18.06 Professor Edelman Quiz 3 May 4, 2018

Your PRINTED name is: \qquad

Please circle your recitation:

(1)	T 10	$26-328$	D. Kubrak	Grading
(2)	T 11	$26-328$	D. Kubrak	
(3)	T 12	$4-159$	P.B. Alvarez	$\mathbf{1}$
(7)	T 12	$4-153$	E. Belmont	$\mathbf{2}$
(4)	T 1	$4-149$	P.B. Alvarez	$\mathbf{3}$
(5)	T 2	$4-149$	E. Belmont	Total:

Your Initials: \qquad

1 (30 pts.) Consider the matrices,

$$
A(t)=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+t\left(\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right)
$$

a. (5 pts) Is it possible to find a vector v and a scalar λ that does not depend on t that serves as an eigenvector/eigenvalue for $A(t)$ for all t ?

SOLUTION:

$A(t)$ has eigenvalue $\lambda_{1}=1$ with eigenvector $v_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ for all t. One way to see this is that v_{1} is in the null space of $t\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$ (so $A(t) v_{1}$ does not depend on t), and it also happens to be an eigenvector of $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Alternatively, you could compute and factor the characteristic polynomial as we do in b.
b. (5 pts.) Find both an eigenvector and an eigenvalue of $A(t)$ that does depend on t.

SOLUTION:

The characteristic polynomial of $A(t)=\left[\begin{array}{cc}t & 1-t \\ 1 & 0\end{array}\right]$ is

$$
\begin{aligned}
\operatorname{det}(A(t)-\lambda I) & =(t-\lambda)(-\lambda)-(1-t) \\
& =\lambda^{2}-\lambda t+(t-1) \\
& =(\lambda-1)(\lambda-(t-1))
\end{aligned}
$$

(To help you factor this, you could use the fact from (a) that 1 is a root of the characteristic polynomial.) So $\lambda_{2}=t-1$, and

$$
A(t)-\lambda_{2} I=A(t)-(t-1) I=\left[\begin{array}{ll}
1 & 1-t \\
1 & 1-t
\end{array}\right]
$$

has null space spanned by $v_{2}=\left[\begin{array}{c}t-1 \\ 1\end{array}\right]$, so that is the corresponding eigenvector.
c. (5 pts.) For which t, if any, is the matrix $A(t)$ not diagonalizable. Explain briefly.

SOLUTION:

If $\lambda_{1} \neq \lambda_{2}$, then $A(t)$ is diagonalizable. So the only case in which nondiagonalizability is possible is when $1=t-1$, i.e., $t=2$. In this case, the characteristic polynomial is $(\lambda-1)^{2}$, and $A(2)$ is diagonalizable if and only if $\operatorname{dim} N(A(2)-I)=2$. But $A(2)-I=\left[\begin{array}{cc}1 & -1 \\ 1 & -1\end{array}\right]$ which has rank 1 and null space of dimension 1 . So it is not diagonalizable at $t=2$.

Your Initials: \qquad
d. (5 pts.) Consider the sequence $x_{0}=0, x_{1}=1, x_{k+2}=t * x_{k+1}+(1-t) * x_{k}$. You can assume $0<t<2$. Why does x_{k} converge to a finite number as $k \rightarrow \infty$? Explain briefly.

SOLUTION: Briefly, this happens because $A(t)$ has eigenvalues 1 and $t-1$ and since $0<t<2$ we have $|t-1|<1$.

In more detail, the recursion on x_{k} 's can be rewritten as

$$
\left[\begin{array}{c}
x_{k+2} \\
x_{k+1}
\end{array}\right]=\left[\begin{array}{cc}
t & 1-t \\
1 & 0
\end{array}\right]\left[\begin{array}{c}
x_{k+1} \\
x_{k}
\end{array}\right]
$$

so we encounter our matrix $A(t)$ and get a formula

$$
\left[\begin{array}{c}
x_{k+1} \\
x_{k}
\end{array}\right]=A(t)\left[\begin{array}{c}
x_{k} \\
x_{k-1}
\end{array}\right]=A(t)^{2}\left[\begin{array}{l}
x_{k-1} \\
x_{k-2}
\end{array}\right]=\ldots=A(t)^{k}\left[\begin{array}{l}
x_{1} \\
x_{0}
\end{array}\right]=A(t)^{k}\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

