
815

How to Measure Cognitive Complexity in Human-Computer Interaction

Matthias Rauterberg

Work- and Organizational Psychology Unit
Swiss Federal Institute of Technology (ETH)

Nelkenstrasse 11, CH-8092 Zurich, Switzerland
Tel: +41-1-632 7082, Email: rauterberg@ifap.bepr.ethz.ch

Abstract
A framework to conceptualize measure of behaviour
complexity (BC), system complexity (SC) and task
complexity (TC) was developed. From this frame-
work cognitive complexity (CC) is derived as CC =
SC + TC - BC. In an empirical study to investigate
different measures of cognitive complexity 6 begin-
ners and 6 experts solved 4 different tasks with an
interactive database management system. To ana-
lyze the empirical data recorded during the interac-
tive sessions a special program was developed. The
program's purpose and the program architecture are
described. Four different approaches from the litera-
ture to measure complexity in a quantitative way
were considered and discussed. Application of these
4 approaches were compared and tested against the
empirical results of the experiment. The measure of
McCabe (1976) proved to be the most effective.

1 Introduction
This study was carried out to support the formal analysis
of studying user keystroke behaviour. The normal design
cycle used to construct a formal model is a top down ap-
proach. In this paper we present an automatic bottom up
approach to construct a formal description of user behavi-
our. The formalism we have selected to model the user's
knowledge with finite state/transition systems, is the Pe-
tri net theory. There are different formalisms for construc-
ting user models the context of human computer interac-
tion; TAG (Payne & Green 1986), CLG (Moran 1981),
GOMS (Card, Moran & Newell 1983), CCT (Kieras &
Polson 1985), and different kinds of grammars BNF
(Reisner 1981), EBNF (Reisner 1984), etc. Using any of
these formalisms the investigator is obliged to design the
pure (="error free") user model in a top down approach.
Then he or she can try to prove the model with "error
free" empirical data. This is difficult, expensive and insuf-
ficient, and one of the consequences is that most of the
formal models exist only as paper versions and have not
been implemented as executable simulations. For a de-
tailed critique of the mentioned formalism see Sutcliffe
(1989) Karat & Bennett (1991) or Benyon (1992).
If user models can be constructed using an automatic, bot-
tom up approach, then the handling of formal models be-
comes easy. To achieve this, we first of all develop a the-
oretical framework, which fits our empirical approach.
Based on this framework we are able to test four different
measures of complexity according to their "discriminating
power".

2 Cognitive complexity in man
computer interaction

Cognitive complexity has been defined as "an aspect of a
person's cognitive functioning which at one end is defined
by the use of many constructs with many relationships to
one another (complexity) and at the other end by the use
of few constructs with limited relationships to one an-
other (simplicity)" (Pervin 1984, p. 507). Transfering
this broad definition to the man computer interaction
could mean: the complexity of the user's mental model of
the dialog system is given by the number of known dia-
log contexts ("constructs") on one hand, and by the num-
ber of known dialog operations ("relationships") on the
other hand. The scope of this paper does not include ap-
proaches based on questionnaires (Scott, Osgood & Peter-
son 1979, McDaniel & Lawrence 1990).

2 . 1 Definition of cognitive complexity
Observing the behaviour of people solving a specific
problem or task is our basis for estimating "cognitive
complexity (CC)". The cognitive structures of users are
not direct observable, so we need a method and a theory to
use the observable behaviour as one parameter to estimate
CC. A second parameter is a description of the action or
problem solving space itself. The third parameter is an
"objective" measure of the task or problem structure.
We call the complexity of the observable behaviour the
"behaviour complexity (BC)". This behaviour complexity
can be estimated by analysing the recorded concrete task
solving process, which leads to an appropriate task
solving solution. The complexity of a given tool (e.g. an
interactive system) we call "system complexity (SC)".
The last parameter we need is an estimation of the "task
complexity (TC)".
The necessary task solving knowledge for a given task is
constant. This knowledge embedded in the cognitive
structure (CC) can be observed and measured with BC. If
the cognitive structure is too simple, then the concrete
task solving process must be filled up with a lot of heu-
ristics or trial and error strategies. Learning how to solve
a specific task with a given system means that BC de-
creases (to a minimum = TC) and CC increases (to a ma-
ximum = SC). We assume, that the difference (BC–TC)
is equal to the difference (SC–CC).
To solve a task, a person needs knowledge about the dia-
log structure of the interactive software (measured by SC)
and about the task structure (measured by TC). SC is an
upper limit for TC (SC≥TC); this aspect means, that the
system structure constrains the complexity of the obser

