Background for

Cognitive Models of Operators

16.459 Humans & Automation Seminar February 6, 2002

Miwa Hayashi

Purpose of Operator Modeling

Human-Machine System Design

- To provide rapid prototype simulator to examine human operator performance as a function of human interface design.
- To provide human-factors-related design requirements input from earlier stage of system concept development.

Decision Aiding

To design intelligent, adaptive operator decision aiding system.

Training

 To improve existing operator training material based on the cognition model of skilled operator.

..., And

Application for Artificial Intelligence (AI)??

Model Types (1): Normative v.s. Descriptive

Normative Model

describes how people ought to perform cognitive tasks

Descriptive Model

describes how people actually perform cognitive tasks

Ex.: Conjunction Fallacy (Tversky & Kahneman, 1983)

Linda is 31 years old, single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply concerned with issues of discrimination and social justice, and also participated in anti-nuclear demonstrations.

Which statement has higher probability of being true?

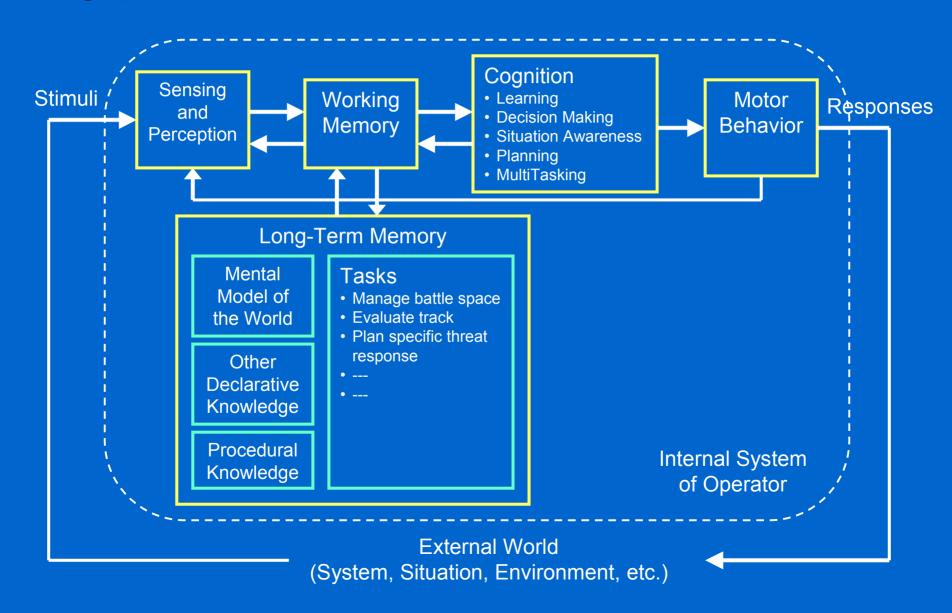
- A. Linda is a bank teller.
- B. Linda is a bank teller and active in the feminist movement.

The statement A always has higher probability than (or equal probability to) the statement B because of joint probability theory $(P(X) \ge P(X \& Y))$; thus A is the correct answer.

Model Types (2): Modeling Approach

Reductionist Model

- uses human/system task sequence as the primary organizing structure.
- Task Network Model (e.g., Micro Saint), Petri Net


First Principle Model / Cognitive Process Model / Production System Model

- is structured around an organizing framework that represents the underlying goals and principles of human performance.
- MIDAS, COGNET, ACT-R, EPIC, SOAR

Connectionist Model

- Attempts to find some mathematical relationship between input and output.
- Neural Network, Regression

Typical Model Structure

Various Operator Models

	Model	Original Purpose	Application Examples
\	Micro Saint	Evaluate systems and procedures	Military simulations Automated bank teller system design
	ACT-R	Modeling problem solving and learning	Various problem solving models Human memory Learning
>	COGNET	Develop user models in intelligent interfaces, surrogate users and adversaries	Vehicle tracking Intelligent tutoring system for military Military simulations Teamwork and cooperation simulation Workstation design for telephone operator
	EPIC	Develop and test theories of multiple task performance	Dual tracking/stimulus-response task Computer interface menu search Telephone operator call-completion task
→	MIDAS	Evaluate interfaces and procedures	Military simulations Flight deck, ATC procedure simulations Space shuttle cockpit display improvement
	SAMPLE	Evaluate crew procedures, equipment	Airliner cockpit procedure examination Nuclear power plant automation evaluation Air combat situation awareness analysis
	SOAR	Model problem solving and learning	Problem solving Learning
	Neural Net	Multiple constraints, satisfaction in memory, language, thought, pattern recognition	Unsupervised learning model Pattern recognition

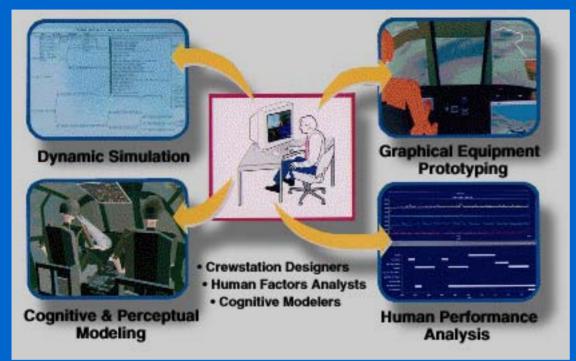
Papers

Micro Saint, MIDAS:

Laughery, K. R., Jr., & Corker, K. (1997)

"Computer Modeling and Simulation"

In Handbook of Human Factors and Ergonomics, Gavriel Salvendy (Ed.), pp. 1375-1408.


COGNET:

Zachary, W. W., Ryder, J. M., & Hicinbothom, J. H. (1998)

"Cognitive Task Analysis and Modeling of Decision Making in Complex Environment"

In *Decision Making Under Stress: Implications for Training and Simulation*, Cannon-Bowers, J., & Salas, E. (Eds.), American Psychological Association, Wachington, DC.

MIDAS Man-machine Integration Design and Analysis System

SHUTTLE MIDAS

http://caffeine.arc.nasa.gov/midas/index.html

- Aims to
 - reduce design cycle time
 - support quantitative predictions of human-system effectiveness
 - improve the design of crew stations and their associated operating procedures.

COGNET

- Developed by CHI Systems Incorporated, PA
- Original purpose was to develop an intelligent decisionmaking support system in real-time multi-task environment based on the knowledge of the task domain and the operator's decision-making process.
- Three requirements for the system
 - psychological (i.e., descriptive)
 - computational (i.e., unambiguous)
 - operational
- *"Pandemonium" metaphor
 - "shrieking demons" model for attention switching in multi-task situation
 - "blackboard" model for global problem representation
 - "perceptual demons" for changing problem representation by perceptual event

Limitation of Cognition Model

Each of operator cognition models is tailored for a specific purpose by simplifying the system structure and restricting operation domain, and captures only subset of human behavior. These models are not meant to create a complete replica of human in software form.

Other References

Summary of various operator cognition models

 Pew, R. W., & Mavor, A. S. (Eds.) (1998), Modeling Human and Organizational Behavior: Application to Military Simulations, National Academy Press, Washington, D.C..

MIDAS

http://caffeine.arc.nasa.gov/midas/index.html

COGNET

- Zachary, W., Ryder, J., Ross, L, & Weiland, M. (1992). Intelligent Computer-Human Interaction in Real-Time, Multi-Tasking Process Control and Monitoring Systems, Human Factors in Design for Manufacturability, Helander, M. & Nagamachi, M. (Eds.), pp. 377-401, Taylor and Francis, NY.
- http://www.chiinc.com/cognethome.shtml