
Python Library Reference
Release 2.1.1

Guido van Rossum
Fred L. Drake, Jr., editor

July 20, 2001

PythonLabs
E-mail: python-docs@python.org

Copyright c© 2001 Python Software Foundation. All rights reserved.

Copyright c© 2000 BeOpen.com. All rights reserved.

Copyright c© 1995-2000 Corporation for National Research Initiatives. All rights reserved.

Copyright c© 1991-1995 Stichting Mathematisch Centrum. All rights reserved.

See the end of this document for complete license and permissions information.

Abstract

Python is an extensible, interpreted, object-oriented programming language. It supports a wide range of applications,
from simple text processing scripts to interactive WWW browsers.

While thePython Reference Manualdescribes the exact syntax and semantics of the language, it does not describe
the standard library that is distributed with the language, and which greatly enhances its immediate usability. This
library contains built-in modules (written in C) that provide access to system functionality such as file I/O that would
otherwise be inaccessible to Python programmers, as well as modules written in Python that provide standardized
solutions for many problems that occur in everyday programming. Some of these modules are explicitly designed to
encourage and enhance the portability of Python programs.

This library reference manual documents Python’s standard library, as well as many optional library modules (which
may or may not be available, depending on whether the underlying platform supports them and on the configuration
choices made at compile time). It also documents the standard types of the language and its built-in functions and
exceptions, many of which are not or incompletely documented in the Reference Manual.

This manual assumes basic knowledge about the Python language. For an informal introduction to Python, see the
Python Tutorial; the Python Reference Manualremains the highest authority on syntactic and semantic questions.
Finally, the manual entitledExtending and Embedding the Python Interpreterdescribes how to add new extensions to
Python and how to embed it in other applications.

CONTENTS

1 Introduction 1

2 Built-in Types, Exceptions and Functions 3
2.1 Built-in Types . 3
2.2 Built-in Exceptions. 16
2.3 Built-in Functions . 20

3 Python Runtime Services 29
3.1 sys — System-specific parameters and functions. 29
3.2 gc — Garbage Collector interface. 34
3.3 weakref — Weak references. 35
3.4 fpectl — Floating point exception control. 39
3.5 atexit — Exit handlers . 40
3.6 types — Names for all built-in types . 41
3.7 UserDict — Class wrapper for dictionary objects. 43
3.8 UserList — Class wrapper for list objects. 43
3.9 UserString — Class wrapper for string objects. 44
3.10 operator — Standard operators as functions.. 44
3.11 inspect — Inspect live objects. 47
3.12 traceback — Print or retrieve a stack traceback. 52
3.13 linecache — Random access to text lines. 53
3.14 pickle — Python object serialization. 54
3.15 cPickle — Alternate implementation ofpickle . 59
3.16 copy reg — Registerpickle support functions . 59
3.17 shelve — Python object persistence. 59
3.18 copy — Shallow and deep copy operations. 60
3.19 marshal — Alternate Python object serialization. 61
3.20 warnings — Warning control . 62
3.21 imp — Access theimport internals . 64
3.22 code — Interpreter base classes. 67
3.23 codeop — Compile Python code. 69
3.24 pprint — Data pretty printer . 69
3.25 repr — Alternaterepr() implementation . 71
3.26 new — Creation of runtime internal objects. 73
3.27 site — Site-specific configuration hook. 73
3.28 user — User-specific configuration hook. 74
3.29 builtin — Built-in functions . 75
3.30 main — Top-level script environment. 75

i

4 String Services 77
4.1 string — Common string operations. 77
4.2 re — Regular expression operations. 80
4.3 struct — Interpret strings as packed binary data. 88
4.4 difflib — Helpers for computing deltas. 90
4.5 fpformat — Floating point conversions. 94
4.6 StringIO — Read and write strings as files. 94
4.7 cStringIO — Faster version ofStringIO . 95
4.8 codecs — Codec registry and base classes. 95
4.9 unicodedata — Unicode Database. 100

5 Miscellaneous Services 101
5.1 doctest — Test docstrings represent reality. 101
5.2 unittest — Unit testing framework . 108
5.3 math — Mathematical functions. 117
5.4 cmath — Mathematical functions for complex numbers. 119
5.5 random — Generate pseudo-random numbers. 120
5.6 whrandom — Pseudo-random number generator. 123
5.7 bisect — Array bisection algorithm . 124
5.8 array — Efficient arrays of numeric values. 125
5.9 ConfigParser — Configuration file parser . 127
5.10 fileinput — Iterate over lines from multiple input streams. 129
5.11 xreadlines — Efficient iteration over a file. 131
5.12 calendar — General calendar-related functions. 131
5.13 cmd — Support for line-oriented command interpreters. 132
5.14 shlex — Simple lexical analysis. 134

6 Generic Operating System Services 137
6.1 os — Miscellaneous OS interfaces. 137
6.2 os.path — Common pathname manipulations. 149
6.3 dircache — Cached directory listings. 151
6.4 stat — Interpretingstat() results. 151
6.5 statcache — An optimization ofos.stat() . 153
6.6 statvfs — Constants used withos.statvfs() . 154
6.7 filecmp — File and Directory Comparisons. 154
6.8 popen2 — Subprocesses with accessible I/O streams. 156
6.9 time — Time access and conversions. 157
6.10 sched — Event scheduler . 161
6.11 mutex — Mutual exclusion support . 162
6.12 getpass — Portable password input. 163
6.13 curses — Terminal handling for character-cell displays. 163
6.14 curses.textpad — Text input widget for curses programs. 178
6.15 curses.wrapper — Terminal handler for curses programs. 179
6.16 curses.ascii — Utilities for ASCII characters. 179
6.17 curses.panel — A panel stack extension for curses.. 182
6.18 getopt — Parser for command line options. 183
6.19 tempfile — Generate temporary file names. 185
6.20 errno — Standard errno system symbols. 185
6.21 glob — UNIX style pathname pattern expansion. 191
6.22 fnmatch — UNIX filename pattern matching. 192
6.23 shutil — High-level file operations. 192
6.24 locale — Internationalization services. 194
6.25 gettext — Multilingual internationalization services. 198

ii

7 Optional Operating System Services 207
7.1 signal — Set handlers for asynchronous events. 207
7.2 socket — Low-level networking interface . 209
7.3 select — Waiting for I/O completion. 214
7.4 thread — Multiple threads of control. 215
7.5 threading — Higher-level threading interface. 217
7.6 Queue — A synchronized queue class. 223
7.7 mmap— Memory-mapped file support. 224
7.8 anydbm — Generic access to DBM-style databases. 225
7.9 dumbdbm— Portable DBM implementation. 226
7.10 dbhash — DBM-style interface to the BSD database library. 226
7.11 whichdb — Guess which DBM module created a database. 227
7.12 bsddb — Interface to Berkeley DB library. 228
7.13 zlib — Compression compatible withgzip . 229
7.14 gzip — Support forgzip files . 231
7.15 zipfile — Work with ZIP archives. 232
7.16 readline — GNU readline interface. 235
7.17 rlcompleter — Completion function for GNU readline. 236

8 Unix Specific Services 239
8.1 posix — The most common POSIX system calls. 239
8.2 pwd — The password database. 240
8.3 grp — The group database. 241
8.4 crypt — Function to check UNIX passwords . 242
8.5 dl — Call C functions in shared objects. 242
8.6 dbm— Simple “database” interface. 243
8.7 gdbm — GNU’s reinterpretation of dbm. 244
8.8 termios — POSIX style tty control. 245
8.9 TERMIOS— Constants used with thetermios module . 246
8.10 tty — Terminal control functions . 247
8.11 pty — Pseudo-terminal utilities. 247
8.12 fcntl — Thefcntl() andioctl() system calls. 247
8.13 pipes — Interface to shell pipelines. 249
8.14 posixfile — File-like objects with locking support. 250
8.15 resource — Resource usage information. 252
8.16 nis — Interface to Sun’s NIS (Yellow Pages). 254
8.17 syslog — UNIX syslog library routines. 255
8.18 commands — Utilities for running commands. 255

9 The Python Debugger 257
9.1 Debugger Commands. 258
9.2 How It Works. 260

10 The Python Profiler 263
10.1 Introduction to the profiler. 263
10.2 How Is This Profiler Different From The Old Profiler?. 263
10.3 Instant Users Manual. 264
10.4 What Is Deterministic Profiling?. 266
10.5 Reference Manual. 266
10.6 Limitations . 269
10.7 Calibration . 269
10.8 Extensions — Deriving Better Profilers. 270

11 Internet Protocols and Support 275
11.1 webbrowser — Convenient Web-browser controller. 275

iii

11.2 cgi — Common Gateway Interface support.. 277
11.3 urllib — Open arbitrary resources by URL. 283
11.4 urllib2 — extensible library for opening URLs. 287
11.5 httplib — HTTP protocol client . 293
11.6 ftplib — FTP protocol client. 295
11.7 gopherlib — Gopher protocol client. 298
11.8 poplib — POP3 protocol client. 298
11.9 imaplib — IMAP4 protocol client . 300
11.10nntplib — NNTP protocol client. 303
11.11smtplib — SMTP protocol client. 306
11.12 telnetlib — Telnet client . 309
11.13urlparse — Parse URLs into components. 312
11.14SocketServer — A framework for network servers. 313
11.15BaseHTTPServer — Basic HTTP server. 315
11.16SimpleHTTPServer — Simple HTTP request handler. 317
11.17CGIHTTPServer — CGI-capable HTTP request handler. 318
11.18Cookie — HTTP state management. 319
11.19asyncore — Asynchronous socket handler. 323

12 Internet Data Handling 327
12.1 formatter — Generic output formatting. 327
12.2 rfc822 — Parse RFC 822 mail headers. 331
12.3 mimetools — Tools for parsing MIME messages. 334
12.4 MimeWriter — Generic MIME file writer . 335
12.5 multifile — Support for files containing distinct parts. 336
12.6 binhex — Encode and decode binhex4 files. 338
12.7 uu — Encode and decode uuencode files. 339
12.8 binascii — Convert between binary andASCII . 339
12.9 xdrlib — Encode and decode XDR data. 341
12.10mailcap — Mailcap file handling.. 343
12.11mimetypes — Map filenames to MIME types . 344
12.12base64 — Encode and decode MIME base64 data. 345
12.13quopri — Encode and decode MIME quoted-printable data. 346
12.14mailbox — Read various mailbox formats. 346
12.15mhlib — Access to MH mailboxes. 347
12.16mimify — MIME processing of mail messages. 349
12.17netrc — netrc file processing. 350
12.18robotparser — Parser for robots.txt. 351

