A Matlab Cheat-sheet (MIT 18.06, Fall 2007)

Basics:
save 'file.mat' save variables to file.mat
load 'file.mat' load variables from file.mat
diary on record input/output to file diary
diary off stop recording
whos list all variables currenly defined
clear
help command
delete/undefine all variables
quick help on a given command
extensive help on a given command

Defining/changing variables:

$\mathrm{x}=3 \quad$ define variable x to be 3
$\mathrm{x}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] \quad$ set x to the 1×3 row-vector $(1,2,3)$
$\mathrm{x}=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right] ;$ same, but don't echo x to output
$\mathrm{x}=[1 ; 2 ; 3]$ set x to the 3×1 column-vector $(1,2,3)$
$A=\left[\begin{array}{lllllllllllllll}1 & 2 & 3 & 4 ; 5 & 6 & 7 & 9 & 10 & 11\end{array}\right] ;$
set A to the 3×4 matrix with rows $1,2,3,4$ etc.
$\mathrm{x}(2)=7 \quad$ change x from $(1,2,3)$ to $(1,7,3)$
$\mathrm{A}(2,1)=0 \quad$ change $A_{2,1}$ from 5 to 0

Arithmetic and functions of numbers:

$3 * 4,7+4,2-68 / 3$ multiply, add, subtract, and divide numbers
$3^{\wedge} 7,3^{\wedge}(8+2 i) \quad$ compute 3 to the 7 th power, or 3 to the $8+2 i$ power
sqrt(-5) compute the square root of -5
$\exp (12) \quad$ compute e^{12}
$\log (3), \log 10(100) \quad$ compute the natural $\log (\ln)$ and base-10 $\log \left(\log _{10}\right)$ abs (-5) compute the absolute value $\mathrm{l}-5 \mathrm{I}$
$\sin (5 * \mathrm{pi} / 3) \quad$ compute the sine of $5 \pi / 3$
besselj $(2,6)$ compute the Bessel function $J_{2}(6)$

Arithmetic and functions of vectors and matrices:

x * 3 multiply every element of x by 3
$\mathrm{x}+2$ add 2 to every element of x
$\mathrm{x}+\mathrm{y}$ element-wise addition of two vectors x and y
A * y product of a matrix A and a vector y
A * B product of two matrices A and B
x * y not allowed if x and y are two column vectors!
$\mathrm{x} .{ }^{*}$ y element-wise product of vectors x and y
A^3 the square matrix A to the 3rd power
$\mathrm{x}^{\wedge} 3$ not allowed if x is not a square matrix!
$\mathrm{x} .{ }^{\wedge} 3$ every element of x is taken to the 3rd power
$\cos (\mathrm{x})$ the cosine of every element of x
abs(A) the absolute value of every element of A
$\exp (A) e$ to the power of every element of A
sqrt (A) the square root of every element of A
$\operatorname{expm}(\mathrm{A}) \quad$ the matrix exponential e^{A}
$\operatorname{sqrtm}(\mathrm{A}) \quad$ the matrix whose square is A

Constructing a few simple matrices:

rand $(12,4) \quad$ a 12×4 matrix with uniform random numbers in $[0,1)$
randn $(12,4) \quad$ a 12×4 matrix with Gaussian random (center 0 , variance 1)
zeros $(12,4) \quad$ a 12×4 matrix of zeros
ones (12,4) a 12×4 matrix of ones
eye(5) a 5×5 identity matrix I ("eye")
eye $(12,4) \quad$ a 12×4 matrix whose first 4 rows are the 4×4 identity
linspace(1.2,4.7,100)
row vector of 100 equally-spaced numbers from 1.2 to 4.7
$7: 15$ row vector of $7,8,9, \ldots, 14,15$
$\operatorname{diag}(\mathrm{x}) \quad$ matrix whose diagonal is the entries of $x($ and other elements $=0)$

Portions of matrices and vectors:

$\mathrm{x}(2: 12) \quad$ the 2 nd to the 12th elements of x
$\mathrm{x}(2:$ end $) \quad$ the 2 nd to the last elements of x
$\mathrm{x}(1: 3:$ end $) \quad$ every third element of x, from 1 st to the last
$\mathrm{x}(:) \quad$ all the elements of x
A(5,:)
A $(5,1: 3)$
A (: , 2)
diag(A)
the row vector of every element in the 5th row of A
the row vector of the first 3 elements in the 5th row of A
the column vector of every element in the 2 nd column of A
column vector of the diagonal elements of A

Solving linear equations:

A $\backslash \mathrm{b}$
for A a matrix and b a column vector, the solution x to $A x=b$ $\operatorname{inv}(\mathrm{A}) \quad$ the inverse matrix A^{-1}
$[\mathrm{L}, \mathrm{U}, \mathrm{P}]=\operatorname{lu}(\mathrm{A}) \quad$ the LU factorization $P A=L U$
eig(A) the eigenvalues of A
$[\mathrm{V}, \mathrm{D}]=\operatorname{eig}(\mathrm{A}) \quad$ the columns of V are the eigenvectors of A, and the diagonals diag (D) are the eigenvalues of A

Plotting:

plot (y) \quad plot y as the y axis, with $1,2,3, \ldots$ as the x axis plot (x, y) plot y versus x (must have same length)
plot(x,A) plot columns of A versus x (must have same \# rows)
$\log \log (x, y) \quad$ plot y versus x on a \log-log scale
$\operatorname{semilogx}(x, y) \quad$ plot y versus x with x on a log scale
semilogy $(\mathrm{x}, \mathrm{y}) \quad$ plot y versus x with y on a log scale
fplot(@(x) ...expression..., [a,b])
plot some expression in x from $x=a$ to $x=b$
axis equal force the x and y axes of the current plot to be scaled equally
title('A Title') add a title A Title at the top of the plot
xlabel('blah') label the x axis as blah
ylabel('blah') label the y axis as blah
legend('foo', 'bar') label 2 curves in the plot foo and bar
grid include a grid in the plot
figure open up a new figure window

Transposes and dot products:

```
x.', A.
x', A'
x''* y
x' * y
```

the complex-conjugate of the transposes of x and A
the dot (inner) product of two column vectors x and y

