Notes on Markov Models for 16.410 and 16.413

1 Markov Chains

A Markov chain is described by the following:

- a set of states $S = \{s_1, s_2, \dots s_n\}$
- a set of transition probabilities $T(s_i, s_j) = p(s_j | s_i)$
- an initial state $s_0 \in \mathcal{S}$

The Markov Assumption

The state at time t, s_t , depends only on the previous state s_{t-1} and not the previous history. That is,

$$p(s_t|s_{t-1}, s_{t-2}, s_{t-3}, s_0) = p(s_t|s_{t-1})$$
(1)

Things you might want to know about Markov chains:

- Probability of being in state s_i at time t
- Stationary distribution

2 Markov Decision Processes

The extension of Markov chains to decision making

A Markov decision process (MDP) is a model for deciding how to act in "an accessible, stochastic environment with a known transition model" (Russell & Norvig, pg 500.). A Markov decision process is described by the following:

- a set of states $S = \{s_1, s_2, \dots s_n\}$
- a set of actions $\mathcal{A} = \{a_1, a_2, \dots, a_m\}$
- a set of transition probabilities $T(s_i, a, s_j) = p(s_j | s_i, a)$
- ullet a set of rewards $R:\mathcal{S} imes\mathcal{A}\mapsto\Re$
- a discount factor $\gamma \in [0, 1]$
- an initial state $s_0 \in \mathcal{S}$

Things you might want to know about MDPs:

• The optimal policy

One way to compute the optimal policy:

Define the optimal value function $V(s_i)$ by the Bellman equation:

$$V(s_i) = \max_{a} \left(R(s_i, a) + \gamma \sum_{j=1}^{|\mathcal{S}|} p(s_j | s_i, a) \cdot V(s_j) \right)$$
 (2)

The value iteration algorithm using Bellman's equation:

3 Hidden Markov Models

The extension of Markov chains to partially observable worlds

A Hidden Markov Model is described by the following:

```
a set of states S = {s<sub>1</sub>, s<sub>2</sub>,...s<sub>n</sub>}
a set of observations Z = {z<sub>1</sub>, z<sub>2</sub>,...z<sub>n</sub>}
a set of transition probabilities T(s<sub>i</sub>, s<sub>j</sub>) = p(s<sub>j</sub>|s<sub>i</sub>)
a set of emission probabilities O(z<sub>i</sub>, s<sub>j</sub>) = p(z<sub>i</sub>|s<sub>j</sub>)
an initial state distribution p<sub>0</sub>(s)
```

We never know the true state of the system. Even at the start, we are given only an initial distribution over states, $p_0(s)$. At each point in time, we get some observation z. We can infer the posterior distribution

$$p(s_{t}|z_{t}, z_{t-1}, z_{t-2}, z_{t-3}, \dots, z_{0}) = \alpha p(z_{t}|s_{t}) p(s_{t}|z_{t-1}, z_{t-2}, z_{t-3}, \dots, z_{0})$$

$$= \alpha p(z_{t}|s_{t}) \sum_{s_{t-1}} p(s_{t}|s_{t-1}) p(s_{t-1}|z_{t-1}, z_{t-2}, z_{t-3}, \dots, z_{0})$$

$$(3)$$

Equation 4 is known as the "Bayes' filter", and can be computed recursively.

This is exactly how the Kalman filter works.

Things you might want to know about HMMs (Rabiner's famous 3 questions):

- Given the observation sequence $Z = z_1 z_2 \dots z_t$, and a model $\lambda = (T, O, p_0)$, how do we efficiently compute $p(Z|\lambda)$, the probability of the observation sequence given the model?
- Given the observation sequence $Z = z_1 z_2 \dots z_t$, and a model $\lambda = (T, O, p_0)$, how do we choose a corresponding state sequence $Q = s_1, s_2, \dots, s_t$ which is optimal in some meaninful sense (i.e., best "explains" the observations)?
- How do we adjust the model parameters $\lambda = (T, O, p_0)$ to maximize $p(Z|\lambda)$?