816

vable task solving space. We can now state with the con-
straints (BC≥TC) and (SC≥CC), that:

BC – TC = SC – CC (Formula 1)

Transforming this Formula 1 to get CC alone, results in
Formula 2:

CC = SC + TC – BC (Formula 2)

The parameter SC is given by the concrete system struc-
ture, so we have to apply a given complexity measure to
this system structure. The parameter TC can be estimated
either in a theoretical or in an empirical way. All apriori
descriptions of task structures are usable to calculate a
theoretical TC. If we have empirical data of different task
solving processes of different persons, then we can esti-
mate TC using the minimum of all observed BCs per
task. Given a sample of different complete task solving
processes, the best approximation for TC seems to be the
minimal solution regarding a specific complexity meas-
urement. One plausible consequence of this assumption is
that CC is equal to SC in the case of "best solution"
(TC=BC). This is the approach we are presenting here.

2 . 2 Quantitative measurements of
complexity

The cognitive complexity (CC) is defined by Formula 2.
To measure the system complexity (SC) we need a de-
scription of the interactive system "behaviour". In the
context of this work we are using a state/transition matrix
to describe all possible dialog actions the user can use to
change from one dialog state to another. Then we need to
carry out an empirical investigation to observe and record
user behaviour solving a set of tasks with the interactive
system.
To measure complexity we introduce four different me-
trics. The first simple metric we use is given by Stevens,
Myers and Constantine (1974). They count the number of
dialog states (S: states) to measure the "absolute structu-
ral complexity of a net" (see Formula 3).

Cstate = S (Formula 3)

The "relative structural complexity" of a net is the ratio
of the number of connections between dialog states (T:
transition) to the total number of dialog states (S: state)
(see Formula 4). The measure Cfan represents the average
number of connections per state, so we call this com-
plexity measure the "fan degree" of the net.

Cfan = T / S (Formula 4)

The third metric we use is published by McCabe (1976).
His complexity measure was created in the context of
software development, to analyse large programs. The
mathematical background of this measure is graph theory,
which offers several procedures to describe different as-
pects of net structures. If we have two dimensional net
structures, then we can calculate the number of basic
cycles ("holes") in the net with this complexity measure
(see Formula 7). The complexity is defined by the diffe-
rence of the total number of connections (T: transition)
and the total number of states (S: state). The parameter P
is a constant to correct the result of Formula 5 in the case
of a sequence (S = T + P); the value of P in our context
is 1. The semantic of Ccycle can be described by the num-
ber of "holes" in a net. Ccycle is a metric to calculate the

number of linear independent cycles of a plane and cohe-
rent net.

Ccycle = T - S + P (Formula 5)

The fourth metric is given by Kornwachs (1987). His
concept was developed for a general system with elements
and connections. His complexity measure was explicitly
designed for man-computer interaction. The idea of this
measure is to estimate the actual net density compared to
the maximal possible net density. The maximal possible
net density increases proportional to the square of the
number of states. Let S be the number of all elements
("states") in a given system I; the matrix of all realized
connections c is given by: cij=0, if element i ∈ I is dis-
connected with element j ∈ I, and cij=1, if element i ∈ I
is connected with element j ∈ I. The number of all
realized (= really existing) connections is t= ΣΣ cij. All
possible directed connections s of the system I can be cal-
culated by s=S(S-1). The structural density d is given by
d=t/s. The "structural degree of complexity" Cdensity is
now defined as the structural density d.

Cdensity = T / (S*(S-1)) (Formula 6)

With Cstate, Cfan, Ccycle, and Cdensity we have four different
metrics to measure complexity. We shall discuss the
advantages and disadvantages of these four quantitative
metrics in the context of an empirical investigation
below.