Recall that $v_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $v_{2}=\left[\begin{array}{c}t-1 \\ 1\end{array}\right]$ are eigenvectors of $A(t)$ with eigenvalues 1 and $t-1$. By part c if $t \neq 2$ the matrix $A(t)$ is diagonalizable and v_{1}, v_{2} form an eigenbasis. So we can express our vector $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ as $c_{1}(t) v_{1}+c_{2}(t) v_{2}$ for some scalars $c_{1}, c_{2} \in \mathbb{R}$ that depend on t. Now we have
$A(t)^{k}\left[\begin{array}{l}1 \\ 0\end{array}\right]=A(t)^{k}\left(c_{1} v_{1}+c_{2} v_{2}\right)=c_{1}\left(A(t)^{k} v_{1}\right)+c_{2}\left(A(t)^{k} v_{2}\right)=c_{1} v_{1}+c_{2}(t-1)^{k} v_{2}$
Since $|t-1|<1$ we have $\lim _{k \rightarrow \infty} c_{1} v_{1}+c_{2}(t-1)^{k} v_{2}=c_{1} v_{1}$, in particular the limit is a finite vector. Also we get that

$$
\lim _{k \rightarrow \infty}\left[\begin{array}{c}
x_{k+1} \\
x_{k}
\end{array}\right]=c_{1} v_{1}=\left[\begin{array}{l}
c_{1} \\
c_{1}
\end{array}\right]
$$

Remark: Note that $A(t)$ is not necessarily Markov since $1-t$ can be negative (if $t>1$). To use that was a pretty common mistake on the exam.

Your Initials: \qquad
e. (10 pts.) (Recommended to do this after completing all other work on the exam.) Calculate the limit of x_{k} from part d as k goes to infinity. (Hint: Consider the vector $\binom{x_{k+1}}{x_{k}}$.) (Check: If $t=1 / 2$ the limit is $2 / 3$.)

SOLUTION: By what we proved in part d)

$$
\lim _{k \rightarrow \infty}\left[\begin{array}{c}
x_{k+1} \\
x_{k}
\end{array}\right]=c_{1} v_{1}=\left[\begin{array}{l}
c_{1} \\
c_{1}
\end{array}\right]
$$

where $c_{1} v_{1}+c_{2} v_{2}$ is the decomposition of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ in the eigenbasis v_{1}, v_{2}. So to find the limit it is enough to find such decomposition. For this note that

$$
v_{2}-v_{1}=\left[\begin{array}{c}
t-1 \\
1
\end{array}\right]-\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
t-2 \\
0
\end{array}\right]=(t-2)\left[\begin{array}{l}
1 \\
0
\end{array}\right], \text { so }\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\frac{-1}{t-2} v_{1}+\frac{1}{t-2} v_{2}
$$

We get that $c_{1}=\frac{1}{2-t}$ and so $\lim _{k \rightarrow \infty} x_{k}=\frac{1}{2-t}$. In particular for $t=1 / 2$ we get $2 / 3$.
Remark: Another way to do this problem was to diagonilize matrix $A(t)$, since v_{1}, v_{2} are eigenvectors with eigenvalues $1, t-1$ we have

$$
A(t)=\left[\begin{array}{cc}
\mid & \mid \\
v_{1} & v_{2} \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & t-1
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
v_{1} & v_{2} \\
\mid & \mid
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & t-1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & t-1
\end{array}\right] \frac{1}{2-t}\left[\begin{array}{cc}
1 & 1-t \\
-1 & 1
\end{array}\right]
$$

and so

$$
\begin{gathered}
A(t)^{k}=\left[\begin{array}{cc}
\mid & \mid \\
v_{1} & v_{2} \\
\mid & \mid
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & (t-1)^{k}
\end{array}\right]\left[\begin{array}{cc}
\mid & \mid \\
v_{1} & v_{2} \\
\mid & \mid
\end{array}\right]^{-1}=\left[\begin{array}{cc}
1 & t-1 \\
1 & 1
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & (t-1)^{k}
\end{array}\right] \frac{1}{2-t}\left[\begin{array}{cc}
1 & 1-t \\
-1 & 1
\end{array}\right]= \\
=\frac{1}{2-t}\left[\begin{array}{cc}
1 & (t-1)^{k+1} \\
1 & (t-1)^{k}
\end{array}\right]\left[\begin{array}{cc}
1 & 1-t \\
-1 & 1
\end{array}\right]
\end{gathered}
$$