Problem 1 - Forward Algorithm

Probability of sequence Z given λ is the probability of Z over all state sequences Q

$$p(Z|\lambda) = \sum_{Q} p(Z|Q,\lambda)p(Q|\lambda)$$
 (5)

$$= \sum_{s_1, s_2, s_3, \dots} p_0(s_1) p(z_1|s_1) p(s_2|s_1) p(z_2|s_2) p(s_3|s_2) \dots$$
 (6)

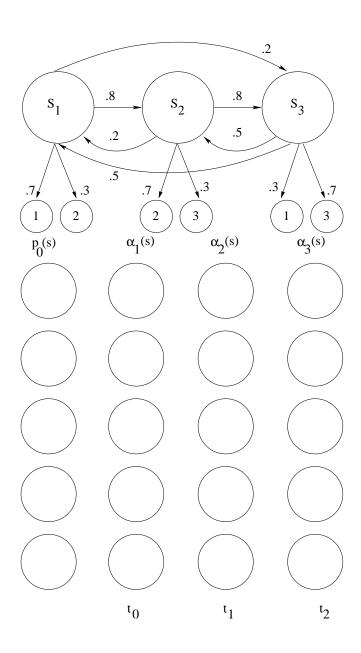
- Problem: Summing over all state sequences is $2t|S|^t$.
- Instead, build lattice of states forward in time, computing probabilities of each possible trajectory as lattice is built
- Forward algorithm is $|S|^2t$

Algorithm:

- 1. Initialize: $\alpha_1(s_i) = p_0(s_i)p(z_1|s_i)$
- 2. Induction: Repeat for $\tau=1:t$

$$\alpha_{\tau+1}(s_i) = \left[\sum_{j=1}^{|S|} \alpha_{\tau}(s_j) p(s_i|s_j)\right] p(z_{\tau+1}|s_i)$$
(7)

3. Termination: $p(Z|\lambda) = \sum_{j=1}^{|S|} \alpha_t(s_j)$



Problem 2 - Viterbi Decoding

Same principle as forward algorithm, with an extra term Algorithm:

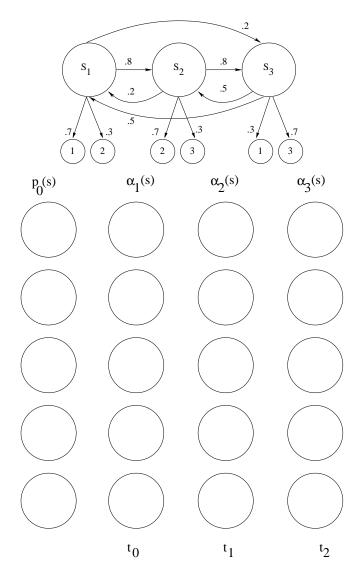
1. Initialize: $\alpha_1(s_i) = p_0(s_i) p(z_1|s_i) \; \psi_1(s_i) = 0$

2. Induction: Repeat for $\tau = 1:t$

$$\alpha_{\tau+1}(s_i) = \left[\max_{s_j} \alpha_{\tau}(s_j) p(s_i | s_j) \right] p(z_{\tau+1} | s_i)$$

$$\psi_{\tau+1}(s_i) = \left[\max_{s_j} \alpha_{\tau}(s_j) p(s_i | s_j) \right]$$
(9)

3. Termination: $p(Z|\lambda) = \left[\max_{s_j} \alpha_{\tau}(s_j) p(s_i|s_j)\right]$ $s_{\tau}^* = \psi_{\tau+1}(s_{\tau+1}^*)$



Problem 3 - Improving the Model Parameters

This is a topic for another class.

4 Partially Observable Markov Decision Processes

The extension of HMMs to decision making

A POMDP is described by the following:

- a set of states $S = \{s_1, s_2, \dots s_n\}$
- a set of actions $\mathcal{A} = \{a_1, a_2, \dots, a_m\}$
- a set of transition probabilities $T(s_i, a, s_j) = p(s_j | s_i, a)$
- a set of observations $\mathcal{Z} = \{z_1, z_2, \dots, z_l\}$
- a set of observation probabilities $O(s_i, a_j, z_k) = p(z \mid s, a)$
- an initial distribution over states, $p_0(s)$
- a set of rewards $R: \mathcal{S} \times \mathcal{A} \times \mathcal{Z} \mapsto \Re$

We won't talk in this class about how to solve these.

5 Things you should know about (hidden) Markov (decision) processes

- Each kind of Markov model
- How to frame a problem as a (possible hidden) Markov process
- Value iteration
- The Bayes' Filter equation
- The forward algorithm
- The Viterbi algorithm