13 Structured Markup Processing Tools 353
13.1 sgmllib — Simple SGML parser. 353
13.2 htmllib — A parser for HTML documents. 355
13.3 htmlentitydefs — Definitions of HTML general entities. 357
13.4 xml.parsers.expat — Fast XML parsing using Expat. 357
13.5 xml.dom — The Document Object Model API. 363
13.6 xml.dom.minidom — Lightweight DOM implementation . 373
13.7 xml.dom.pulldom — Support for building partial DOM trees. 377
13.8 xml.sax — Support for SAX2 parsers. 377
13.9 xml.sax.handler — Base classes for SAX handlers. 379
13.10xml.sax.saxutils — SAX Utilities . 383
13.11xml.sax.xmlreader — Interface for XML parsers . 383
13.12xmllib — A parser for XML documents . 387

14 Multimedia Services 391

iv

14.1 audioop — Manipulate raw audio data. 391
14.2 imageop — Manipulate raw image data. 394
14.3 aifc — Read and write AIFF and AIFC files. 395
14.4 sunau — Read and write Sun AU files. 397
14.5 wave — Read and write WAV files. 399
14.6 chunk — Read IFF chunked data. 401
14.7 colorsys — Conversions between color systems. 402
14.8 rgbimg — Read and write “SGI RGB” files. 403
14.9 imghdr — Determine the type of an image. 404
14.10sndhdr — Determine type of sound file. 404

15 Cryptographic Services 407
15.1 md5— MD5 message digest algorithm. 407
15.2 sha — SHA message digest algorithm. 408
15.3 mpz — GNU arbitrary magnitude integers. 409
15.4 rotor — Enigma-like encryption and decryption. 410

16 Restricted Execution 413
16.1 rexec — Restricted execution framework. 414
16.2 Bastion — Restricting access to objects. 416

17 Python Language Services 419
17.1 parser — Access Python parse trees. 419
17.2 symbol — Constants used with Python parse trees. 428
17.3 token — Constants used with Python parse trees. 428
17.4 keyword — Testing for Python keywords. 429
17.5 tokenize — Tokenizer for Python source. 429
17.6 tabnanny — Detection of ambiguous indentation. 430
17.7 pyclbr — Python class browser support. 430
17.8 py compile — Compile Python source files. 431
17.9 compileall — Byte-compile Python libraries. 431
17.10dis — Disassembler for Python byte code. 432

18 SGI IRIX Specific Services 441
18.1 al — Audio functions on the SGI. 441
18.2 AL — Constants used with theal module . 443
18.3 cd — CD-ROM access on SGI systems. 443
18.4 fl — FORMS library interface for GUI applications. 447
18.5 FL — Constants used with thefl module . 451
18.6 flp — Functions for loading stored FORMS designs. 452
18.7 fm — Font Managerinterface . 452
18.8 gl — Graphics Libraryinterface . 453
18.9 DEVICE— Constants used with thegl module . 455
18.10GL— Constants used with thegl module . 455
18.11 imgfile — Support for SGI imglib files . 455
18.12 jpeg — Read and write JPEG files. 456

19 SunOS Specific Services 459
19.1 sunaudiodev — Access to Sun audio hardware. 459
19.2 SUNAUDIODEV— Constants used withsunaudiodev . 460

20 MS Windows Specific Services 461
20.1 msvcrt – Useful routines from the MS VC++ runtime. 461
20.2 winreg – Windows registry access. 462
20.3 winsound — Sound-playing interface for Windows. 467

v

A Undocumented Modules 469
A.1 Frameworks . 469
A.2 Miscellaneous useful utilities. 469
A.3 Platform specific modules. 469
A.4 Multimedia . 470
A.5 Obsolete . 470
A.6 SGI-specific Extension modules. 471

B Reporting Bugs 473

Module Index 475

Index 479

vi

CHAPTER

ONE

Introduction

The “Python library” contains several different kinds of components.

It contains data types that would normally be considered part of the “core” of a language, such as numbers and lists.
For these types, the Python language core defines the form of literals and places some constraints on their semantics,
but does not fully define the semantics. (On the other hand, the language core does define syntactic properties like the
spelling and priorities of operators.)

The library also contains built-in functions and exceptions — objects that can be used by all Python code without the
need of animport statement. Some of these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are many ways to dissect this collection.
Some modules are written in C and built in to the Python interpreter; others are written in Python and imported in
source form. Some modules provide interfaces that are highly specific to Python, like printing a stack trace; some
provide interfaces that are specific to particular operating systems, such as access to specific hardware; others provide
interfaces that are specific to a particular application domain, like the World-Wide Web. Some modules are available
in all versions and ports of Python; others are only available when the underlying system supports or requires them;
yet others are available only when a particular configuration option was chosen at the time when Python was compiled
and installed.

This manual is organized “from the inside out:” it first describes the built-in data types, then the built-in functions and
exceptions, and finally the modules, grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to least important.

This means that if you start reading this manual from the start, and skip to the next chapter when you get bored, you
will get a reasonable overview of the available modules and application areas that are supported by the Python library.
Of course, you don’thaveto read it like a novel — you can also browse the table of contents (in front of the manual),
or look for a specific function, module or term in the index (in the back). And finally, if you enjoy learning about
random subjects, you choose a random page number (see modulerandom) and read a section or two. Regardless of
the order in which you read the sections of this manual, it helps to start with chapter 2, “Built-in Types, Exceptions
and Functions,” as the remainder of the manual assumes familiarity with this material.

Let the show begin!

1

2

CHAPTER

TWO

Built-in Types, Exceptions and Functions

Names for built-in exceptions and functions are found in a separate symbol table. This table is searched last when
the interpreter looks up the meaning of a name, so local and global user-defined names can override built-in names.
Built-in types are described together here for easy reference.1

The tables in this chapter document the priorities of operators by listing them in order of ascending priority (within a
table) and grouping operators that have the same priority in the same box. Binary operators of the same priority group
from left to right. (Unary operators group from right to left, but there you have no real choice.) See chapter 5 of the
Python Reference Manualfor the complete picture on operator priorities.

2.1 Built-in Types

The following sections describe the standard types that are built into the interpreter. These are the numeric types,
sequence types, and several others, including types themselves. There is no explicit Boolean type; use integers instead.

Some operations are supported by several object types; in particular, all objects can be compared, tested for truth value,
and converted to a string (with the‘ . . .‘ notation). The latter conversion is implicitly used when an object is written
by theprint statement.

2.1.1 Truth Value Testing

Any object can be tested for truth value, for use in anif or while condition or as operand of the Boolean operations
below. The following values are considered false:

• None

• zero of any numeric type, for example,0, 0L , 0.0 , 0j .

• any empty sequence, for example,’’ , () , [] .

• any empty mapping, for example,{} .

• instances of user-defined classes, if the class defines anonzero () or len () method, when that
method returns zero.2

All other values are considered true — so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return0 for false and1 for true, unless otherwise
stated. (Important exception: the Boolean operations ‘or ’ and ‘and ’ always return one of their operands.)

1Most descriptions sorely lack explanations of the exceptions that may be raised — this will be fixed in a future version of this manual.
2Additional information on these special methods may be found in thePython Reference Manual.

3

2.1.2 Boolean Operations

These are the Boolean operations, ordered by ascending priority:

Operation Result Notes
x or y if x is false, theny, elsex (1)

x and y if x is false, thenx, elsey (1)
not x if x is false, then1, else0 (2)

Notes:

(1) These only evaluate their second argument if needed for their outcome.

(2) ‘not ’ has a lower priority than non-Boolean operators, sonot a == b is interpreted asnot (a == b) , and
a == not b is a syntax error.

2.1.3 Comparisons

Comparison operations are supported by all objects. They all have the same priority (which is higher than that of the
Boolean operations). Comparisons can be chained arbitrarily; for example,x < y <= z is equivalent tox < y and
y <= z, except thaty is evaluated only once (but in both casesz is not evaluated at all whenx < y is found to be
false).

This table summarizes the comparison operations:

Operation Meaning Notes
< strictly less than

<= less than or equal
> strictly greater than

>= greater than or equal
== equal
!= not equal (1)
<> not equal (1)
is object identity

is not negated object identity

Notes:

(1) <> and!= are alternate spellings for the same operator. (I couldn’t choose betweenABC and C! :-) != is the
preferred spelling;<> is obsolescent.

Objects of different types, except different numeric types, never compare equal; such objects are ordered consistently
but arbitrarily (so that sorting a heterogeneous array yields a consistent result). Furthermore, some types (for example,
file objects) support only a degenerate notion of comparison where any two objects of that type are unequal. Again,
such objects are ordered arbitrarily but consistently.

Instances of a class normally compare as non-equal unless the class defines thecmp () method. Refer to the
Python Reference Manualfor information on the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by their type names; objects of the same
types that don’t support proper comparison are ordered by their address.

Two more operations with the same syntactic priority, ‘in ’ and ‘not in ’, are supported only by sequence types
(below).

4 Chapter 2. Built-in Types, Exceptions and Functions

2.1.4 Numeric Types

There are four numeric types:plain integers, long integers, floating point numbers, andcomplex numbers. Plain
integers (also just calledintegers) are implemented usinglong in C, which gives them at least 32 bits of precision.
Long integers have unlimited precision. Floating point numbers are implemented usingdouble in C. All bets on
their precision are off unless you happen to know the machine you are working with.

Complex numbers have a real and imaginary part, which are both implemented usingdouble in C. To extract these
parts from a complex numberz, usez.real andz.imag .

