
Wing Bending Calculations
Lab 11 Lecture Notes

Nomenclature

y spanwise coordinate
q net beam loading
S shear
M bending moment
θ deflection angle (= dw/dx)
w deflection
κ local beam curvature
L′ lift/span distribution
m′ wing mass/span distribution
I bending inertia
i spanwise station index
n last station index at tip

η normalized spanwise coordinate (= 2y/b)
c local wing chord
Swing wing area
b wing span
λ taper ratio
E Young’s modulus
δ tip deflection
N load factor
L lift
W weight
g gravitational acceleration
()o quantity at wing root

Loading and Deflection Relations

The net wing beam load distribution along the span is given by

q(y) = L′(y) − N g m′(y) (1)

where m′(y) is the local mass/span of the wing, and N is the load factor. In steady level
flight we have N =1. The net loading q(y) produces shear S(y) and bending moment M(y)
in the beam structure. This resultant distribution produces a deflection angle θ(y), and
deflection w(y) of the beam, as sketched in Figure 1.
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Figure 1: Aerodynamic and mass loadings, and resulting structural loads and deflection.
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These variables are related by differential equations derived via simple Bernoulli-Euler beam
model.

dS

dy
= q (2)

dM

dy
= S (3)

dθ

dy
=

M

EI
(4)

dw

dy
= θ (5)

For a cantilevered wing beam, these equations have the following boundary conditions.

y = b/2 : S = 0 (6)

y = b/2 : M = 0 (7)

y = 0 : θ = 0 (8)

y = 0 : w = 0 (9)

For some given loading q(y) and bending stiffness EI(y) distributions along the wing, and
the four boundary conditions (6)–(9), the four equations (2)–(5) can integrated, numerically
if necessary. One result of interest from this integration is the deflection distribution w(y),
or just the tip deflection δ ≡ w(b/2).

Simplified Load Distribution

The lift distribution L′(y) needed to define q(y) depends on the induced angle αi(y) and
hence the overall wing shape in a complicated manner. One reasonable simplification is to
assume that the net aerodynamic + weight loading in equation (1) is proportional to the
local chord,

q(y) ≃ Kq c(y) (10)

as shown in Figure 2.
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Figure 2: Net loading assumed to scale as local chord c(y).

This is equivalent to assuming a constant local cℓ = CL, and that the local wing mass
distribution m′(y) scales as the chord. The constant Kq is best set such that the approximate
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and actual loadings have the same total integrated loads.

∫ b/2

−b/2
Kq c dy =

∫ b/2

−b/2
(L′ − Ngm′) dy (11)

Kq Swing = L − NWwing (12)

Kq =
L−NWwing

Swing

=
NWcent

Swing

(13)

where Wcent is the central weight, of everything except the wing.

Simplified Deflection Calculations

For preliminary or optimization work, numerical integration of the beam equations (2)–(5)
of each candidate wing is unwieldy. For estimation, an effective approximation is to assume
that the beam curvature

κ(y) ≡
d2w

dy2
=

dθ

dy
=

M(y)

EI(y)

is constant, and taken from some representative location such as the wing root at y=0.

κ(y) ≃ κ0 =
M0

EI0

(14)

θ(y) =
∫ y

0
κ0 dy = κ0 y (15)

w(y) =
∫ y

0
θ dy =

1

2
κ0 y2 (16)

For a straight-taper wing with taper ratio ct/cr =λ, the chord distribution is

c(y) =
Swing

b

2

1 + λ

[

1 + (λ− 1)
2y

b

]

(17)

and the corresponding approximate loading is then given by (10), and by the Kq defini-
tion (13).

q(y) ≃ Kq c(y) =
NWcent

b

2

1 + λ

[

1 + (λ− 1)η
]

(18)

η ≡
2y

b
(19)

To simplify the subsequent integrations, the y coordinate has been replaced with the equiv-
alent and more convenient normalized coordinate η, which runs η = 0 . . . 1 root to tip. The
shear and bending moment are then calculated by integrating equations (2) and (3).

S(y) =
∫ b/2

y
q(y) dy (20)

S(η) =
b

2

∫ 1

η
q(η) dη (21)

=
NWcent

b

2

1 + λ

b

2

∫ 1

η

[

1 + (λ− 1)η
]

dη (22)
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=
NWcent

b

2

1 + λ

b

2

[

1− η + (λ− 1)
1

2
(1− η2)

]

(23)

M(y) =
∫ b/2

y
S(y) dy (24)

M(η) =
b

2

∫ 1

η
S(η) dη (25)

=
NWcent

b

2

1 + λ

b2

4

∫ 1

η

[

1− η + (λ− 1)
1

2
(1− η2)

]

dη (26)

=
NWcent

b

2

1 + λ

b2

4

[

1− η −
1

2

(

1− η2
)

+ (λ− 1)
1

2

(

1− η −
1

3

(

1− η3
)

)]

(27)

The root moment is then

M0 ≡ M(0) = NWcent

b

12

1 + 2λ

1 + λ
(28)

which is subsequently combined with (14) and (16) to get the following estimate of the tip
deflection.

