Wing Bending Calculations Lab 11 Lecture Notes

Nomenclature

Loading and Deflection Relations

The net wing beam load distribution along the span is given by

$$
q(y) = L'(y) - N g m'(y) \tag{1}
$$

where $m'(y)$ is the local mass/span of the wing, and N is the load factor. In steady level flight we have $N=1$. The net loading $q(y)$ produces shear $\mathcal{S}(y)$ and bending moment $M(y)$ in the beam structure. This resultant distribution produces a deflection angle $\theta(y)$, and deflection $w(y)$ of the beam, as sketched in Figure 1.

Figure 1: Aerodynamic and mass loadings, and resulting structural loads and deflection.

These variables are related by differential equations derived via simple Bernoulli-Euler beam model.

$$
\frac{dS}{dy} = q \tag{2}
$$

$$
\frac{dM}{dy} = S \tag{3}
$$

$$
\frac{d\theta}{dy} = \frac{M}{EI} \tag{4}
$$

$$
\frac{dw}{dy} = \theta \tag{5}
$$

For a cantilevered wing beam, these equations have the following boundary conditions.

$$
y = b/2: \quad \mathcal{S} = 0 \tag{6}
$$

$$
y = b/2: \qquad M = 0 \tag{7}
$$

$$
y = 0: \quad \theta = 0 \tag{8}
$$

$$
y = 0: \qquad w = 0 \tag{9}
$$

For some given loading $q(y)$ and bending stiffness $EI(y)$ distributions along the wing, and the four boundary conditions $(6)-(9)$, the four equations $(2)-(5)$ can integrated, numerically if necessary. One result of interest from this integration is the deflection distribution $w(y)$, or just the tip deflection $\delta \equiv w(b/2)$.

Simplified Load Distribution

The lift distribution $L'(y)$ needed to define $q(y)$ depends on the induced angle $\alpha_i(y)$ and hence the overall wing shape in a complicated manner. One reasonable simplification is to assume that the net aerodynamic $+$ weight loading in equation (1) is proportional to the local chord,

$$
q(y) \simeq K_q c(y) \tag{10}
$$

as shown in Figure 2.

Figure 2: Net loading assumed to scale as local chord $c(y)$.

This is equivalent to assuming a constant local $c_{\ell} = C_L$, and that the local wing mass distribution $m'(y)$ scales as the chord. The constant K_q is best set such that the approximate

and actual loadings have the same total integrated loads.

$$
\int_{-b/2}^{b/2} K_q c \, dy = \int_{-b/2}^{b/2} (L' - Ngm') \, dy \tag{11}
$$

$$
K_q S_{\text{wing}} = L - N W_{\text{wing}} \tag{12}
$$

$$
K_q = \frac{L - NW_{\text{wing}}}{S_{\text{wing}}} = \frac{NW_{\text{cent}}}{S_{\text{wing}}}
$$
\n(13)

where W_{cent} is the central weight, of everything except the wing.

Simplified Deflection Calculations

For preliminary or optimization work, numerical integration of the beam equations (2) – (5) of each candidate wing is unwieldy. For estimation, an effective approximation is to assume that the beam curvature

$$
\kappa(y) \, \equiv \, \frac{d^2w}{dy^2} \, = \, \frac{d\theta}{dy} \, = \, \frac{M(y)}{EI(y)}
$$

is constant, and taken from some representative location such as the wing root at $y=0$.

$$
\kappa(y) \simeq \kappa_0 = \frac{M_0}{EI_0} \tag{14}
$$

$$
\theta(y) = \int_0^y \kappa_0 \, dy = \kappa_0 \, y \tag{15}
$$

$$
w(y) = \int_0^y \theta \, dy = \frac{1}{2} \kappa_0 y^2 \tag{16}
$$

For a straight-taper wing with taper ratio $c_t/c_r = \lambda$, the chord distribution is

$$
c(y) = \frac{S_{\text{wing}}}{b} \frac{2}{1+\lambda} \left[1 + (\lambda - 1) \frac{2y}{b} \right]
$$
 (17)

and the corresponding approximate loading is then given by (10) , and by the K_q definition (13).