Numbers are created by numeric literals or as the result of built-in functions and operators. Unadorned integer literals
(including hex and octal numbers) yield plain integers. Integer literals with an ‘L’ or ‘ l ’ suffix yield long integers (‘L’
is preferred because ‘1l ’ looks too much like eleven!). Numeric literals containing a decimal point or an exponent
sign yield floating point numbers. Appending ‘j ’ or ‘ J ’ to a numeric literal yields a complex number.

Python fully supports mixed arithmetic: when a binary arithmetic operator has operands of different numeric types,
the operand with the “smaller” type is converted to that of the other, where plain integer is smaller than long integer is
smaller than floating point is smaller than complex. Comparisons between numbers of mixed type use the same rule.3

The functionsint() , long() , float() , andcomplex() can be used to coerce numbers to a specific type.

All numeric types support the following operations, sorted by ascending priority (operations in the same box have the
same priority; all numeric operations have a higher priority than comparison operations):

Operation Result Notes
x + y sum ofx andy
x - y difference ofx andy
x * y product ofx andy
x / y quotient ofx andy (1)
x % y remainder ofx / y

- x x negated
+x x unchanged

abs(x) absolute value or magnitude ofx
int(x) x converted to integer (2)

long(x) x converted to long integer (2)
float(x) x converted to floating point

complex(re, im) a complex number with real partre, imaginary partim. im defaults to zero.
c.conjugate() conjugate of the complex numberc
divmod(x, y) the pair(x / y, x % y) (3)

pow(x, y) x to the powery
x ** y x to the powery

Notes:

(1) For (plain or long) integer division, the result is an integer. The result is always rounded towards minus infinity:
1/2 is 0, (-1)/2 is -1, 1/(-2) is -1, and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a long
integer, regardless of the numeric value.

(2) Conversion from floating point to (long or plain) integer may round or truncate as in C; see functionsfloor()
andceil() in themath module for well-defined conversions.

(3) See section 2.3, “Built-in Functions,” for a full description.

Bit-string Operations on Integer Types

3As a consequence, the list[1, 2] is considered equal to[1.0, 2.0] , and similar for tuples.

2.1. Built-in Types 5

Plain and long integer types support additional operations that make sense only for bit-strings. Negative numbers
are treated as their 2’s complement value (for long integers, this assumes a sufficiently large number of bits that no
overflow occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric operations and higher than the compar-
isons; the unary operation ‘˜ ’ has the same priority as the other unary numeric operations (‘+’ and ‘- ’).

This table lists the bit-string operations sorted in ascending priority (operations in the same box have the same priority):

Operation Result Notes
x | y bitwiseor of x andy
x ˆ y bitwiseexclusive orof x andy
x & y bitwiseandof x andy

x << n x shifted left byn bits (1), (2)
x >> n x shifted right byn bits (1), (3)

˜ x the bits ofx inverted

Notes:

(1) Negative shift counts are illegal and cause aValueError to be raised.

(2) A left shift by n bits is equivalent to multiplication bypow(2, n) without overflow check.

(3) A right shift byn bits is equivalent to division bypow(2, n) without overflow check.

2.1.5 Sequence Types

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and xrange objects.

Strings literals are written in single or double quotes:’xyzzy’ , "frobozz" . See chapter 2 of thePython Reference
Manual for more about string literals. Unicode strings are much like strings, but are specified in the syntax using
a preceeding ‘u’ character:u’abc’ , u"def" . Lists are constructed with square brackets, separating items with
commas:[a, b, c] . Tuples are constructed by the comma operator (not within square brackets), with or without
enclosing parentheses, but an empty tuple must have the enclosing parentheses, e.g.,a, b, c or () . A single item
tuple must have a trailing comma, e.g.,(d,) . Buffers are not directly supported by Python syntax, but can be created
by calling the builtin functionbuffer() . XRanges objects are similar to buffers in that there is no specific syntax to
create them, but they are created using thexrange() function.

Sequence types support the following operations. The ‘in ’ and ‘not in ’ operations have the same priorities as the
comparison operations. The ‘+’ and ‘* ’ operations have the same priority as the corresponding numeric operations.4

This table lists the sequence operations sorted in ascending priority (operations in the same box have the same priority).
In the table,s andt are sequences of the same type;n, i andj are integers:

Operation Result Notes
x in s 1 if an item ofs is equal tox, else0

x not in s 0 if an item ofs is equal tox, else1
s + t the concatenation ofs andt

s * n, n * s n copies ofs concatenated (1)
s[i] i’th item of s, origin 0 (2)

s[i: j] slice ofs from i to j (2), (3)
len(s) length ofs
min(s) smallest item ofs
max(s) largest item ofs

4They must have since the parser can’t tell the type of the operands.

6 Chapter 2. Built-in Types, Exceptions and Functions

Notes:

(1) Values ofn less than0 are treated as0 (which yields an empty sequence of the same type ass).

(2) If i or j is negative, the index is relative to the end of the string, i.e.,len(s) + i or len(s) + j is substituted.
But note that-0 is still 0.

(3) The slice ofs from i to j is defined as the sequence of items with indexk such thati <= k < j. If i or j is greater
thanlen(s) , uselen(s) . If i is omitted, use0. If j is omitted, uselen(s) . If i is greater than or equal toj,
the slice is empty.

String Methods

These are the string methods which both 8-bit strings and Unicode objects support:

capitalize ()
Return a copy of the string with only its first character capitalized.

center (width)
Return centered in a string of lengthwidth. Padding is done using spaces.

count (sub[, start[, end]])
Return the number of occurrences of substringsub in string S[start: end] . Optional argumentsstart andend
are interpreted as in slice notation.

encode ([encoding[,errors]])
Return an encoded version of the string. Default encoding is the current default string encoding.errors may
be given to set a different error handling scheme. The default forerrors is ’strict’ , meaning that encoding
errors raise aValueError . Other possible values are’ignore’ and’replace’ . New in version 2.0.

endswith (suffix[, start[, end]])
Return true if the string ends with the specifiedsuffix, otherwise return false. With optionalstart, test beginning
at that position. With optionalend, stop comparing at that position.

expandtabs ([tabsize])
Return a copy of the string where all tab characters are expanded using spaces. Iftabsizeis not given, a tab size
of 8 characters is assumed.

find (sub[, start[, end]])
Return the lowest index in the string where substringsubis found, such thatsubis contained in the range [start,
end). Optional argumentsstart andendare interpreted as in slice notation. Return-1 if subis not found.

index (sub[, start[, end]])
Like find() , but raiseValueError when the substring is not found.

isalnum ()
Return true if all characters in the string are alphanumeric and there is at least one character, false otherwise.

isalpha ()
Return true if all characters in the string are alphabetic and there is at least one character, false otherwise.

isdigit ()
Return true if there are only digit characters, false otherwise.

islower ()
Return true if all cased characters in the string are lowercase and there is at least one cased character, false
otherwise.

isspace ()
Return true if there are only whitespace characters in the string and the string is not empty, false otherwise.

2.1. Built-in Types 7

istitle ()
Return true if the string is a titlecased string, i.e. uppercase characters may only follow uncased characters and
lowercase characters only cased ones. Return false otherwise.

isupper ()
Return true if all cased characters in the string are uppercase and there is at least one cased character, false
otherwise.

join (seq)
Return a string which is the concatenation of the strings in the sequenceseq. The separator between elements is
the string providing this method.

ljust (width)
Return the string left justified in a string of lengthwidth. Padding is done using spaces. The original string is
returned ifwidth is less thanlen(s) .

lower ()
Return a copy of the string converted to lowercase.

lstrip ()
Return a copy of the string with leading whitespace removed.

replace (old, new[, maxsplit])
Return a copy of the string with all occurrences of substringold replaced bynew. If the optional argument
maxsplitis given, only the firstmaxsplitoccurrences are replaced.

rfind (sub[,start [,end]])
Return the highest index in the string where substringsubis found, such thatsubis contained within s[start,end].
Optional argumentsstart andendare interpreted as in slice notation. Return-1 on failure.

rindex (sub[, start[, end]])
Like rfind() but raisesValueError when the substringsubis not found.

rjust (width)
Return the string right justified in a string of lengthwidth. Padding is done using spaces. The original string is
returned ifwidth is less thanlen(s) .

rstrip ()
Return a copy of the string with trailing whitespace removed.

split ([sep[,maxsplit]])
Return a list of the words in the string, usingsepas the delimiter string. Ifmaxsplitis given, at mostmaxsplit
splits are done. Ifsepis not specified orNone, any whitespace string is a separator.

splitlines ([keepends])
Return a list of the lines in the string, breaking at line boundaries. Line breaks are not included in the resulting
list unlesskeependsis given and true.

startswith (prefix[, start[, end]])
Return true if string starts with theprefix, otherwise return false. With optionalstart, test string beginning at
that position. With optionalend, stop comparing string at that position.

strip ()
Return a copy of the string with leading and trailing whitespace removed.

swapcase ()
Return a copy of the string with uppercase characters converted to lowercase and vice versa.

title ()
Return a titlecased version of, i.e. words start with uppercase characters, all remaining cased characters are
lowercase.

translate (table[, deletechars])

8 Chapter 2. Built-in Types, Exceptions and Functions

Return a copy of the string where all characters occurring in the optional argumentdeletecharsare removed,
and the remaining characters have been mapped through the given translation table, which must be a string of
length 256.

upper ()
Return a copy of the string converted to uppercase.

String Formatting Operations

String and Unicode objects have one unique built-in operation: the%operator (modulo). Givenformat %values(where
format is a string or Unicode object),%conversion specifications informat are replaced with zero or more elements
of values. The effect is similar to the usingsprintf() in the C language. Ifformat is a Unicode object, or if any of
the objects being converted using the%sconversion are Unicode objects, the result will be a Unicode object as well.

If format requires a single argument,valuesmay be a single non-tuple object.5 Otherwise,valuesmust be a tuple
with exactly the number of items specified by the format string, or a single mapping object (for example, a dictionary).

A conversion specifier contains two or more characters and has the following components, which must occur in this
order:

1. The ‘%’ character, which marks the start of the specifier.

2. Mapping key value (optional), consisting of an identifier in parentheses (for example,(somename)).

3. Conversion flags (optional), which affect the result of some conversion types.

4. Minimum field width (optional). If specified as an ‘* ’ (asterisk), the actual width is read from the next element
of the tuple invalues, and the object to convert comes after the minimum field width and optional precision.