2 . 3 Representations of cognitive complexity
Measurement of complexity of a system described with a
state/transition matrix in a quantitative way is one central
issue; the other central issue is to transform the structure
of a given system in an "appropriate form". One qualita-
tive approach to figure complexity is drawing the "net
structure" of the system. If we use Petri-Nets (Petri 1980)
instead of the equivalent state/transition formalism (Was-
serman 1985), we can simulate the user's mental model in
an executable form with Petri-Net simulators.
A Petri-Net is a mathematical structure consisting of two
non-empty disjoint sets of nodes, called S-elements and
T-elements, respectively, and a binary relation F, called
the flow relation. F connects only nodes of different types
and leaves no node isolated. Nets can be interpretated by
using a suitable pair of concepts for the sets S (signified
by curved brackets "()") and T (signified by square
brackets "[]") and a suitable interpretation for the flow
relation F (signified by an arrow "->"). The means/activi-
ty interpretation allows one to describe the static structure
of a system with several active and passive functional
components: means (S) = real or informational entity, and
activity [T] = (repeatable) action of a system. The flow re-
lation F means: [a] -> (m), the activity a (e.g. a dialog
operation) produces means m (e.g. a dialog state); (m) ->
[a], activity a uses means m. The main operations (rela-
tions) between two nets are abstraction, embedding and
folding (Genrich, Lautenbach & Thiagarajan 1980). Fold-
ing is the most important operation in our context.

3 The Automatic Mental Model
Evaluator (AMME)

What is the main concern of a user interacting with a
software system? The user must build up a mental repre

817

sentation of the system's structure and gain knowledge
about the functions of this system with respect to a set of
tasks. Furthermore, he must learn the language, i.e., a set
of symbols, their syntax, and operations connected to
them, to evoke interaction sequences (the interactive "pro-
cesses") related to task and subtask functions. So, the
user's representations of the system structure are models
of a virtual machine. A "virtual machine" is defined as a
representation of the functionality of a system (functional
units and their behaviour). The most important point for
the user is the relation between task and machine, and not
so much the internal structure of the machine's system.
Consequentely, the task for the human factors engineer is
to model a suitable interface as a representation of the vir-
tual machine which can serve as a possible mental repre-
sentation for the user.
The symbolic representation of the machine system con-
sists of the following elements: 1. objects (things to ope-
rate on), 2. operations (symbols and their syntax), and 3.
states (the "dialog states"). The mental model of the user
can be structered in representing objects, operations,
states, system structure, and task structure.

3 . 1 The "idea" of AMME
If a user interacts with a dialog system, he or she pro-
duces a sequence of states and transitions (s') -> [t'] -> (s")
-> [t"] -> (s') -> [t'] -> (s") -> [t"] -> ... Each state corres-
ponds to a dialog context, and each transition corresponds
to a dialog operation. This sequence is called a "process".
Measurable facts in the process are for example number of
states and transitions, time per transition, etc. This meas-
urements can be easily done based on a protocol of the
user's behaviour automatically recorded by the dialog sys-
tem in a "logfile" (the logfile recording technique; Crel-
lin, Horn & Preece 1990).
To measure the complexity of the mental model which
generates the actual process, we first need a mapping pro-
cedure from the observable process to the embedded struc-
ture of this process. This mapping procedure can be done
with the folding operation in the context of Petri nets.
Folding a process means to map S-elements onto S-ele-
ments and T-elements onto T-elements while keeping the
F-structure. The result is the structure of the performance
net. The result of a folding operation of our example se-
quence above is a loop (s') -> [t'] -> (s") -> [t"] -> {back
to (s')}. This simple loop with two different states and
two different transitions is the whole net structure we
need to produce the process given above.
The prime idea of our approach is based on the actual ob-
servation of users performing a specific task. The key to
the interpretation of the protocols is a map of the com-
plete task solving domain, on which the behaviour of in-
dividual processes is drawn. This task solving domain in
our approach is the whole dialog net structure of the inter-
active system. A sequence of keystrokes can be contem-
plated as a sentence derived from a defined grammar or as
a process derived from a Petri net. The state transition
net, as a complete description of the software the user is
interacting with, can be used to identify the equal states in
the keystroke sequence. All parts of the user's keystroke
sequence between two dialog states are elementary pro-
cesses. All elementary processes can be combined to form
a Petri net (the "folding" operator). The "folded" Petri net

is a formal description ("model") of the procedural know-
ledge of the users behaviour.

3 . 2 The program structure of AMME
The tool AMME consist of four different programms: (1)
the dialog system with the logfile recording feature; (2) a
transformation program, which translate the binary logfile
in a readable ascii file; (3) the analysing program PACE-
GEN (Hofmann & Rudnik 1991), which extracts the net
of the task and user specific process and calculates diffe-
rent quantitative metrics of the generated net; (4) the Petri
net simulator PACE (Dähler 1989).