$$
q(y) \simeq K_q c(y) = \frac{NW_{\text{cent}}}{b} \frac{2}{1+\lambda} \left[1 + (\lambda - 1)\eta \right]
$$
 (18)

$$
\eta \equiv \frac{2y}{b} \tag{19}
$$

To simplify the subsequent integrations, the y coordinate has been replaced with the equivalent and more convenient normalized coordinate η , which runs $\eta = 0 \dots 1$ root to tip. The shear and bending moment are then calculated by integrating equations (2) and (3).

$$
S(y) = \int_{y}^{b/2} q(y) dy
$$
 (20)

$$
\mathcal{S}(\eta) = \frac{b}{2} \int_{\eta}^{1} q(\eta) d\eta \tag{21}
$$

$$
= \frac{NW_{\text{cent}}}{b} \frac{2}{1+\lambda} \frac{b}{2} \int_{\eta}^{1} \left[1 + (\lambda - 1)\eta\right] d\eta \tag{22}
$$

$$
= \frac{NW_{\text{cent}}}{b} \frac{2}{1+\lambda} \frac{b}{2} \left[1 - \eta + (\lambda - 1) \frac{1}{2} (1 - \eta^2) \right]
$$
 (23)

$$
M(y) = \int_{y}^{b/2} \mathcal{S}(y) dy
$$
\n(24)

$$
M(\eta) = \frac{b}{2} \int_{\eta}^{1} \mathcal{S}(\eta) d\eta \tag{25}
$$

$$
= \frac{NW_{\text{cent}}}{b} \frac{2}{1+\lambda} \frac{b^2}{4} \int_{\eta}^{1} \left[1 - \eta + (\lambda - 1)\frac{1}{2}(1 - \eta^2)\right] d\eta \tag{26}
$$

$$
= \frac{NW_{\text{cent}}}{b} \frac{2}{1+\lambda} \frac{b^2}{4} \left[1 - \eta - \frac{1}{2} \left(1 - \eta^2 \right) + (\lambda - 1) \frac{1}{2} \left(1 - \eta - \frac{1}{3} \left(1 - \eta^3 \right) \right) \right] (27)
$$

The root moment is then

$$
M_0 \equiv M(0) = NW_{\text{cent}} \frac{b}{12} \frac{1+2\lambda}{1+\lambda} \tag{28}
$$

which is subsequently combined with (14) and (16) to get the following estimate of the tip deflection.

$$
\delta \equiv w(b/2) \simeq \frac{1}{2} \kappa_0 \left(\frac{b}{2}\right)^2 = \frac{M_0}{EI_0} \frac{b^2}{8} = \frac{NW_{\text{cent}}}{EI_0} \frac{b^3}{96} \frac{1+2\lambda}{1+\lambda}
$$
(29)

Figure 3 shows $\kappa(y)$ for three taper ratios for a solid wing, for which the stiffness varies as

Figure 3: Spanwise distribution of curvature $\kappa(y) = M/EI$ for three taper ratios.

 $EI(y) \sim c(y)^4$. It can be seen that the constant $\kappa = \kappa_0$ assumption is poor for a rectangular wing, but reasonable for wings of moderate to strong taper of $\lambda = 0.3 \dots 0.5$, at least over the inner parts of the wing where the curvature dominates the tip deflection. Figure 4 compares the approximate deflections defined by (16) with the exact deflections, for the three taper ratios. For the untapered $\lambda = 1.0$ wing, the approximation considerably overestimates the tip deflection, but the tapered cases are quite reasonable.

Figure 4: Approximate and exact deflections for three taper ratios.

Area and Bending Inertia of Airfoil Sections

As described above, calculation of the deflection of a wing requires knowing the spanwise bending stiffness distribution $EI(y)$ along the primary axis of loading. For a wing made of a uniform solid material, the modulus E is a simple scaling factor. The moment of inertia $I(y)$ of the airfoil cross-sections about the bending axis x (called the bending inertia), is then related only to the airfoil shape given by the upper and lower surfaces $Z_u(x)$ and $Z_{\ell}(x)$. As shown in Figure 5, both the area A and the total bending inertia I are the integrated contributions of all the infinitesimal rectangular sections, each dx wide and $Z_u - Z_\ell$ tall. The inertia of each such section is appropriately taken about the *neutral surface* position \bar{z} defined for the entire cross section.

$$
A = \int_0^c \left[Z_u - Z_\ell \right] dx \tag{30}
$$

$$
\bar{z} = \frac{1}{A} \int_0^c \frac{1}{2} \left[Z_u^2 - Z_\ell^2 \right] dx \tag{31}
$$

$$
I = \int_0^c \frac{1}{3} \left[(Z_u - \bar{z})^3 - (Z_\ell - \bar{z})^3 \right] dx \tag{32}
$$

These relations assume that the bending deflection will occur in the z direction, which is a good assumption if the x axis is parallel to the airfoil's chord line.