5. Precision (optional), given as a ‘. ’ (dot) followed by the precision. If specified as ‘* ’ (an asterisk), the actual
width is read from the next element of the tuple invalues, and the value to convert comes after the precision.

6. Length modifier (optional).

7. Conversion type.

If the right argument is a dictionary (or any kind of mapping), then the formats in the stringmusthave a parenthesized
key into that dictionary inserted immediately after the ‘%’ character, and each format formats the corresponding entry
from the mapping. For example:

>>> count = 2
>>> language = ’Python’
>>> print ’%(language)s has %(count)03d quote types.’ % vars()
Python has 002 quote types.

In this case no* specifiers may occur in a format (since they require a sequential parameter list).

The conversion flag characters are:

Flag Meaning
‘#’ The value conversion will use the “alternate form” (where defined below).
‘0’ The conversion will be zero padded.
‘ - ’ The converted value is left adjusted (overrides ‘- ’).
‘ ’ (a space) A blank should be left before a positive number (or empty string) produced by a signed conversion.
‘+’ A sign character (‘+’ or ‘ - ’) will precede the conversion (overrides a ”space” flag).
5A tuple object in this case should be a singleton.

2.1. Built-in Types 9

The length modifier may beh, l , andL may be present, but are ignored as they are not necessary for Python.

The conversion types are:

Conversion Meaning
‘d’ Signed integer decimal.
‘ i ’ Signed integer decimal.
‘o’ Unsigned octal.
‘u’ Unsigned decimal.
‘x ’ Unsigned hexidecimal (lowercase).
‘X’ Unsigned hexidecimal (uppercase).
‘e’ Floating point exponential format (lowercase).
‘E’ Floating point exponential format (uppercase).
‘ f ’ Floating point decimal format.
‘F’ Floating point decimal format.
‘g’ Same as ‘e’ if exponent is greater than -4 or less than precision, ‘f ’ otherwise.
‘G’ Same as ‘E’ if exponent is greater than -4 or less than precision, ‘F’ otherwise.
‘c ’ Single character (accepts integer or single character string).
‘ r ’ String (converts any python object usingrepr()).
‘s ’ String (converts any python object usingstr()).
‘%’ No argument is converted, results in a ‘%’ character in the result. (The complete specification is%%.)

Since Python strings have an explicit length,%sconversions do not assume that’\0’ is the end of the string.

For safety reasons, floating point precisions are clipped to 50;%f conversions for numbers whose absolute value is
over 1e25 are replaced by%gconversions.6 All other errors raise exceptions.

Additional string operations are defined in standard modulestring and in built-in modulere .

XRange Type

The xrange type is an immutable sequence which is commonly used for looping. The advantage of the xrange type is
that an xrange object will always take the same amount of memory, no matter the size of the range it represents. There
are no consistent performance advantages.

XRange objects behave like tuples, and offer a single method:

tolist ()
Return a list object which represents the same values as the xrange object.

Mutable Sequence Types

List objects support additional operations that allow in-place modification of the object. These operations would be
supported by other mutable sequence types (when added to the language) as well. Strings and tuples are immutable
sequence types and such objects cannot be modified once created. The following operations are defined on mutable
sequence types (wherex is an arbitrary object):

6These numbers are fairly arbitrary. They are intended to avoid printing endless strings of meaningless digits without hampering correct use and
without having to know the exact precision of floating point values on a particular machine.

10 Chapter 2. Built-in Types, Exceptions and Functions

Operation Result Notes
s[i] = x item i of s is replaced byx

s[i: j] = t slice ofs from i to j is replaced byt
del s[i: j] same ass[i: j] = []

s.append(x) same ass[len(s):len(s)] = [x] (1)
s.extend(x) same ass[len(s):len(s)] = x (2)
s.count(x) return number ofi’s for whichs[i] == x
s.index(x) return smallesti such thats[i] == x (3)

s.insert(i, x) same ass[i: i] = [x] if i >= 0

s.pop([i]) same asx = s[i]; del s[i]; return x (4)
s.remove(x) same asdel s[s.index(x)] (3)
s.reverse() reverses the items ofs in place (5)

s.sort([cmpfunc]) sort the items ofs in place (5), (6)

Notes:

(1) The C implementation of Python has historically accepted multiple parameters and implicitly joined them into a
tuple; this no longer works in Python 2.0. Use of this misfeature has been deprecated since Python 1.4.

(2) Raises an exception whenx is not a list object. Theextend() method is experimental and not supported by
mutable sequence types other than lists.

(3) RaisesValueError whenx is not found ins.

(4) Thepop() method is only supported by the list and array types. The optional argumenti defaults to-1 , so that
by default the last item is removed and returned.

(5) Thesort() andreverse() methods modify the list in place for economy of space when sorting or reversing
a large list. They don’t return the sorted or reversed list to remind you of this side effect.

(6) Thesort() method takes an optional argument specifying a comparison function of two arguments (list items)
which should return-1 , 0 or 1 depending on whether the first argument is considered smaller than, equal to, or
larger than the second argument. Note that this slows the sorting process down considerably; e.g. to sort a list
in reverse order it is much faster to use calls to the methodssort() andreverse() than to use the built-in
functionsort() with a comparison function that reverses the ordering of the elements.

2.1.6 Mapping Types

A mappingobject maps values of one type (the key type) to arbitrary objects. Mappings are mutable objects. There
is currently only one standard mapping type, thedictionary. A dictionary’s keys are almost arbitrary values. The
only types of values not acceptable as keys are values containing lists or dictionaries or other mutable types that are
compared by value rather than by object identity. Numeric types used for keys obey the normal rules for numeric
comparison: if two numbers compare equal (e.g.1 and1.0) then they can be used interchangeably to index the same
dictionary entry.

Dictionaries are created by placing a comma-separated list ofkey: value pairs within braces, for example:
{’jack’: 4098, ’sjoerd’: 4127} or {4098: ’jack’, 4127: ’sjoerd’} .

The following operations are defined on mappings (wherea andb are mappings,k is a key, andv andx are arbitrary
objects):

2.1. Built-in Types 11

Operation Result Notes
len(a) the number of items ina

a[k] the item ofa with keyk (1)
a[k] = v seta[k] to v
del a[k] removea[k] from a (1)

a.clear() remove all items froma
a.copy() a (shallow) copy ofa

k in a 1 if a has a keyk, else0
k not in a 0 if a has a keyk, else1

a.has key(k) Equivalent tok in a
a.items() a copy ofa’s list of (key, value) pairs (2)
a.keys() a copy ofa’s list of keys (2)

a.update(b) for k in b.keys(): a[k] = b[k] (3)
a.values() a copy ofa’s list of values (2)

a.get(k[, x]) a[k] if k in a, elsex (4)
a.setdefault(k[, x]) a[k] if k in a, elsex (also setting it) (5)

a.popitem() remove and return an arbitrary (key, value) pair (6)

Notes:

(1) Raises aKeyError exception ifk is not in the map.

(2) Keys and values are listed in random order. Ifkeys() andvalues() are called with no intervening modifi-
cations to the dictionary, the two lists will directly correspond. This allows the creation of(value, key) pairs
usingmap() : ‘pairs = map(None, a.values(), a.keys()) ’.

(3) b must be of the same type asa.

(4) Never raises an exception ifk is not in the map, instead it returnsx. x is optional; whenx is not provided andk is
not in the map,None is returned.

(5) setdefault() is like get() , except that ifk is missing,x is both returned and inserted into the dictionary as
the value ofk.

(6) popitem() is useful to destructively iterate over a dictionary, as often used in set algorithms.

2.1.7 Other Built-in Types

The interpreter supports several other kinds of objects. Most of these support only one or two operations.

Modules

The only special operation on a module is attribute access:m. name, wherem is a module andnameaccesses a name
defined inm’s symbol table. Module attributes can be assigned to. (Note that theimport statement is not, strictly
speaking, an operation on a module object;import foo does not require a module object namedfoo to exist, rather
it requires an (external)definitionfor a module namedfoosomewhere.)

A special member of every module is dict . This is the dictionary containing the module’s symbol table.
Modifying this dictionary will actually change the module’s symbol table, but direct assignment to thedict
attribute is not possible (i.e., you can writem. dict [’a’] = 1 , which definesm.a to be1, but you can’t
write m. dict = {} .

Modules built into the interpreter are written like this:<module ’sys’ (built-in)> . If loaded from a file,
they are written as<module ’os’ from ’/usr/local/lib/python2.1/os.pyc’> .

12 Chapter 2. Built-in Types, Exceptions and Functions

Classes and Class Instances

See chapters 3 and 7 of thePython Reference Manualfor these.

Functions

Function objects are created by function definitions. The only operation on a function object is to call it:
func(argument-list) .

There are really two flavors of function objects: built-in functions and user-defined functions. Both support the same
operation (to call the function), but the implementation is different, hence the different object types.

The implementation adds two special read-only attributes:f .func code is a function’scode object(see below)
andf .func globals is the dictionary used as the function’s global namespace (this is the same asm. dict
wherem is the module in which the functionf was defined).

Function objects also support getting and setting arbitrary attributes, which can be used to, e.g. attach metadata to
functions. Regular attribute dot-notation is used to get and set such attributes.Note that the current implementation
only supports function attributes on functions written in Python. Function attributes on built-ins may be supported in
the future.

Functions have another special attributef . dict (a.k.a. f .func dict) which contains the namespace used
to support function attributes. dict can be accessed directly, set to a dictionary object, orNone. It can also be
deleted (but the following two lines are equivalent):

del func.__dict__
func.__dict__ = None

Methods

Methods are functions that are called using the attribute notation. There are two flavors: built-in methods (such as
append() on lists) and class instance methods. Built-in methods are described with the types that support them.

The implementation adds two special read-only attributes to class instance methods:m.im self is the object on
which the method operates, andm.im func is the function implementing the method. Callingm(arg-1, arg-2,
. . ., arg-n) is completely equivalent to callingm.im func(m.im self, arg-1, arg-2, . . ., arg-n) .