δ ≡ w(b/2) ≃
1

2
κ0

(

b

2

)2

=
M0

EI0

b2

8
=

NWcent

EI0

b3

96

1 + 2λ

1 + λ
(29)

Figure 3 shows κ(y) for three taper ratios for a solid wing, for which the stiffness varies as
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Figure 3: Spanwise distribution of curvature κ(y) = M/EI for three taper ratios.

EI(y)∼c(y)4. It can be seen that the constant κ = κ0 assumption is poor for a rectangular
wing, but reasonable for wings of moderate to strong taper of λ = 0.3 . . . 0.5, at least over the
inner parts of the wing where the curvature dominates the tip deflection. Figure 4 compares
the approximate deflections defined by (16) with the exact deflections, for the three taper
ratios. For the untapered λ = 1.0 wing, the approximation considerably overestimates the
tip deflection, but the tapered cases are quite reasonable.
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Figure 4: Approximate and exact deflections for three taper ratios.

Area and Bending Inertia of Airfoil Sections

As described above, calculation of the deflection of a wing requires knowing the spanwise
bending stiffness distribution EI(y) along the primary axis of loading. For a wing made of
a uniform solid material, the modulus E is a simple scaling factor. The moment of inertia
I(y) of the airfoil cross-sections about the bending axis x (called the bending inertia), is
then related only to the airfoil shape given by the upper and lower surfaces Zu(x) and Zℓ(x).
As shown in Figure 5, both the area A and the total bending inertia I are the integrated
contributions of all the infinitesimal rectangular sections, each dx wide and Zu − Zℓ tall.
The inertia of each such section is appropriately taken about the neutral surface position z̄
defined for the entire cross section.

A =
∫ c

0

[

Zu − Zℓ

]

dx (30)

z̄ =
1

A

∫ c

0

1

2

[

Z2
u − Z2

ℓ

]

dx (31)

I =
∫ c

0

1

3

[

(Zu − z̄)3 − (Zℓ − z̄)3
]

dx (32)

These relations assume that the bending deflection will occur in the z direction, which is a
good assumption if the x axis is parallel to the airfoil’s chord line.
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Figure 5: Quantities for determining and estimating the bending inertia of an airfoil section.

Although equations (30) – (32) can be numerically evaluated for any given airfoil (e.g. using
XFOIL’s BEND command), this is unnecessarily cumbersome for preliminary design work,
where both A and I are needed for possibly a very large number of candidate airfoils or
wings.

For the purpose of approximating A and I, we first define the maximum thickness t, and
maximum camber h, in terms of the upper and lower surface shapes. We also define the
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corresponding thickness and camber ratios τ and ε.

t = max { Zu(x)− Zℓ(x) } (33)

h = max {[Zu(x) + Zℓ(x)] /2} (34)

τ ≡ t/c

ε ≡ h/c

Examination of equation (30) indicates that A is proportional to t c, and examination of (32)
indicates that I is proportional to c t(t2 + h2). This suggests estimating A and I with the
following approximations.

A ≃ KA c t = KA c2 τ (35)

I ≃ KI c t (t2 + h2) = KI c4 τ(τ 2 + ε2) (36)

The proportionality coefficient can be evaluated by equating the exact and approximate A
and I expressions above, e.g.

KA ←
1

c2 τ

∫ c

0

[

Zu − Zℓ

]

dx (37)

KI ←
1

c4 τ(τ 2 + ε2)

∫ c

0

1

3

[

(Zu − z̄)3 − (Zℓ − z̄)3
]

dx (38)

Evaluating these expressions produces nearly the same KA and KI values for most common
airfoils:

KA ≃ 0.60 (39)

KI ≃ 0.036 (40)

Therefore, the very simple approximate equations (35) and (36), with KA and KI assumed
fixed, are surprisingly accurate. Hence, they are clearly preferred for preliminary design
work over the exact but cumbersome equations (30), (31), (32).

Tip deflection of solid-airfoil wing

The root chord of a simple-taper wing is given by equation (17) at y=0:

co =
Swing

b

2

1 + λ
= cavg

2

1 + λ
(41)

where cavg = Swing/b is the average chord. Inserting this co into the general I expression (36)
gives the root inertia

Io ≃ KI c4
o τ(τ 2 + ε2) = KI c4

avg

16

(1 + λ)4
τ(τ 2+ε2) (42)

which can then be inserted into (29) to give an alternative tip deflection expression in terms
of the average chord and the taper ratio.

δ ≃
NWcent

E

(

1

KI c4
avg

(1+λ)4

16

1

τ(τ 2+ε2)

)

b3

96

1 + 2λ

1 + λ
(43)

δ

b
≃ 0.018

NWcent

Eτ(τ 2+ε2)
(1+λ)3(1+2λ)

b2

c4
avg

(44)
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