
18.06 Professor Edelman Quiz 2 April 6, 2018

Grading

1

2

3

4

Total:

Your PRINTED name is:

Please circle your recitation:

(1) T 10 26-328 D. Kubrak

(2) T 11 26-328 D. Kubrak

(3) T 12 4-159 P.B. Alvarez

(7) T 12 4-153 E. Belmont

(4) T 1 4-149 P.B. Alvarez

(5) T 2 4-149 E. Belmont

(6) T 3 4-261 J. Wang

Note: We are not planning to use gradescope for this exam.



Your Initials:

1 (25 pts.) Find the QR decomposition (Q is 4× 2, R is 2× 2 upper triangular) of

A =


1 a

1 b

1 c

1 d

 in terms of µ = a+b+c+d
4

,

the mean of the second column and the elements of A.

Lets call the 2 column vectors v1 and v2. We apply Gram-Schmidt. To start we normalize

the first vector v1 to get

q1 =
1

2


1

1

1

1


For the next step we need to first take away the projection of v2 onto the space spanned by

q1 to get

q′2 = v2 − (q1 · v2)q1 =


a

b

c

d

−
a+ b+ c+ d

4


1

1

1

1

 =


a− µ

b− µ

c− µ

d− µ


To get the second orthonormal element we need to normalize this to get

q2 =
1

x


a− µ

b− µ

c− µ

d− µ


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where x =
√
a2 + b2 + c2 + d2 − 4µ2. Thus

Q =


1
2

a−µ
x

1
2

b−µ
x

1
2

c−µ
x

1
2

d−µ
x


To find R we can either track the previous operations or compute R = QTA to get

R =

2 2µ

0 x


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Your Initials:

2 (20 pts.) An experimenter has data in the form of pairs (xi, yi) for i = 1, . . . , n where

the xi are distinct and positive. Given the matrix

A =


sin(x1) ex1

√
x1

sin(x2) ex2
√
x2

...
...

...

sin(xn) exn
√
xn

 ,

suggest a method for computing the best fit function of the form f(x) = C sin(x)+Dex+E
√
x

through the n points. In what precise sense is your answer a best fit?

Solution: Let v =


C

D

E

 and y =


y1

y2

. . .

yn

. The vector Av will then be nothing but


f(x1)

f(x2)

. . .

f(xn)


where f(x) = C sin(x) +Dex + E

√
x. So to find f such that f(xi) = yi for all i we need to

solve Av = y.

If there is no such solution (which is very possible since n is arbitrary and probably greater

than 3) we can do the method of least squares, namely try to find v such that ||Av −

y|| is minimal possible. Assuming columns of A are linearly independent, this is done by

solving the equation ATAv = ATy, or in other words v = (ATA)−1ATy (indeed, then Av =

A(ATA)−1ATy will be the projection of y on the column space of A and so for this v the

distance ||Av − y|| will be minimal). Also to minimize ||Av − y|| is the same as to minimize

||Av− y||2 and ||Av− y||2 =
∑n

i=1(C sin(xi) +Dexi +E
√
xi− yi)2, so such f(x) = C sin(x) +

Dex + E
√
x (where v =


C

D

E

 is (ATA)−1ATy) will be the best fit in a sense that the sum

of squares of differences
∑n

i=1(C sin(xi) +Dexi + E
√
xi − yi)2 will be minimal.
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Your Initials:

3 (20 pts.)

A form of the singular value decomposition of a rank r, m × n matrix A is UΣV T where

Σ is square r by r with positive diagonal entries, U is m × r and V is n × r. Write down

projection matrices for the four fundamental subspaces of A, in terms of one of U , Σ, or V

in each expression. Be sure to clearly identify which fundamental subspace of A goes with

which projection matrix.

The four fundamental subspaces are C(A), C(AT ), N(A), and N(AT ).

In problem set 4 we showed that C(A) = C(U) in this case. Since U has orthonormal

columns, the projection matrix to C(U) is UUT .

Applying transpose to the decomposition A = UΣV T gives AT = (UΣV T ) = V ΣTUT =

V ΣUT . By the same reasoning as for C(A), we have C(AT ) = C(V ), and the projection

matrix to C(V ) is V V T .

If P is a projection matrix to a subspace V , the projection matrix to V ⊥ is I − P . By the

main facts about the fundamental subspaces, C(A)⊥ = N(AT ) and C(AT )⊥ = N(A), so the

projection matrix to N(AT ) is I −UUT and the projection matrix to N(A) is I − V V T . To

summarize:

Subspace Projection matrix

C(A) UUT

C(AT ) V V T

N(AT ) I − UUT

N(A) I − V V T

Warning: A lot of people tried solving this using the projection formula A(ATA)−1AT

(for projection to C(A)) directly. This formula assumes that the columns of A are linearly

independent! In particular, the middle bit ATA won’t be invertible otherwise. We don’t run

into this problem when applying this to U , because U has orthonormal columns.
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Your Initials:

4 (35 pts.)

