4 is known as the “Bayes’ filter”, and can be computed recursively.
This is exactly how the Kalman filter works.

Things you might want to know about HMM s (Rabiner’s famous 3 questions):

e Given the observation sequence Z = z122 ...z, and a model A = (T, O, po), how do we efficiently compute
p(Z|\), the probability of the observation sequence given the model?

e Given the observation sequence Z = zjz2...2, and a model A = (7,0, po), how do we choose a corre-
sponding state sequence @ = sy, s2, - . ., s; Which is optimal in some meaninful sense (i.e., best “explains” the
observations)?

e How do we adjust the model parameters A = (T, O, p) to maximize p(Z|\)?



Problem 1 - Forward Algorithm

Probability of sequence Z given A is the probability of Z over all state sequences @

p(ZIN) = Y p(Z]Q,)p(QN) ®)
Q
= Y pols))p(zils1)p(salsi)p(zals2)p(ss]sz) .. (6)

e Problem: Summing over all state sequences is 2¢|S|*.

e Instead, build lattice of states forward in time, computing probabilities of each possible trajectory as lattice is
built

e Forward algorithm is | S|t

Algorithm:

1. Initialize: a1 (s;) = po(si)p(z1]s:)
2. Induction: Repeatforr =1 :t¢

S|

rpa(si) = [Z OéT(Sj)p(SHSj)] p(zr+1lsi) (M

3. Termination: p(Z|\) = les:‘l a(s;)
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Problem 2 - Viterbi Decoding

Same principle as forward algorithm, with an extra term

Algorithm:

1. Initialize:
a1(s;) = po(si)p(z1]si) P1(si) =0
2. Induction: Repeatforr =1:¢

ara(s) = [maxas (sy)p(silsy)| perals)
brals) = |maxa(sn(sls)

3. Termination: p(Z|\) = [max,, o (s;)p(sils;)]
57 = ¢T+1(Si+1)

(®)
©)



Problem 3 - Improving the Model Parameters

This is a topic for another class.

4 Partially Observable Markov Decision Processes

The extension of HM M sto decision making

A POMDRP is described by the following:

aset of states S = {s1,52,...5,}

asetof actions A = {a1,az2,...,am}

a set of transition probabilities T'(s;, a, s;) = p(s;|si, a)

a set of observations Z = {21, 22, ..., 21}

a set of observation probabilities O(s;, a;, zx) = p(z | s, a)
an initial distribution over states, po(s)
asetofrewards R: S x Ax Z— R

We won’t talk in this class about how to solve these.

5 Thingsyou should know about (hidden) Markov (decision) processes

e Each kind of Markov model

e How to frame a problem as a (possible hidden) Markov process
e Value iteration

e The Bayes’ Filter equation

e The forward algorithm

e The Viterbi algorithm



