
Notes on Markov Models for 16.410 and 16.413

1 Markov Chains

A Markov chain is described by the following:

• a set of states S = {s1, s2, . . . sn}
• a set of transition probabilities T (si, sj) = p(sj |si)
• an initial state s0 ∈ S

The Markov Assumption

The state at time t, st, depends only on the previous state st−1 and not the previous history. That is,

p(st|st−1, st−2, st−3, s0) = p(st|st−1) (1)

Things you might want to know about Markov chains:

• Probability of being in state si at time t
• Stationary distribution

2 Markov Decision Processes

The extension of Markov chains to decision making

A Markov decision process (MDP) is a model for deciding how to act in “an accessible, stochastic environment with
a known transition model” (Russell & Norvig, pg 500.). A Markov decision process is described by the following:

• a set of states S = {s1, s2, . . . sn}
• a set of actions A = {a1, a2, . . . , am}
• a set of transition probabilities T (si, a, sj) = p(sj |si, a)
• a set of rewards R : S ×A 7→ <
• a discount factor γ ∈ [0, 1]
• an initial state s0 ∈ S

Things you might want to know about MDPs:

• The optimal policy

One way to compute the optimal policy:

Define the optimal value function V (si) by the Bellman equation:

V (si) = max
a



R(si, a) + γ

|S|
∑

j=1

p(sj |si, a) · V (sj)



 (2)

The value iteration algorithm using Bellman’s equation:
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1. t = 0
2. ∀si ∈ S : V 0(si) = 0
3. do
4. change = 0
5. ∀si ∈ S:

6. V t(si) = maxa

(

R(si, a) + γ
∑|S|

j=1
p(sj |si, a) · V

t−1(sj)
)

7. change = change + V t(si) − V t−1(si)
8. while not converged

3 Hidden Markov Models

The extension of Markov chains to partially observable worlds

A Hidden Markov Model is described by the following:

• a set of states S = {s1, s2, . . . sn}
• a set of observations Z = {z1, z2, . . . zn}
• a set of transition probabilities T (si, sj) = p(sj |si)
• a set of emission probabilities O(zi, sj) = p(zi|sj)
• an initial state distribution p0(s)

We never know the true state of the system. Even at the start, we are given only an initial distribution over states,
p0(s). At each point in time, we get some observation z. We can infer the posterior distribution

p(st|zt, zt−1, zt−2, zt−3, . . . , z0) = αp(zt|st)p(st|zt−1, zt−2, zt−3, . . . , z0) (3)

= αp(zt|st)
∑

st−1

p(st|st−1)p(st−1|zt−1, zt−2, zt−3, . . . , z0) (4)

Equation 4 is known as the “Bayes’ filter”, and can be computed recursively.

This is exactly how the Kalman filter works.

Things you might want to know about HMMs (Rabiner’s famous 3 questions):

• Given the observation sequence Z = z1z2 . . . zt, and a model λ = (T,O, p0), how do we efficiently compute
p(Z|λ), the probability of the observation sequence given the model?

• Given the observation sequence Z = z1z2 . . . zt, and a model λ = (T,O, p0), how do we choose a corre-
sponding state sequence Q = s1, s2, . . . , st which is optimal in some meaninful sense (i.e., best “explains” the
observations)?

• How do we adjust the model parameters λ = (T,O, p0) to maximize p(Z|λ)?

2



Problem 1 - Forward Algorithm

Probability of sequence Z given λ is the probability of Z over all state sequences Q

p(Z|λ) =
∑

Q

p(Z|Q,λ)p(Q|λ) (5)

=
∑

s1,s2,s3,...

p0(s1)p(z1|s1)p(s2|s1)p(z2|s2)p(s3|s2) . . . (6)

• Problem: Summing over all state sequences is 2t|S|t.
• Instead, build lattice of states forward in time, computing probabilities of each possible trajectory as lattice is

built
• Forward algorithm is |S|2t

Algorithm:

1. Initialize: α1(si) = p0(si)p(z1|si)

2. Induction: Repeat for τ = 1 : t

ατ+1(si) =





|S|
∑

j=1

ατ (sj)p(si|sj)



 p(zτ+1|si) (7)

3. Termination: p(Z|λ) =
∑|S|

j=1
αt(sj)
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Problem 2 - Viterbi Decoding

Same principle as forward algorithm, with an extra term

Algorithm:

1. Initialize:
α1(si) = p0(si)p(z1|si) ψ1(si) = 0

2. Induction: Repeat for τ = 1 : t

ατ+1(si) =

[

max
sj

ατ (sj)p(si|sj)

]

p(zτ+1|si) (8)

ψτ+1(si) =

[

max
sj

ατ (sj)p(si|sj)

]

(9)

3. Termination: p(Z|λ) =
[

maxsj
ατ (sj)p(si|sj)

]

s∗τ = ψτ+1(s
∗
τ+1)
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Problem 3 - Improving the Model Parameters

This is a topic for another class.

4 Partially Observable Markov Decision Processes

The extension of HMMs to decision making

A POMDP is described by the following:

• a set of states S = {s1, s2, . . . sn}
• a set of actions A = {a1, a2, . . . , am}
• a set of transition probabilities T (si, a, sj) = p(sj |si, a)
• a set of observations Z = {z1, z2, . . . , zl}
• a set of observation probabilities O(si, aj , zk) = p(z | s, a)
• an initial distribution over states, p0(s)
• a set of rewards R : S ×A×Z 7→ <

We won’t talk in this class about how to solve these.

5 Things you should know about (hidden) Markov (decision) processes

• Each kind of Markov model
• How to frame a problem as a (possible hidden) Markov process
• Value iteration
• The Bayes’ Filter equation
• The forward algorithm
• The Viterbi algorithm
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