Figure 5: Quantities for determining and estimating the bending inertia of an airfoil section.

Although equations $(30) - (32)$ can be numerically evaluated for any given airfoil (e.g. using XFOIL's BEND command), this is unnecessarily cumbersome for preliminary design work, where both A and I are needed for possibly a very large number of candidate airfoils or wings.

For the purpose of approximating A and I , we first define the maximum thickness t , and maximum camber h , in terms of the upper and lower surface shapes. We also define the corresponding thickness and camber ratios τ and ε .

$$
t = \max\{Z_u(x) - Z_\ell(x)\}\tag{33}
$$

$$
h = \max\left\{ \left[Z_u(x) + Z_\ell(x) \right] / 2 \right\} \tag{34}
$$

$$
\begin{array}{rcl} \tau & \equiv & t/c \\ \varepsilon & \equiv & h/c \end{array}
$$

Examination of equation (30) indicates that A is proportional to $t c$, and examination of (32) indicates that I is proportional to $ct(t^2 + h^2)$. This suggests estimating A and I with the following approximations.

$$
A \simeq K_A c t \qquad = K_A c^2 \tau \tag{35}
$$

$$
I \simeq K_I \, ct \, (t^2 + h^2) = K_I \, c^4 \, \tau (\tau^2 + \varepsilon^2) \tag{36}
$$

The proportionality coefficient can be evaluated by equating the exact and approximate A and I expressions above, e.g.

$$
K_A \leftarrow \frac{1}{c^2 \tau} \int_0^c \left[Z_u - Z_\ell \right] dx \tag{37}
$$

$$
K_{I} \leftarrow \frac{1}{c^{4} \tau (\tau^{2} + \varepsilon^{2})} \int_{0}^{c} \frac{1}{3} \left[(Z_{u} - \bar{z})^{3} - (Z_{\ell} - \bar{z})^{3} \right] dx \tag{38}
$$

Evaluating these expressions produces nearly the same K_A and K_I values for most common airfoils:

$$
K_A \simeq 0.60 \tag{39}
$$

$$
K_I \simeq 0.036 \tag{40}
$$

Therefore, the very simple approximate equations (35) and (36), with K_A and K_I assumed fixed, are surprisingly accurate. Hence, they are clearly preferred for preliminary design work over the exact but cumbersome equations (30), (31), (32).

Tip deflection of solid-airfoil wing

The root chord of a simple-taper wing is given by equation (17) at $y=0$:

$$
c_o = \frac{S_{\text{wing}}}{b} \frac{2}{1+\lambda} = c_{\text{avg}} \frac{2}{1+\lambda} \tag{41}
$$

where $c_{\text{avg}} = S_{\text{wing}}/b$ is the average chord. Inserting this c_o into the general I expression (36) gives the root inertia

$$
I_o \simeq K_I c_o^4 \tau (\tau^2 + \varepsilon^2) = K_I c_{\text{avg}}^4 \frac{16}{(1+\lambda)^4} \tau (\tau^2 + \varepsilon^2)
$$
 (42)

which can then be inserted into (29) to give an alternative tip deflection expression in terms of the average chord and the taper ratio.

$$
\delta \simeq \frac{NW_{\text{cent}}}{E} \left(\frac{1}{K_I c_{\text{avg}}^4} \frac{(1+\lambda)^4}{16} \frac{1}{\tau(\tau^2 + \varepsilon^2)} \right) \frac{b^3}{96} \frac{1+2\lambda}{1+\lambda} \tag{43}
$$

$$
\frac{\delta}{b} \simeq 0.018 \frac{NW_{\text{cent}}}{E\tau(\tau^2 + \varepsilon^2)} (1+\lambda)^3 (1+2\lambda) \frac{b^2}{c_{\text{avg}}^4} \tag{44}
$$