Class instance methods are eitherboundor unbound, referring to whether the method was accessed through an instance
or a class, respectively. When a method is unbound, itsim self attribute will beNone and if called, an explicit
self object must be passed as the first argument. In this case,self must be an instance of the unbound method’s
class (or a subclass of that class), otherwise aTypeError is raised.

Like function objects, methods objects support getting arbitrary attributes. However, since method attributes are
actually stored on the underlying function object (i.e.meth.im func), setting method attributes on either bound or
unbound methods is disallowed. Attempting to set a method attribute results in aTypeError being raised. In order
to set a method attribute, you need to explicitly set it on the underlying function object:

class C:
def method(self):

pass

c = C()
c.method.im_func.whoami = ’my name is c’

See thePython Reference Manualfor more information.

2.1. Built-in Types 13

Code Objects

Code objects are used by the implementation to represent “pseudo-compiled” executable Python code such as a func-
tion body. They differ from function objects because they don’t contain a reference to their global execution envi-
ronment. Code objects are returned by the built-incompile() function and can be extracted from function objects
through theirfunc code attribute.

A code object can be executed or evaluated by passing it (instead of a source string) to theexec statement or the
built-in eval() function.

See thePython Reference Manualfor more information.

Type Objects

Type objects represent the various object types. An object’s type is accessed by the built-in functiontype() . There
are no special operations on types. The standard moduletypes defines names for all standard built-in types.

Types are written like this:<type ’int’> .

The Null Object

This object is returned by functions that don’t explicitly return a value. It supports no special operations. There is
exactly one null object, namedNone (a built-in name).

It is written asNone.

The Ellipsis Object

This object is used by extended slice notation (see thePython Reference Manual). It supports no special operations.
There is exactly one ellipsis object, namedEllipsis (a built-in name).

It is written asEllipsis .

File Objects

File objects are implemented using C’sstdio package and can be created with the built-in functionopen() de-
scribed in section 2.3, “Built-in Functions.” They are also returned by some other built-in functions and methods, e.g.,
os.popen() andos.fdopen() and themakefile() method of socket objects.

When a file operation fails for an I/O-related reason, the exceptionIOError is raised. This includes situations where
the operation is not defined for some reason, likeseek() on a tty device or writing a file opened for reading.

Files have the following methods:

close ()
Close the file. A closed file cannot be read or written anymore. Any operation which requires that the file be
open will raise aValueError after the file has been closed. Callingclose() more than once is allowed.

flush ()
Flush the internal buffer, likestdio ’s fflush() . This may be a no-op on some file-like objects.

isatty ()
Return true if the file is connected to a tty(-like) device, else false.Note: If a file-like object is not associated
with a real file, this method shouldnotbe implemented.

fileno ()
Return the integer “file descriptor” that is used by the underlying implementation to request I/O operations from

14 Chapter 2. Built-in Types, Exceptions and Functions

the operating system. This can be useful for other, lower level interfaces that use file descriptors, e.g. module
fcntl or os.read() and friends.Note: File-like objects which do not have a real file descriptor shouldnot
provide this method!

read ([size])
Read at mostsizebytes from the file (less if the read hitsEOF before obtainingsizebytes). If thesizeargument
is negative or omitted, read all data untilEOF is reached. The bytes are returned as a string object. An empty
string is returned whenEOF is encountered immediately. (For certain files, like ttys, it makes sense to continue
reading after anEOF is hit.) Note that this method may call the underlying C functionfread() more than once
in an effort to acquire as close tosizebytes as possible.

readline ([size])
Read one entire line from the file. A trailing newline character is kept in the string7 (but may be absent when a
file ends with an incomplete line). If thesizeargument is present and non-negative, it is a maximum byte count
(including the trailing newline) and an incomplete line may be returned. An empty string is returned whenEOF

is hit immediately. Note: Unlikestdio ’s fgets() , the returned string contains null characters (’\0’) if
they occurred in the input.

readlines ([sizehint])
Read untilEOF using readline() and return a list containing the lines thus read. If the optionalsizehint
argument is present, instead of reading up toEOF, whole lines totalling approximatelysizehintbytes (possibly
after rounding up to an internal buffer size) are read. Objects implementing a file-like interface may choose to
ignoresizehintif it cannot be implemented, or cannot be implemented efficiently.

xreadlines ()
Equivalent toxreadlines.xreadlines(file) . (See thexreadlines module for more information.)
New in version 2.1.

seek (offset[, whence])
Set the file’s current position, likestdio ’s fseek() . The whenceargument is optional and defaults to0
(absolute file positioning); other values are1 (seek relative to the current position) and2 (seek relative to the
file’s end). There is no return value. Note that if the file is opened for appending (mode’a’ or ’a+’), any
seek() operations will be undone at the next write. If the file is only opened for writing in append mode
(mode ’a’), this method is essentially a no-op, but it remains useful for files opened in append mode with
reading enabled (mode’a+’).

tell ()
Return the file’s current position, likestdio ’s ftell() .

truncate ([size])
Truncate the file’s size. If the optionalsizeargument present, the file is truncated to (at most) that size. The
size defaults to the current position. Availability of this function depends on the operating system version (for
example, not all UNIX versions support this operation).

write (str)
Write a string to the file. There is no return value. Note: Due to buffering, the string may not actually show up
in the file until theflush() or close() method is called.

writelines (list)
Write a list of strings to the file. There is no return value. (The name is intended to matchreadlines() ;
writelines() does not add line separators.)

File objects also offer a number of other interesting attributes. These are not required for file-like objects, but should
be implemented if they make sense for the particular object.

closed
Boolean indicating the current state of the file object. This is a read-only attribute; theclose() method

7The advantage of leaving the newline on is that an empty string can be returned to meanEOF without being ambiguous. Another advantage is
that (in cases where it might matter, e.g. if you want to make an exact copy of a file while scanning its lines) you can tell whether the last line of a
file ended in a newline or not (yes this happens!).

2.1. Built-in Types 15

changes the value. It may not be available on all file-like objects.

mode
The I/O mode for the file. If the file was created using theopen() built-in function, this will be the value of
themodeparameter. This is a read-only attribute and may not be present on all file-like objects.

name
If the file object was created usingopen() , the name of the file. Otherwise, some string that indicates the
source of the file object, of the form ‘<...> ’. This is a read-only attribute and may not be present on all
file-like objects.

softspace
Boolean that indicates whether a space character needs to be printed before another value when using theprint
statement. Classes that are trying to simulate a file object should also have a writablesoftspace attribute,
which should be initialized to zero. This will be automatic for most classes implemented in Python (care may
be needed for objects that override attribute access); types implemented in C will have to provide a writable
softspace attribute. Note: This attribute is not used to control theprint statement, but to allow the
implementation ofprint to keep track of its internal state.

Internal Objects

See thePython Reference Manualfor this information. It describes stack frame objects, traceback objects, and slice
objects.

2.1.8 Special Attributes

The implementation adds a few special read-only attributes to several object types, where they are relevant:

dict
A dictionary or other mapping object used to store an object’s (writable) attributes.

methods
List of the methods of many built-in object types, e.g.,[]. methods yields[’append’, ’count’,
’index’, ’insert’, ’pop’, ’remove’, ’reverse’, ’sort’] . This usually does not need to
be explicitly provided by the object.

members
Similar to methods , but lists data attributes. This usually does not need to be explicitly provided by the
object.

class
The class to which a class instance belongs.

bases
The tuple of base classes of a class object.

2.2 Built-in Exceptions

Exceptions can be class objects or string objects. Though most exceptions have been string objects in past versions of
Python, in Python 1.5 and newer versions, all standard exceptions have been converted to class objects, and users are
encouraged to do the same. The exceptions are defined in the moduleexceptions . This module never needs to be
imported explicitly: the exceptions are provided in the built-in namespace.

Two distinct string objects with the same value are considered different exceptions. This is done to force programmers
to use exception names rather than their string value when specifying exception handlers. The string value of all built-

16 Chapter 2. Built-in Types, Exceptions and Functions

in exceptions is their name, but this is not a requirement for user-defined exceptions or exceptions defined by library
modules.

For class exceptions, in atry statement with anexcept clause that mentions a particular class, that clause also
handles any exception classes derived from that class (but not exception classes from whichit is derived). Two
exception classes that are not related via subclassing are never equivalent, even if they have the same name.

The built-in exceptions listed below can be generated by the interpreter or built-in functions. Except where mentioned,
they have an “associated value” indicating the detailed cause of the error. This may be a string or a tuple containing
several items of information (e.g., an error code and a string explaining the code). The associated value is the second
argument to theraise statement. For string exceptions, the associated value itself will be stored in the variable
named as the second argument of theexcept clause (if any). For class exceptions, that variable receives the exception
instance. If the exception class is derived from the standard root classException , the associated value is present as
the exception instance’sargs attribute, and possibly on other attributes as well.

User code can raise built-in exceptions. This can be used to test an exception handler or to report an error condition
“just like” the situation in which the interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The following exceptions are only used as base classes for other exceptions.

exceptionException
The root class for exceptions. All built-in exceptions are derived from this class. All user-defined exceptions
should also be derived from this class, but this is not (yet) enforced. Thestr() function, when applied to an
instance of this class (or most derived classes) returns the string value of the argument or arguments, or an empty
string if no arguments were given to the constructor. When used as a sequence, this accesses the arguments given
to the constructor (handy for backward compatibility with old code). The arguments are also available on the
instance’sargs attribute, as a tuple.

exceptionStandardError
The base class for all built-in exceptions exceptSystemExit . StandardError itself is derived from the
root classException .

exceptionArithmeticError
The base class for those built-in exceptions that are raised for various arithmetic errors:OverflowError ,
ZeroDivisionError , FloatingPointError .

exceptionLookupError
The base class for the exceptions that are raised when a key or index used on a mapping or sequence is invalid:
IndexError , KeyError . This can be raised directly bysys.setdefaultencoding() .

exceptionEnvironmentError
The base class for exceptions that can occur outside the Python system:IOError , OSError . When exceptions
of this type are created with a 2-tuple, the first item is available on the instance’serrno attribute (it is assumed
to be an error number), and the second item is available on thestrerror attribute (it is usually the associated
error message). The tuple itself is also available on theargs attribute. New in version 1.5.2.