Let d(A) be a scalar function of 3× 2 matrices A with the following properties:

α) If you interchange the two columns of A, d(A) flips sign.

β) d(A) is linear in each of the columns of A.

γ) d(A) is non-zero for at least one 3× 2 A.

a. (5 pts.) What is d(2A) in terms of d(A)?

If the columns of A are denoted A1 and A2, then

d(2A) = d
([

2A1 2A2

])
= 2d

([
A1 2A2

])
= 4d

([
A1 A2

])
= 4d(A),

by the linearity in columns.

b. (10 pts.) Give an example d(A) that satisfies the three requirements of this question.

Let the matrix A be denoted

A =


a b

c d

e f

 .
Then, one possible function is d(A) = ad− bc, the determinant of the top 2× 2 block. The

three conditions hold essentially because they hold for 2 × 2 matrices. We can also check

explicitly that the three conditions hold:
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α) d



a b

c d

e f


 = ad− bc,



b a

d c

f e


 = bc− ad = −(ad− bc).

β)

d



a1 + λa2 b

c1 + λc2 d

e1 + λe2 f


 = (a1 + λa2)d− b(c1 + λc2)

= (a1d− bc1) + λ(a2d− bc2)

= d



a1 b

c1 d

e1 f


+ λd



a2 b

c2 d

e2 f


 .

Similarly, linearity in the second column holds.

γ) For example,

d




1 0

0 1

0 0


 = 1.
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Your Initials:

c. (10 pts.) We recall that the determinant of square matrices is linear in each column and

each row of the square matrix. Can property β be extended to rows and columns of 3 × 2

matrices A to create a d(A) with the three requirements of this question? If yes, give an

example, if not, why not?

Linearity in columns gave us that d(2A) = 4d(A) for all matrices A. By similar reasoning,

linearity in rows would give us d(2A) = 8d(A), since there are three rows. But then, for

every matrix A, we would have 8d(A) = 4d(A), which implies that d(A) = 0 for all matrices.

But this contradicts condition γ. Therefore, property β cannot be extended to the rows of

A.
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d. (10 pts.) If we discard property γ to allow the “zero” function, the set of all functions

d(A) satisfying α and β form a three dimensional vector space. Describe explicitly this vector

space of functions in terms of the elements of A.

Remark: There are a number of thoughts that would guide students to a general under-

standing of this problem. One thought is that augmenting the matrix with a column of

three variables c1, c2, c3 gives rise to a 3x3 determinant which one can expand in cofactors

(which gives the entire three dimensional space!). Essentially the same thought is behind

the cross product in three dimensions. One can more simply delete any of the three rows

and notice that we would have all the requirements for the 2x2 determinant.

If we let our matrix A be denoted as

A =


a b

c d

e f

 ,
then the three dimensional vector space of functions d(A) satisfying the conditions α and β

have a basis 
d1(A) = ad− bc

d2(A) = af − be

d3(A) = cf − de.

Each of these satisfies conditions α and β by similar reasoning as in part b. Furthermore,

they are linearly independent.

One way to prove explicitly that these three functions span the whole vector space of possible
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functions d(A) is to use linearity in the columns to split apart d(A) as

d



a b

c d

e f


 = d



a b

0 d

0 f


+ d




0 b

c d

0 f


+ d




0 b

0 d

e f




= d



a b

0 0

0 0


+ d



a 0

0 d

0 0


+ d



a 0

0 0

0 f


+ . . .+ d




0 0

0 0

e f


 ,

where in the last line, we have nine terms corresponding to the nine possible ways to choose

one entry in the first column to be nonzero and one entry in the second column to be nonzero.

For any entry that has two nonzero elements in the same row, we can conclude that d of

that matrix must be zero. For example,

d



a b

0 0

0 0


 = ab× d




1 1

0 0

0 0


 = −ab× d




1 1

0 0

0 0


 ,

by property α. But this implies that

d



a b

0 0

0 0


 = 0.

By the row swap property, we also have that

d




1 0

0 1

0 0


 = −d




0 1

1 0

0 0


 ,

and similarly for any matrix where there are two ones in different columns and different

rows.

This implies that

d



a b

c d

e f


 = (ad−bc)×d




1 0

0 1

0 0


+(af−be)×d




1 0

0 0

0 1


+(cf−de)×d




0 0

1 0

0 1


 .
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Choosing the three determinants on the right hand side to be arbitrary real numbers ex-

actly tells us that the determinant function d(A) must be a linear combination of our three

functions d1(A), d2(A), and d3(A).
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