When k goes to infinity $(t-1)^{k}$ dies we get

$$
\lim _{k \rightarrow \infty} A(t)^{k}=\frac{1}{2-t}\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 1-t \\
-1 & 1
\end{array}\right]=\frac{1}{2-t}\left[\begin{array}{ll}
1 & 1-t \\
1 & 1-t
\end{array}\right]
$$

Finally

$$
\left[\begin{array}{c}
\lim _{k \rightarrow \infty} x_{k+1} \\
\lim _{k \rightarrow \infty} x_{k}
\end{array}\right]=\lim _{k \rightarrow \infty} A(t)^{k}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 /(2-t) \\
1 /(2-t)
\end{array}\right]
$$

So we get

$$
\lim _{k \rightarrow \infty} x_{k}=\frac{1}{2-t}
$$

Your Initials: \qquad

2 (30 pts.) In all cases find a two by two matrix which has the given eigenvalues and the given singular values or explain why it is impossible. Do not use $A^{T} A$ or $A A^{T}$ in any of your explanations.
a. $(5 \mathrm{pts}) \lambda=0,1, \sigma=1,1$
b. (5 pts) $\lambda=0,1 \sigma=0, \sqrt{2}$
c. $(5 \mathrm{pts}) \lambda=0,0 \sigma=0,2018$
d. (5 pts) $\lambda=i,-i \sigma=1,1$
e. (5 pts) $\lambda=4,4 \sigma=3,5$
f. (5 pts.) $\lambda=-1,1 \sigma=\sqrt{(3 \pm \sqrt{5}) / 2}$ (You can trust that $\sigma_{1} \sigma_{2}=1$ and $\left.\sigma_{1}^{2}+\sigma_{2}^{2}=3\right)$

SOLUTION:

Throughout these solutions, we will use the following facts. If λ_{1} and λ_{2} are the eigenvalues and σ_{1} and σ_{2} are the singular values of the 2×2 matrix $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then

1. $\sigma_{1} \cdot \sigma_{2}=|\operatorname{det}(A)|=\left|\lambda_{1} \cdot \lambda_{2}\right|$.
2. $\sigma_{1}^{2}+\sigma_{2}^{2}=a^{2}+b^{2}+c^{2}+d^{2}$.
3. An upper triangular matrix $\left[\begin{array}{ll}a & b \\ 0 & d\end{array}\right]$ has eigenvalues a and d.

Now, we have the following.
(a) Since one of the eigenvalues is 0 , the matrix A cannot have full rank. But both singular values are nonzero, so the matrix has rank 2 . This is a contradiction, so A does not exist.
(b) The matrix

$$
A=\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]
$$

satisfies these conditions. It is upper triangular, so by fact 3 , the eigenvalues are 0 and 1. The singular values have to satisfy $\sigma_{1} \cdot \sigma_{2}=0$ and $\sigma_{1}^{2}+\sigma_{2}^{2}=(-1)^{2}+1^{2}=2$ by facts 1 and 2. The solution to this pair of equations is unique (up to reordering σ_{1} and σ_{2}), and so the singular values are $\sqrt{2}$ and 0 .
(c) We claim that the matrix

$$
A=\left[\begin{array}{cc}
0 & 2018 \\
0 & 0
\end{array}\right]
$$

satisfies these conditions. It is upper triangular, so by fact 3 , the eigenvalues are 0 and 0 . By facts 1 and 2, we have that $\sigma_{1} \cdot \sigma_{2}=0$ and $\sigma_{1}^{2}+\sigma_{2}^{2}=2018^{2}$, and so the singular values are 0 and 2018.
(d) Let

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

This is a rotation counterclockwise by 90 degrees. We can compute its eigenvalues by calculating $\operatorname{det}(A-\lambda I)=\lambda^{2}+1=0$ to get $\lambda= \pm i$. We can see geometrically that a rotation has singular values 1 and 1 since it rotates a unit circle in \mathbb{R}^{2} onto the unit circle again. Alternatively, we can solve for $\sigma_{1} \cdot \sigma_{2}=1$ and $\sigma_{1}^{2}+\sigma_{2}^{2}=(-1)^{2}+1^{2}=2$ to get that the singular values are 1 and 1 .
(e) Since $\lambda_{1} \cdot \lambda_{2}=16$ and $\sigma_{1} \cdot \sigma_{2}=15 \neq|16|$, by fact 1 , a matrix A with these eigenvalues and singular values does not exist.
(f) Let

$$
A=\left[\begin{array}{cc}
-1 & 1 \\
0 & 1
\end{array}\right]
$$

The matrix is upper triangular and so by fact 3 has eigenvalues -1 and 1 . By facts 1 and 2 , the singular values satisfy $\sigma_{1} \cdot \sigma_{2}=1$ and $\sigma_{1}^{2}+\sigma_{2}^{2}=(-1)^{2}+1^{2}+1^{2}=3$, and so must be the $\sigma_{i}=\sqrt{(3 \pm \sqrt{5}) / 2}$.