When anEnvironmentError exception is instantiated with a 3-tuple, the first two items are available as
above, while the third item is available on thefilename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor arguments.

Thefilename attribute isNone when this exception is created with other than 3 arguments. Theerrno and
strerror attributes are alsoNone when the instance was created with other than 2 or 3 arguments. In this
last case,args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exceptionAssertionError
Raised when anassert statement fails.

exceptionAttributeError
Raised when an attribute reference or assignment fails. (When an object does not support attribute references or

2.2. Built-in Exceptions 17

attribute assignments at all,TypeError is raised.)

exceptionEOFError
Raised when one of the built-in functions (input() or raw input()) hits an end-of-file condition (EOF)
without reading any data. (N.B.: theread() andreadline() methods of file objects return an empty string
when they hitEOF.)

exceptionFloatingPointError
Raised when a floating point operation fails. This exception is always defined, but can only be raised when
Python is configured with the--with-fpectl option, or theWANTSIGFPE HANDLERsymbol is defined in the
‘config.h’ file.

exceptionIOError
Raised when an I/O operation (such as aprint statement, the built-inopen() function or a method of a file
object) fails for an I/O-related reason, e.g., “file not found” or “disk full”.

This class is derived fromEnvironmentError . See the discussion above for more information on exception
instance attributes.

exceptionImportError
Raised when animport statement fails to find the module definition or when afrom . . . import fails to
find a name that is to be imported.

exceptionIndexError
Raised when a sequence subscript is out of range. (Slice indices are silently truncated to fall in the allowed
range; if an index is not a plain integer,TypeError is raised.)

exceptionKeyError
Raised when a mapping (dictionary) key is not found in the set of existing keys.

exceptionKeyboardInterrupt
Raised when the user hits the interrupt key (normallyControl-C or DEL). During execution, a check for
interrupts is made regularly. Interrupts typed when a built-in functioninput() or raw input()) is waiting
for input also raise this exception.

exceptionMemoryError
Raised when an operation runs out of memory but the situation may still be rescued (by deleting some objects).
The associated value is a string indicating what kind of (internal) operation ran out of memory. Note that because
of the underlying memory management architecture (C’smalloc() function), the interpreter may not always
be able to completely recover from this situation; it nevertheless raises an exception so that a stack traceback
can be printed, in case a run-away program was the cause.

exceptionNameError
Raised when a local or global name is not found. This applies only to unqualified names. The associated value
is the name that could not be found.

exceptionNotImplementedError
This exception is derived fromRuntimeError . In user defined base classes, abstract methods should raise
this exception when they require derived classes to override the method. New in version 1.5.2.

exceptionOSError
This class is derived fromEnvironmentError and is used primarily as theos module’sos.error excep-
tion. SeeEnvironmentError above for a description of the possible associated values. New in version
1.5.2.

exceptionOverflowError
Raised when the result of an arithmetic operation is too large to be represented. This cannot occur for long
integers (which would rather raiseMemoryError than give up). Because of the lack of standardization of
floating point exception handling in C, most floating point operations also aren’t checked. For plain integers,
all operations that can overflow are checked except left shift, where typical applications prefer to drop bits than
raise an exception.

18 Chapter 2. Built-in Types, Exceptions and Functions

exceptionRuntimeError
Raised when an error is detected that doesn’t fall in any of the other categories. The associated value is a
string indicating what precisely went wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exceptionSyntaxError
Raised when the parser encounters a syntax error. This may occur in animport statement, in anexec
statement, in a call to the built-in functioneval() or input() , or when reading the initial script or standard
input (also interactively).

When class exceptions are used, instances of this class have atttributesfilename , lineno , offset and
text for easier access to the details; for string exceptions, the associated value is usually a tuple of the form
(message, (filename, lineno, offset, text)) . For class exceptions,str() returns only the
message.

exceptionSystemError
Raised when the interpreter finds an internal error, but the situation does not look so serious to cause it to
abandon all hope. The associated value is a string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python interpreter. Be sure to report the version string
of the Python interpreter (sys.version ; it is also printed at the start of an interactive Python session), the
exact error message (the exception’s associated value) and if possible the source of the program that triggered
the error.

exceptionSystemExit
This exception is raised by thesys.exit() function. When it is not handled, the Python interpreter exits; no
stack traceback is printed. If the associated value is a plain integer, it specifies the system exit status (passed to
C’s exit() function); if it is None, the exit status is zero; if it has another type (such as a string), the object’s
value is printed and the exit status is one.

Instances have an attributecode which is set to the proposed exit status or error message (defaulting toNone).
Also, this exception derives directly fromException and notStandardError , since it is not technically
an error.

A call to sys.exit() is translated into an exception so that clean-up handlers (finally clauses oftry
statements) can be executed, and so that a debugger can execute a script without running the risk of losing
control. Theos. exit() function can be used if it is absolutely positively necessary to exit immediately
(e.g., after afork() in the child process).

exceptionTypeError
Raised when a built-in operation or function is applied to an object of inappropriate type. The associated value
is a string giving details about the type mismatch.

exceptionUnboundLocalError
Raised when a reference is made to a local variable in a function or method, but no value has been bound to that
variable. This is a subclass ofNameError . New in version 2.0.

exceptionUnicodeError
Raised when a Unicode-related encoding or decoding error occurs. It is a subclass ofValueError . New in
version 2.0.

exceptionValueError
Raised when a built-in operation or function receives an argument that has the right type but an inappropriate
value, and the situation is not described by a more precise exception such asIndexError .

exceptionWindowsError
Raised when a Windows-specific error occurs or when the error number does not correspond to anerrno
value. Theerrno andstrerror values are created from the return values of theGetLastError() and
FormatMessage() functions from the Windows Platform API. This is a subclass ofOSError . New in
version 2.0.

exceptionZeroDivisionError

2.2. Built-in Exceptions 19

Raised when the second argument of a division or modulo operation is zero. The associated value is a string
indicating the type of the operands and the operation.

The following exceptions are used as warning categories; see thewarnings module for more information.

exceptionWarning
Base class for warning categories.

exceptionUserWarning
Base class for warnings generated by user code.

exceptionDeprecationWarning
Base class for warnings about deprecated features.

exceptionSyntaxWarning
Base class for warnings about dubious syntax

exceptionRuntimeWarning
Base class for warnings about dubious runtime behavior.

2.3 Built-in Functions

The Python interpreter has a number of functions built into it that are always available. They are listed here in
alphabetical order.

import (name[, globals[, locals[, fromlist]]])
This function is invoked by theimport statement. It mainly exists so that you can replace it with another func-
tion that has a compatible interface, in order to change the semantics of theimport statement. For examples
of why and how you would do this, see the standard library modulesihooks andrexec . See also the built-in
moduleimp , which defines some useful operations out of which you can build your ownimport ()
function.

For example, the statement ‘import spam ’ results in the following call: import (’spam’,
globals(), locals(), []) ; the statement ‘from spam.ham import eggs ’ results in
‘ import (’spam.ham’, globals(), locals(), [’eggs’]) ’. Note that even though
locals() and[’eggs’] are passed in as arguments, theimport () function does not set the local
variable namedeggs ; this is done by subsequent code that is generated for the import statement. (In fact,
the standard implementation does not use itslocalsargument at all, and uses itsglobalsonly to determine the
package context of theimport statement.)

When thenamevariable is of the formpackage.module , normally, the top-level package (the name up till the
first dot) is returned,notthe module named byname. However, when a non-emptyfromlistargument is given, the
module named bynameis returned. This is done for compatibility with the bytecode generated for the different
kinds of import statement; when using ‘import spam.ham.eggs ’, the top-level packagespam must be
placed in the importing namespace, but when using ‘from spam.ham import eggs ’, the spam.ham
subpackage must be used to find theeggs variable. As a workaround for this behavior, usegetattr() to
extract the desired components. For example, you could define the following helper:

import string

def my_import(name):
mod = __import__(name)
components = string.split(name, ’.’)
for comp in components[1:]:

mod = getattr(mod, comp)
return mod

20 Chapter 2. Built-in Types, Exceptions and Functions

abs (x)
Return the absolute value of a number. The argument may be a plain or long integer or a floating point number.
If the argument is a complex number, its magnitude is returned.

apply (function, args[, keywords])
Thefunctionargument must be a callable object (a user-defined or built-in function or method, or a class object)
and theargsargument must be a sequence (if it is not a tuple, the sequence is first converted to a tuple). The
functionis called withargsas the argument list; the number of arguments is the the length of the tuple. (This is
different from just callingfunc(args) , since in that case there is always exactly one argument.) If the optional
keywordsargument is present, it must be a dictionary whose keys are strings. It specifies keyword arguments to
be added to the end of the the argument list.

buffer (object[, offset[, size]])
Theobjectargument must be an object that supports the buffer call interface (such as strings, arrays, and buffers).
A new buffer object will be created which references theobjectargument. The buffer object will be a slice from
the beginning ofobject(or from the specifiedoffset). The slice will extend to the end ofobject(or will have a
length given by thesizeargument).

callable (object)
Return true if theobjectargument appears callable, false if not. If this returns true, it is still possible that a call
fails, but if it is false, callingobjectwill never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they have acall () method.

chr (i)
Return a string of one character whoseASCII code is the integeri, e.g.,chr(97) returns the string’a’ . This
is the inverse oford() . The argument must be in the range [0..255], inclusive;ValueError will be raised if
i is outside that range.

cmp(x, y)
Compare the two objectsx andy and return an integer according to the outcome. The return value is negative if
x < y, zero ifx == y and strictly positive ifx > y.

coerce (x, y)
Return a tuple consisting of the two numeric arguments converted to a common type, using the same rules as
used by arithmetic operations.

compile (string, filename, kind)
Compile thestring into a code object. Code objects can be executed by anexec statement or evaluated by a call
to eval() . Thefilenameargument should give the file from which the code was read; pass e.g.’<string>’
if it wasn’t read from a file. Thekindargument specifies what kind of code must be compiled; it can be’exec’
if string consists of a sequence of statements,’eval’ if it consists of a single expression, or’single’ if
it consists of a single interactive statement (in the latter case, expression statements that evaluate to something
else thanNone will printed).