4 Analyzing user behaviour recorded
in logfiles

4 . 1 The empirical investigation
We tested the dialog system ADIMENS 2.21 with 12
users (Rauterberg 1992). These 12 users had have to solve
10 different benchmark tasks in the context of operating
the data base system. We present the results of the first
four different benchmark tasks.
Subjects: Two different user groups took part in this
experiment: a beginner group (N=6: 4 women, 2 men;
average age of 27 years), and an expert group (N=6: 0 wo-
man, 6 men; average age of 38 years).
Experimental setting: First, the experience with
computers was measured with a 115-item questionnaire
and with interviews, then the beginner group was instruc-
ted for 1.5 hours in handling the database system. The ex-
pert group had 1,740 hours of experience in handling the
database system. Their total computer experience of about
7,500 hours was the result of their daily work using diffe-
rent types of computers and software systems. The dura-
tion of the actual task solving session was about 30 mi-
nutes. Each keystroke with a timestamp was recorded in a
logfile. Each user needed about 2 hours for the whole ex-
periment (10 tasks, individual sessions).
System description: The dialog system was the rela-
tional data base system ADIMENS version 2.21 with a
character oriented user interface (CUI) running on standard
IBM PC's with standard keyboard. The whole dialog
structure is strictly hierarchical organized with three
levels: (1) the main menu has 7 dialog operations (ordina-
ry ascii characters chosen from a menu) to go down to 7
different modules, and 5 function keys with specific se-
mantics; (2) at the module level each module has exactly
4 different dialog operations to change to routines and on
average 4.1 (±1.7; range: 0-5) function keys with specific
semantics; (3) at the routine level the user has only on
average 3.7 (±2.9; range: 0-10) different function keys to
control the dialog (additionally all ascii keys and the 4
cursor keys are usable).
The number of all ordinary dialog contexts (main menu,
modules, routines) is 1+7*4=29. But to describe the com-
plete dialog structure with all help, error and additional
dialog states we need at least 144 different dialog states.
To change from one state to the other the system offers
overall 358 different dialog operations (transitions).
Task description: In the experiment all users had to
play the role of a camping place manager. This manager
uses a database system with a data base consisting of

818

three data files: PLACE, GROUP, and ADDRESS. All
users had to solve the four different tasks operating the da-
tabase system (for a complete task description see Rauter-
berg 1992, p. 230: task 1 "info", task 2 "delete", task 3
"edit", task 5 "filter").
Dependent measures: One of the most important de-
pendent measures is the task solving time. This variable
and the results of the computer experience questionnaire
are needed for validating the different complexity meas-
ures. With the analysing program PACEGEN we ob-
tained the following measures per user and per task: the
number of all different transitions (T vector: "# of transi-
tions") and the number of all different dialog states (S
vector: "# of states"). We do not assume a massive learn-
ing process during the task solving period. So, a good
measure of CC must differentiate between beginners and
experts, but not overall between the four tasks!

4 . 2 Experimental results
Let us begin with the performance measure task solving
time (in seconds). The means of the two experimental
groups are different (MEANbegin = 914 ±494; MEANexp =
270 ±164). The experts are significantly faster than the
beginners (Factor "experience" df=1, F=45.3, p≤0.001;
Factor "tasks" df=3, F=4.0, p≤0.014; Interaction "experi-
ence" ⊗ Factor "tasks" df=3, F=1.5, p≤0.234). This ex-
pected result is fundamental for validating the complexity
measures. The second important result is the significant
difference among the four tasks (MEANtask-1 = 419 ±331;
MEAN task-2 = 789 ±702; MEANtask-3 = 724 ±422;
MEANtask-4 = 436 ±345).
If this time measure is a coarse estimation of complexity,
then the order of the four tasks according to their com-
plexity is: Lowest is task 1, followed by task 4, task 3
and task 2. A close look at task 3 shows, that a user has
to know how to handle 15 different states just for the
editor required in the dialog context of the routine "up-
date"; to change from one editor state to another the user
needs at least 45 different transitions (e.g. different seman-
tics of the cursor keys). In the following analysis we
evaluate the logfiles only on the routine level, so we do
not measure the behavioural complexity below this level.
The next estimation of complexity is the number of diffe-
rent dialog states. We need 144 different dialog states to
describe the dialog structure of the interactive system.
Solving a given task the user has to navigate through this
dialog structure. The average number of different dialog
states the beginners need to solve all tasks is significantly
higher than the average of the expert group (MEANbegin =
11.5 ±2.8; MEANexp = 9.2 ±2.9; Factor "experience"
df=1, F=8.8, p≤0.005; Factor "tasks" df=3, F=5.8, p≤
0.002; Interaction "experience" ⊗ Factor "tasks" df=3, F=
0.8, p≤0.485). This result can be easily explained by the
different experience of operating the system: The begin-
ners need more heuristic search strategies to solve the
tasks than the experts. There is also a significant diffe-
rence between task 4 and the other three tasks (MEANtask-