Your Initials: \qquad
3 (40 pts.) Are the following matrices necessarily positive definite? Explain why or why not?
a. (5 pts) $A=Q \Lambda Q^{T}$ where Q is some 4 x 4 orthogonal matrix and Λ is diagonal with $(1,2,3,4)$ on the diagonal.
b. (10 pts) $A=Q_{1} \Lambda Q_{1}^{T}+Q_{2} \Lambda Q_{2}^{T}$, where Q_{1} and Q_{2} are some 4 x 4 orthogonal matrices and Λ is diagonal with $(1,2,3,4)$ on the diagonal.
c. (5 pts) $A=X \Lambda X^{T}$ for some matrix X and Λ is as above? (Hint: Be careful.)
d. (5 pts.) P the projection matrix onto ($1,2,3,4$).
e. (15 pts.) A is the n by n tridiagonal matrix with 2 for each diagonal entry, and 1 for each superdiagonal and subdiagonal entry. $n=1,2,3, \ldots$. (Hint: Probably the easiest argument involves computing the determinant of $T(n)$ for $n=1,2,3, \ldots$.) SOLUTION:
(a) First this matrix is clearly symmetric as $A^{T}=A$. Since Q is orthogonal $Q^{T}=Q^{-1}$ and so this gives a diagonalization, so A has eigenvalues $1,2,3,4>0$ and is thus positive definite.
(b) From part a) we know that each of $A_{i}=Q_{i} \Lambda Q_{i}^{T}$ are positive definite, so for $x \neq 0$ $x^{T} A_{i} x>0$. So we get $x^{T} A x=x^{T} A_{1} x+x^{T} A_{2} x>0$ and it follows that A is positive definite as A is clearly symmetric as it is the sum of symmetric matrices.
(c) We have $A^{T}=A$, so A is symmetric. Also $v^{T} A v=\left(X^{T} v\right)^{T} \Lambda\left(X^{T} v\right) \geq 0$ as Λ positive definite and the inequality is strict as long as $X^{T} v \neq 0$. So we get that A is not positive definite as long as X^{T} is not full column rank.
(d) This is a projection matrix to a 1 dimensional space, so P has rank 1 . It thus has a non-trivial nullspace and so has a 0 eigenvalue. So not all eigenvalues are positive and thus is not positive definite.
(e)

$$
A_{n}=\left(\begin{array}{ccccccc}
2 & 1 & 0 & 0 & \cdots & 0 & 0 \\
1 & 2 & 1 & 0 & \cdots & 0 & 0 \\
0 & 1 & 2 & 1 & \cdots & 0 & 0 \\
0 & 0 & 1 & 2 & \cdots & 0 & 0 \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & 0 & \cdots & 2 & 1 \\
0 & 0 & 0 & 0 & \cdots & 1 & 2
\end{array}\right)
$$

Lets denote by $T(n)$ the determinant of the nxn matrix A_{n}. By expanding the determinant along the first column, we get the formula

$$
T(n)=2 T(n-1)-\operatorname{det}\left(\left(\begin{array}{ccccc}
1 & 0 & 0 & \cdots & 0 \\
1 & 2 & 1 & \cdots & 0 \\
0 & 1 & 2 & \cdots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \cdots & 2
\end{array}\right)\right)=2 T(n-1)-T(n-2)
$$

Were we expand the second determinant along the first row. Also $T(1)=2$ and $T(2)=3$, so we can check $T(n)=n+1>0$. So we have A_{n} is symmetric and all top left corner determinants are positive so it is positive definite.

Your Initials:

Your Initials:

Extra Page. Please write problem number and letter if needed.

Your Initials:

Extra Page. Please write problem number and letter if needed.

Your Initials:

Extra Page. Please write problem number and letter if needed.