complex (real[, imag])
Create a complex number with the valuereal + imag*j or convert a string or number to a complex number. Each
argument may be any numeric type (including complex). Ifimag is omitted, it defaults to zero and the function
serves as a numeric conversion function likeint() , long() and float() ; in this case it also accepts a
string argument which should be a valid complex number.

delattr (object, name)
This is a relative ofsetattr() . The arguments are an object and a string. The string must be the name of one
of the object’s attributes. The function deletes the named attribute, provided the object allows it. For example,
delattr(x, ’ foobar’) is equivalent todel x. foobar.

dir ([object])
Without arguments, return the list of names in the current local symbol table. With an argument, attempts
to return a list of valid attribute for that object. This information is gleaned from the object’sdict ,

methods and members attributes, if defined. The list is not necessarily complete; e.g., for classes,

2.3. Built-in Functions 21

attributes defined in base classes are not included, and for class instances, methods are not included. The
resulting list is sorted alphabetically. For example:

>>> import sys
>>> dir()
[’sys’]
>>> dir(sys)
[’argv’, ’exit’, ’modules’, ’path’, ’stderr’, ’stdin’, ’stdout’]

divmod (a, b)
Take two numbers as arguments and return a pair of numbers consisting of their quotient and remainder when
using long division. With mixed operand types, the rules for binary arithmetic operators apply. For plain and
long integers, the result is the same as(a / b, a % b) . For floating point numbers the result is(q, a %
b) , whereq is usuallymath.floor(a / b) but may be 1 less than that. In any caseq * b + a % b is
very close toa, if a % b is non-zero it has the same sign asb, and0 <= abs(a % b) < abs(b) .

eval (expression[, globals[, locals]])
The arguments are a string and two optional dictionaries. Theexpressionargument is parsed and evaluated as a
Python expression (technically speaking, a condition list) using theglobalsandlocalsdictionaries as global and
local name space. If thelocalsdictionary is omitted it defaults to theglobalsdictionary. If both dictionaries are
omitted, the expression is executed in the environment whereeval is called. The return value is the result of
the evaluated expression. Syntax errors are reported as exceptions. Example:

>>> x = 1
>>> print eval(’x+1’)
2

This function can also be used to execute arbitrary code objects (e.g. created bycompile()). In this case
pass a code object instead of a string. The code object must have been compiled passing’eval’ to thekind
argument.

Hints: dynamic execution of statements is supported by theexec statement. Execution of statements from
a file is supported by theexecfile() function. Theglobals() and locals() functions returns the
current global and local dictionary, respectively, which may be useful to pass around for use byeval() or
execfile() .

execfile (file[, globals[, locals]])
This function is similar to theexec statement, but parses a file instead of a string. It is different from the
import statement in that it does not use the module administration — it reads the file unconditionally and does
not create a new module.8

The arguments are a file name and two optional dictionaries. The file is parsed and evaluated as a sequence of
Python statements (similarly to a module) using theglobalsandlocalsdictionaries as global and local names-
pace. If thelocalsdictionary is omitted it defaults to theglobalsdictionary. If both dictionaries are omitted, the
expression is executed in the environment whereexecfile() is called. The return value isNone.

filter (function, list)
Construct a list from those elements oflist for which functionreturns true. Iflist is a string or a tuple, the result
also has that type; otherwise it is always a list. Iffunction is None, the identity function is assumed, i.e. all
elements oflist that are false (zero or empty) are removed.

float (x)
Convert a string or a number to floating point. If the argument is a string, it must contain a possibly signed dec-
imal or floating point number, possibly embedded in whitespace; this behaves identical tostring.atof(x) .
Otherwise, the argument may be a plain or long integer or a floating point number, and a floating point number
with the same value (within Python’s floating point precision) is returned.

8It is used relatively rarely so does not warrant being made into a statement.

22 Chapter 2. Built-in Types, Exceptions and Functions

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

getattr (object, name[, default])
Return the value of the named attributed ofobject. namemust be a string. If the string is the name of one
of the object’s attributes, the result is the value of that attribute. For example,getattr(x, ’foobar’)
is equivalent tox.foobar . If the named attribute does not exist,default is returned if provided, otherwise
AttributeError is raised.

globals ()
Return a dictionary representing the current global symbol table. This is always the dictionary of the current
module (inside a function or method, this is the module where it is defined, not the module from which it is
called).

hasattr (object, name)
The arguments are an object and a string. The result is 1 if the string is the name of one of the object’s attributes,
0 if not. (This is implemented by callinggetattr(object, name) and seeing whether it raises an exception
or not.)

hash (object)
Return the hash value of the object (if it has one). Hash values are integers. They are used to quickly compare
dictionary keys during a dictionary lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, e.g. 1 and 1.0).

hex (x)
Convert an integer number (of any size) to a hexadecimal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit machine,hex(-1) yields ’0xffffffff’ . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raise anOverflowError exception.

id (object)
Return the ‘identity’ of an object. This is an integer (or long integer) which is guaranteed to be unique and
constant for this object during its lifetime. Two objects whose lifetimes are disjunct may have the sameid()
value. (Implementation note: this is the address of the object.)

input ([prompt])
Equivalent toeval(raw input(prompt)) . Warning: This function is not safe from user errors! It expects
a valid Python expression as input; if the input is not syntactically valid, aSyntaxError will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the other hand, sometimes this is exactly
what you need when writing a quick script for expert use.)

If the readline module was loaded, theninput() will use it to provide elaborate line editing and history
features.

Consider using theraw input() function for general input from users.

int (x[, radix])
Convert a string or number to a plain integer. If the argument is a string, it must contain a possibly signed
decimal number representable as a Python integer, possibly embedded in whitespace; this behaves identical to
string.atoi(x[, radix]) . Theradix parameter gives the base for the conversion and may be any integer
in the range [2, 36], or zero. Ifradix is zero, the proper radix is guessed based on the contents of string; the
interpretation is the same as for integer literals. Ifradix is specified andx is not a string,TypeError is raised.
Otherwise, the argument may be a plain or long integer or a floating point number. Conversion of floating point
numbers to integers is defined by the C semantics; normally the conversion truncates towards zero.9

intern (string)
Enterstring in the table of “interned” strings and return the interned string – which isstring itself or a copy.
Interning strings is useful to gain a little performance on dictionary lookup – if the keys in a dictionary are

9This is ugly — the language definition should require truncation towards zero.

2.3. Built-in Functions 23

interned, and the lookup key is interned, the key comparisons (after hashing) can be done by a pointer compare
instead of a string compare. Normally, the names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned keys. Interned strings are immortal
(i.e. never get garbage collected).

isinstance (object, class)
Return true if theobject argument is an instance of theclassargument, or of a (direct or indirect) subclass
thereof. Also return true ifclassis a type object andobject is an object of that type. Ifobject is not a class
instance or a object of the given type, the function always returns false. Ifclassis neither a class object nor a
type object, aTypeError exception is raised.

issubclass (class1, class2)
Return true ifclass1is a subclass (direct or indirect) ofclass2. A class is considered a subclass of itself. If either
argument is not a class object, aTypeError exception is raised.

len (s)
Return the length (the number of items) of an object. The argument may be a sequence (string, tuple or list) or
a mapping (dictionary).

list (sequence)
Return a list whose items are the same and in the same order assequence’s items. Ifsequenceis already a list,
a copy is made and returned, similar tosequence[:] . For instance,list(’abc’) returns returns[’a’,
’b’, ’c’] andlist((1, 2, 3)) returns[1, 2, 3] .

locals ()
Return a dictionary representing the current local symbol table.Warning: The contents of this dictionary should
not be modified; changes may not affect the values of local variables used by the interpreter.

long (x[, radix])
Convert a string or number to a long integer. If the argument is a string, it must contain a possibly signed number
of arbitrary size, possibly embedded in whitespace; this behaves identical tostring.atol(x) . The radix
argument is interpreted in the same way as forint() , and may only be given whenx is a string. Otherwise,
the argument may be a plain or long integer or a floating point number, and a long integer with the same value
is returned. Conversion of floating point numbers to integers is defined by the C semantics; see the description
of int() .

map(function, list, ...)
Apply function to every item oflist and return a list of the results. If additionallist arguments are passed,
functionmust take that many arguments and is applied to the items of all lists in parallel; if a list is shorter than
another it is assumed to be extended withNone items. If functionis None, the identity function is assumed; if
there are multiple list arguments,map() returns a list consisting of tuples containing the corresponding items
from all lists (i.e. a kind of transpose operation). Thelist arguments may be any kind of sequence; the result is
always a list.

max(s[, args...])
With a single arguments, return the largest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the largest of the arguments.

min (s[, args...])
With a single arguments, return the smallest item of a non-empty sequence (e.g., a string, tuple or list). With
more than one argument, return the smallest of the arguments.

oct (x)
Convert an integer number (of any size) to an octal string. The result is a valid Python expression. Note:
this always yields an unsigned literal, e.g. on a 32-bit machine,oct(-1) yields ’037777777777’ . When
evaluated on a machine with the same word size, this literal is evaluated as -1; at a different word size, it may
turn up as a large positive number or raise anOverflowError exception.

open (filename[, mode[, bufsize]])
Return a new file object (described earlier under Built-in Types). The first two arguments are the same as for

24 Chapter 2. Built-in Types, Exceptions and Functions

stdio ’s fopen() : filenameis the file name to be opened,modeindicates how the file is to be opened:’r’
for reading,’w’ for writing (truncating an existing file), and’a’ opens it for appending (which onsomeUNIX

systems means thatall writes append to the end of the file, regardless of the current seek position).

Modes’r+’ , ’w+’ and’a+’ open the file for updating (note that’w+’ truncates the file). Append’b’ to
the mode to open the file in binary mode, on systems that differentiate between binary and text files (else it is
ignored). If the file cannot be opened,IOError is raised.