1 = 9.5 ±3.6; MEANtask-2 = 9.6 ±2.9; MEANtask-3 = 9.3
±2.4; MEANtask-4 = 13.1 ±1.0).
The beginners also use significantly more different transi-
t ions than the experts (MEANbegin = 28.0 ±9.4;
MEANexp = 21.3 ±8.6). This result support the interpre-
tation, that the beginners need more heuristics to solve

the tasks than the experts. In solving task 4 all users need
the most number of transitions. The main effect "tasks"
in the analysis of variance is significant (Factor "experi-
ence" df=1, F=7.5, p≤0.009; Factor "tasks" df=3, F=3.4,
p≤0.026; Interaction "experience" ⊗ Factor "tasks" df=3,
F=0.4, p≤0.721). The results of these three dependent
measures are the basis to find out which of the following
four cognitive complexity measures is the best.

5 Validation of the four different
complexity measures

To estimate the cognitive complexity we must first calcu-
late the behaviour complexity ("BC") of each user and
each task. Then we estimate the task complexity ("TC")
of each task by searching for the minimum of the 12 em-
pirical values of the behaviour complexity (the "best" so-
lution). The system complexity is given by the system
description, and is always constant in the context of a
specific complexity measure.

5 . 1 "Cognitive Complexity" based on the
metric for "different dialog states"

First we present the results of the measure of cognitive
complexity CCstate of Stevens et al. (1974) according to
the number of different dialog states (S: states). The re-
sults for the behavioral complexity BCstate are given
above (see chapter 4.2). The following estimations of the
behavioural, system, and task complexity are set:

Behaviour Complexity: BCstate = S; System Complexity:
SCstate = 144 (number of total states); Task Complexity:
TCstate: min[BCstate]task-1 = 4, min[BCstate]task-2 = 6,
min[BCstate]task-3 = 7, min[BCstate]task-4 = 12; Cognitive
Complexity: CCstate = SCstate + TCstate – BCstate

This measure CCstate can differentiate between beginners
and experts. The cognitive complexity CCstate of the per-
formance model of the experts is significantly higher than
the cognitive complexity CCstate of the beginners
(MEANbegin = 139.8 ±3.2; MEANexp = 141.7 ±2.6; Fac-
tor "experience" df=1, F=6.8, p≤0.013). This outcome is
meaningful.
But the result, that the average complexity CCstate of the
cognitive model of task 3 and 4 is higher than the com-
plexity CCstate of task 1 and 2, is counter intuitive
(MEANtask-1 = 138.5 ±3.6; MEANtask-2 = 140.4 ±2.9;
MEANtask-3 = 141.7 ±2.4; MEANtask-4 = 142.5 ±1.7;
Factor "tasks" df=3, F=5.4, p≤0.003). This result would
enforce the interpretation, that the users had more knowl-
edge of the "more complex" tasks than of the "less com-
plex" tasks. This outcome can only be explained, if there
was a massive learning process during the task solving
period. This assumption could be plausible for beginners,
but not for the experts. So, if this interpretation is cor-
rect, then we must have a significant interaction "exp. x
tasks" in the analysis of variance. But there is no signifi-
cant interaction (Interaction "experience" ⊗ Factor "tasks"
df=3, F=1.3, p≤0.314). Let us see, how this aspect will
be handled by the other three measures of complexity.

5 . 2 "Cognitive Complexity" based on the
metric for "fan degrees"

Now we present the results of the measure of cognitve
complexity of Stevens et al. (1974) according to the ave

819

rage fan degree of each dialog state. The total number of
all possible dialog states (S) is 144, and of all transitions
(T) is 358 (given by the system description).

Behaviour Complexity: BCfan = T/S; System Complexity:
SCfan = 358/144 = 2.486; Task Complexity: TCfan:
min[BCfan]task-1 = 1.875, min[BCfan]task-2 = 2.077,
min[BCfan]task-3 = 2.000, min[BCfan]task-4 = 2.000; Cognitive
Complexity: CCfan = SCfan + TCfan – BCfan

The average fan degree of all 144 dialog states is 2.486
(SCfan). This means that the user can choose on average
between 2 and 3 alternatives to go on navigating in the
dialog structure. If we take the fact that the 29 main dia-
log contexts described above have between 3.7 and 12.0
transitions alternatives (see section on "system descrip-
tion"), then we can derive from the system description,
that the most dialog states in the system description are
of simple decision quality: "go on" (SCfan = 1; 48%),
"yes" or "no", "ok" or "cancel" (SCfan = 2; 22%), (SCfan

= 3; 11%) and (SCfan > 3; 19%). The TCfan measure does
not differentiate very well among the four tasks.
This measure CCfan can differentiate between beginners
and experts in the expected direction: The complexity of
the cognitive models of experts is significantly higher
than the complexity of beginner models (MEANbegin =
2.15 ±0.14; MEANexp = 2.35 ±0.13; Factor "experience"
df=1, F=29.0, p≤0.001). The average cognitive complex-
ity CCfan of all users does not differ in the four tasks
(MEANtask-1 = 2.24 ±0.17; MEANtask-2 = 2.32 ±0.14;
MEANtask-3 = 2.20 ±0.16; MEANtask-4 = 2.24 ±0.19;
Factor "tasks" df=3, F=1.7, p≤0.190; Interaction "experi-
ence" ⊗ Factor "tasks" df=3, F=0.4, p≤ 0.737).

5 . 3 "Cognitive Complexity" based on the
metric for "net cycles" (McCabe)

The empirical values of the number of states (S) and tran-
sitions (T) of each user per task are given by the vectors
S and T.

Behaviour Complexity: BCcycle = T – S + 1; System
Complexity: SCcycle = 358 – 144 + 1= 215; Task Complexity:
TCcycle: min[BCcycle]task-1 = 5, min[BCcycle]task-2 = 8,
min[BCcycle]task-3 = 8, min[BCcycle]task-4 = 13; Cognitive
Complexity: CCcycle = SCcycle + TCcycle – BCcycle

It is important to notice, that the task complexity TCcycle

of the different tasks is in the expected direction: task 1
low in complexity and task 4 is highly complex.
The cognitive complexity CCcycle of the mental models
of beginners is significantly less complex than the cogni-
tive complexity of the mental models of the experts
(MEANbegin = 206.5 ±5.9; MEANexp = 211.3 ±4.0; Fac-
tor "experience" df=1, F=10.3, p≤0.002). This result is in
accordance with our constrains for a valide metric.
CCcycle does not differ in the four tasks (MEANtask-1 =
208.1 ±5.3; MEANtask-2 = 209.9 ±4.6; MEANtask-3 =
207.3 ±7.7; MEANtask-4 = 210.1 ±4.0; Factor "tasks"
df=3, F=0.8, p≤0.484; Interaction "experience" ⊗ Factor
"tasks" df=3, F=0.3, p≤0.809).
We do not find a significant difference for the factor
"tasks" in the analysis of variance. The maximum of
CCcycle is SCcycle (= 215). This maximum is only reached
by the expert group.

5 . 4 "Cognitive Complexity" based on the
metric for "net density" (Kornwachs)

The empirical values of the number of states (S) and tran-
sitions (T) of each user per task are given by the vectors
S and T.

Behaviour Complexity: BCdensity = T/(S*(S–1)); System
Complexity: SCdensity = 358/(144*(144-1)) = 0.017; Task
Complexity: TCdensity: min[BCdensity]task-1 = 0.667,
min[BCdensity]task-2 = 0.433, min[BCdensity]task-3 = 0.333,
min[BCdensity]task-4 = 0.182; Cognitive Complexity: CCdensity =
SCdensity + TCdensity – BCdensity

The estimations of task complexity TCdensity are counter
intuitive: task 1 is highly complex and task 4 is low in
complexity! Also, the system complexity SCdensity is
lower than each task complexity TCdensity. This fact leads
to negative complexity values!
We did not include in the construction of CCdensity the
aspect of the structural complexity of hierarchies (see
Kornwachs 1987), so, perhaps, this surprising result of
negative complexity values comes from neglecting this
aspect.
The measure CCdensity differentiates poorly between be-
ginners and experts (MEANbegin = 0.187 ±0.173;
MEANexp = 0.137 ±0.166; Factor "experience" df=1,
F=3.0, p≤0.090), but very well among the four different
tasks (MEANtask-1 = 0.381 ±0.156; MEANtask-2 = 0.162
±0.094; MEANtask-3 = 0.089 ±0.093; MEANtask-4 =
0.018 ±0.020; Factor "tasks" df=3, F=29.4, p≤0.001; In-
teraction "experience" ⊗ Factor "tasks" df=3, F=1.0,
p≤0.409).
The average values of CCdensity of the cognitive per-
formance models according to the tasks are in a surprising
direction: The users loose their knowledge during the task
solving period. This outcome is not plausible.

6 Discussion and Conclusions
Based on the assumption, that our theoretical model of
cognitive complexity given by Formulas 1–4 is valid and
meaningful, we are able to test and validate the four diffe-
rent metrics for complexity.
After the first test trial presented above, we bring the four
different complexity measures (CCs) in relation to other
aspects of our experimental "reality". First, we calculate
the product moment correlation (r) of the CCs with "task
solving time": CCstate r=–0.427, p≤ 0.002; CCfan r=–
0.576, p≤0.001; CCcycle r=–0.576, p≤0.001; CCdensity

r=0.126, p≤0.394. As one can see, there is a significant
negative correlation between CCstate, CCfan, and CCcycle

with the task solving time. This is a valid and plausible
outcome. Only CCdensity correlates positively (insignifi-
cant) with task solving time and with number of dialog
states, so we can exclude the measure CCdensity from
further considerations.
The measues CCstate, CCfan, and CCcycle are highly inter-
correlated (see Tab. 1), except for CCstate and CCfan. We
can assume that both measures estimate different qualities
of a net structure. This result sounds plausible. If we take
into account that CCstate differs with the tasks, then we
can exclude the metric CCstate from further studies, as
well.

820

Table 1 Product moment correlation (r) matrix of the two quantitative net aspects and the four measures of cognitive
complexity (N=48).

#STATES #TRANSITION CCstate CCfan CCcycle

 CCstate -0.685 -0.675
 CCfan -0.363 -0.527 0.338
 CCcycle -0.792 -0.853 0.900 0.657
 CCdensity 0.162 0.115 -0.724 -0.066 -0.463

We introduce the idea of "discriminating power" of the
measures above. This discriminating power can be ex-
pressed as the F-ratio of the analysis of variances.We pre-
sume that the measure CC is a more or less stable attri-
bute of each user in the scope of our study. CC is chang-
ing only during a massive learning process (see Rau-
terberg & Aeppli 1995). We do not assume that the ex-
perts in our investigation acquire fresh knowledge of ope-
rating the interactive system during the task solving pe-
riod. This assumption is valid, because the experts are
highly skilled over several years of operating the database
system.
To compare the discriminating power of both of the re-
maining measures CCfan and CCcycle we have to compare
the F-ratio of the three sources of variance ("Factors")
given by the analysis of variance (see above). Overall, the
measures CCfan and CCcycle discriminate sufficiently be-

tween beginners and experts and not between the four
tasks.
If we take into account that the measure TCfan is not
really appropriate to differentiate between the tasks, we
can accept that the measure CCcycle meets all demands.
Overall, the best quantitative metric for complexity in our
context seems to be CCcycle. This relative measure esti-
mates the average number of basic cycles in a net struc-
ture. Most empirical values of this measure lie between
195 and 215 near to the maximum of 215, which indi-
cates that only some expert users had a complete know-
ledge of the system structure. To reach the maximum
value of SC is only possible, when BC is equal to TC.
We can conclude that in this comparison the four different
quantitative metrics for complexity are of different value
in measuring task and cognitive complexity. The measure
of McCabe (1976) seems to be the most appropriate
metric.

References
Benyon D. (1992). The role of task analysis in systems de-

sign. Interacting with Computers, 4(1):102-123.
Card S.K., Moran T.P. & Newell A. (1983). The psychology

of human computer interaction. Erlbaum.
Crellin J., Horn T. & Preece J. (1990). Evaluating Evalu-

ation: A Case Study of the Use of Novel and Conventional
Evaluation Techniques in a Small Company. Human-
Computer Interaction - INTERACT '90 (Diaper D et al.;
eds.) Elsevier, 329-335.

Dähler J. (1989). PACE user's manual. Pace Inc., Neptun-
strasse 16, CH-8280 Kreuzlingen, Switzerland.

Genrich H.J., Lautenbach K. & Thiagarajan P.S. (1980). Ele-
ments of general net theory. Lecture Notes in Computer
Science vol. 84, Springer, 21-163.

Hofmann J. & Rudnik J. (1991). PACEGEN: ein automa-
tisches Logfile-Auswertungsprogramm zur Generierung
von Petri Netzen. Unpublished technical report, Work and
Organizational Psychology Unit, Swiss Federal Institute of
Technology (ETH).

Karat J. & Bennett J. (1991). Modelling the user interaction
methods imposed by designs. Mental Models and Human-
Computer Interaction (Tauber M.J. & Ackermann D.; eds.)
Elsevier, 257-269.

Kieras D.E. & Polson P.G. (1985). An approach to the formal
analysis of user complexity. International Journal of Man-
Machine Studies, 22:365-394.

Kornwachs K. (1987). A quantitative measure for the com-
plexity of man-machine interaction process. Proceedings
of Human-Computer Interaction - INTERACT'87 (Bullinger
H.-J. & Shackel B.; eds.) Elsevier, 109-116.

McCabe T. (1976). A complexity measure. IEEE Transactions
on Software Engineering, SE-2(6):308-320.

McDaniel E. & Lawrence C. (1990). Levels of cognitive com-
plexity: an approach to the measurement of thinking.
Springer.

Moran T.P. (1981). The command language grammar: a re-
presentation for the user interface of interactive computer
systems. International Journal of Man-Machine Studies,
15:3-50.

Payne S.J. & Green T.G.R. (1986). Task-action grammars: a
model of the mental representation of task languages. Hu-
man Computer Interaction, 2:93-133.

Pervin L.A. (1984). Personality. Wiley.
Petri C.A. (1980). Introduction to general net theory. Lecture

Notes in Computer Science vol. 84, Springer, 1-19.
Rauterberg M. (1992). An empirical comparison of menu-se-

lection (CUI) and desktop (GUI) computer programs carried
out by beginners and experts. Behaviour & Information
Technology 11(4):227-236.

Rauterberg M. & Aeppli R. (1995). Learning in man-machine
systems: the measurement of behavioural and cognitive
complexity. In: Proceedings of IEEE International Con-
ference on Systems, Man and Cybernetics. (Vol. 5, IEEE
Catalog No. 95CH3576-7), Piscataway, 4685-4690.

Reisner P. (1981). Formal grammar and human factors design
of an interactive graphics system. IEEE Transactions on
Software Engineering, SE-7(2):229-240.

Reisner P. (1984). Formal grammar as a tool for analyzing
ease of use. Human Factors in Computing Systems
(Thomas J.C. & Schneider M.L.; eds.) Ablex, 53-78.

Scott W.A., Osgood D.W. & Peterson C. (1979). Cognitive
structure: theory and measurement of individual differences.
Wiley.

Stevens W.P., Myers G.J. & Constantine L.L. (1974). Struc-
tured design. IBM System Journal, 13(2):115-139.

Sutcliffe A. (1989). Task analysis, systems analysis and de-
sign: symbiosis or synthesis? Interactng with Computers,
1(1):6-12.

Wasserman A.I. (1985). Extending state transition diagrams
for the specification of human-computer interaction. IEEE
Transactions on Software Engineering, SE-11(8):699-713.

CYBERNETICS
AND SYSTEMS '96

VOLUME II

Proceedings of the Thirteenth European Meeting on
Cybernetics and Systems Research,
organized by the Austrian Society for Cybernetic Studies,
held at the University of Vienna, Austria, 9–12 April 1996

Edited by

ROBERT TRAPPL

University of Vienny
and Austrian Society for Cybernetic Studies

Copyright © 1996 by Austrian Society for Cybernetic Studies, Vienna

ISBN 3 85206 133 4

Printed in Austria