If modeis omitted, it defaults to’r’ . When opening a binary file, you should append’b’ to themodevalue
for improved portability. (It’s useful even on systems which don’t treat binary and text files differently, where
it serves as documentation.) The optionalbufsizeargument specifies the file’s desired buffer size: 0 means
unbuffered, 1 means line buffered, any other positive value means use a buffer of (approximately) that size. A
negativebufsizemeans to use the system default, which is usually line buffered for for tty devices and fully
buffered for other files. If omitted, the system default is used.10

ord (c)
Return theASCII value of a string of one character or a Unicode character. E.g.,ord(’a’) returns the integer
97 , ord(u’
u2020’) returns8224 . This is the inverse ofchr() for strings and ofunichr() for Unicode characters.

pow(x, y[, z])
Returnx to the powery; if z is present, returnx to the powery, moduloz (computed more efficiently than
pow(x, y) % z). The arguments must have numeric types. With mixed operand types, the rules for binary
arithmetic operators apply. The effective operand type is also the type of the result; if the result is not expressible
in this type, the function raises an exception; e.g.,pow(2, -1) or pow(2, 35000) is not allowed.

range ([start,] stop[, step])
This is a versatile function to create lists containing arithmetic progressions. It is most often used infor loops.
The arguments must be plain integers. If thestepargument is omitted, it defaults to1. If the start argument
is omitted, it defaults to0. The full form returns a list of plain integers[start, start + step, start + 2
* step, ...] . If stepis positive, the last element is the largeststart + i * stepless thanstop; if stepis
negative, the last element is the largeststart + i * stepgreater thanstop. stepmust not be zero (or else
ValueError is raised). Example:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
[]

raw input ([prompt])
If the promptargument is present, it is written to standard output without a trailing newline. The function then
reads a line from input, converts it to a string (stripping a trailing newline), and returns that. WhenEOF is read,
EOFError is raised. Example:

10Specifying a buffer size currently has no effect on systems that don’t havesetvbuf() . The interface to specify the buffer size is not done
using a method that callssetvbuf() , because that may dump core when called after any I/O has been performed, and there’s no reliable way to
determine whether this is the case.

2.3. Built-in Functions 25

>>> s = raw_input(’--> ’)
--> Monty Python’s Flying Circus
>>> s
"Monty Python’s Flying Circus"

If the readline module was loaded, thenraw input() will use it to provide elaborate line editing and
history features.

reduce (function, sequence[, initializer])
Apply function of two arguments cumulatively to the items ofsequence, from left to right, so as to reduce
the sequence to a single value. For example,reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculates((((1+2)+3)+4)+5) . If the optionalinitializer is present, it is placed before the items of the
sequence in the calculation, and serves as a default when the sequence is empty.

reload (module)
Re-parse and re-initialize an already importedmodule. The argument must be a module object, so it must have
been successfully imported before. This is useful if you have edited the module source file using an external
editor and want to try out the new version without leaving the Python interpreter. The return value is the module
object (i.e. the same as themoduleargument).

There are a number of caveats:

If a module is syntactically correct but its initialization fails, the firstimport statement for it does not bind
its name locally, but does store a (partially initialized) module object insys.modules . To reload the module
you must firstimport it again (this will bind the name to the partially initialized module object) before you
canreload() it.

When a module is reloaded, its dictionary (containing the module’s global variables) is retained. Redefinitions
of names will override the old definitions, so this is generally not a problem. If the new version of a module
does not define a name that was defined by the old version, the old definition remains. This feature can be used
to the module’s advantage if it maintains a global table or cache of objects — with atry statement it can test
for the table’s presence and skip its initialization if desired.

It is legal though generally not very useful to reload built-in or dynamically loaded modules, except forsys ,
main and builtin . In many cases, however, extension modules are not designed to be initialized

more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module usingfrom . . . import . . . , calling reload() for the
other module does not redefine the objects imported from it — one way around this is to re-execute thefrom
statement, another is to useimport and qualified names (module.name) instead.

If a module instantiates instances of a class, reloading the module that defines the class does not affect the
method definitions of the instances — they continue to use the old class definition. The same is true for derived
classes.

repr (object)
Return a string containing a printable representation of an object. This is the same value yielded by conversions
(reverse quotes). It is sometimes useful to be able to access this operation as an ordinary function. For many
types, this function makes an attempt to return a string that would yield an object with the same value when
passed toeval() .

round (x[, n])
Return the floating point valuex rounded ton digits after the decimal point. Ifn is omitted, it defaults to zero.
The result is a floating point number. Values are rounded to the closest multiple of 10 to the power minusn; if
two multiples are equally close, rounding is done away from 0 (so e.g.round(0.5) is 1.0 andround(-
0.5) is -1.0).

setattr (object, name, value)
This is the counterpart ofgetattr() . The arguments are an object, a string and an arbitrary value. The string
may name an existing attribute or a new attribute. The function assigns the value to the attribute, provided the
object allows it. For example,setattr(x, ’ foobar’, 123) is equivalent tox. foobar = 123 .

26 Chapter 2. Built-in Types, Exceptions and Functions

slice ([start,] stop[, step])
Return a slice object representing the set of indices specified byrange(start, stop, step) . Thestart and
steparguments default to None. Slice objects have read-only data attributesstart , stop andstep which
merely return the argument values (or their default). They have no other explicit functionality; however they
are used by Numerical Python and other third party extensions. Slice objects are also generated when extended
indexing syntax is used, e.g. for ‘a[start:stop:step] ’ or ‘ a[start:stop, i] ’.

str (object)
Return a string containing a nicely printable representation of an object. For strings, this returns the string
itself. The difference withrepr(object) is thatstr(object) does not always attempt to return a string that is
acceptable toeval() ; its goal is to return a printable string.

tuple (sequence)
Return a tuple whose items are the same and in the same order assequence’s items. If sequenceis already
a tuple, it is returned unchanged. For instance,tuple(’abc’) returns returns(’a’, ’b’, ’c’) and
tuple([1, 2, 3]) returns(1, 2, 3) .

type (object)
Return the type of anobject. The return value is a type object. The standard moduletypes defines names for
all built-in types. For instance:

>>> import types
>>> if type(x) == types.StringType: print "It’s a string"

unichr (i)
Return the Unicode string of one character whose Unicode code is the integeri, e.g.,unichr(97) returns the
stringu’a’ . This is the inverse oford() for Unicode strings. The argument must be in the range [0..65535],
inclusive.ValueError is raised otherwise. New in version 2.0.

unicode (string[, encoding[, errors]])
Decodesstring using the codec forencoding. Error handling is done according toerrors. The default behavior
is to decode UTF-8 in strict mode, meaning that encoding errors raiseValueError . See also thecodecs
module. New in version 2.0.

vars ([object])
Without arguments, return a dictionary corresponding to the current local symbol table. With a module, class
or class instance object as argument (or anything else that has adict attribute), returns a dictionary
corresponding to the object’s symbol table. The returned dictionary should not be modified: the effects on the
corresponding symbol table are undefined.11

xrange ([start,] stop[, step])
This function is very similar torange() , but returns an “xrange object” instead of a list. This is an opaque
sequence type which yields the same values as the corresponding list, without actually storing them all si-
multaneously. The advantage ofxrange() over range() is minimal (sincexrange() still has to create
the values when asked for them) except when a very large range is used on a memory-starved machine (e.g.
MS-DOS) or when all of the range’s elements are never used (e.g. when the loop is usually terminated with
break).

zip (seq1, ...)
This function returns a list of tuples, where each tuple contains thei-th element from each of the argument
sequences. At least one sequence is required, otherwise aTypeError is raised. The returned list is truncated
in length to the length of the shortest argument sequence. When there are multiple argument sequences which
are all of the same length,zip() is similar tomap() with an initial argument ofNone. With a single sequence
argument, it returns a list of 1-tuples. New in version 2.0.

11In the current implementation, local variable bindings cannot normally be affected this way, but variables retrieved from other scopes (e.g.
modules) can be. This may change.

2.3. Built-in Functions 27

28

CHAPTER

THREE

Python Runtime Services

The modules described in this chapter provide a wide range of services related to the Python interpreter and its inter-
action with its environment. Here’s an overview:

sys Access system-specific parameters and functions.
gc Interface to the cycle-detecting garbage collector.
weakref Support for weak references and weak dictionaries.
fpectl Provide control for floating point exception handling.
atexit Register and execute cleanup functions.
types Names for all built-in types.
UserDict Class wrapper for dictionary objects.
UserList Class wrapper for list objects.
UserString Class wrapper for string objects.
operator All Python’s standard operators as built-in functions.
inspect Extract information and source code from live objects.
traceback Print or retrieve a stack traceback.
linecache This module provides random access to individual lines from text files.
pickle Convert Python objects to streams of bytes and back.
cPickle Faster version ofpickle , but not subclassable.
copy reg Registerpickle support functions.
shelve Python object persistence.
copy Shallow and deep copy operations.
marshal Convert Python objects to streams of bytes and back (with different constraints).
warnings Issue warning messages and control their disposition.
imp Access the implementation of theimport statement.
code Base classes for interactive Python interpreters.
codeop Compile (possibly incomplete) Python code.
pprint Data pretty printer.
repr Alternaterepr() implementation with size limits.
new Interface to the creation of runtime implementation objects.
site A standard way to reference site-specific modules.
user A standard way to reference user-specific modules.

builtin The set of built-in functions.
main The environment where the top-level script is run.

3.1 sys — System-specific parameters and functions

This module provides access to some variables used or maintained by the interpreter and to functions that interact
strongly with the interpreter. It is always available.

argv

29

The list of command line arguments passed to a Python script.argv[0] is the script name (it is operating
system dependent whether this is a full pathname or not). If the command was executed using the-c command
line option to the interpreter,argv[0] is set to the string’-c’ . If no script name was passed to the Python
interpreter,argv has zero length.

byteorder
An indicator of the native byte order. This will have the value’big’ on big-endian (most-signigicant byte first)
platforms, and’little’ on little-endian (least-significant byte first) platforms. New in version 2.0.

builtin module names
A tuple of strings giving the names of all modules that are compiled into this Python interpreter. (This informa-
tion is not available in any other way —modules.keys() only lists the imported modules.)

copyright
A string containing the copyright pertaining to the Python interpreter.

dllhandle
Integer specifying the handle of the Python DLL. Availability: Windows.

displayhook (value)
If valueis notNone, this function prints it tosys.stdout , and saves it in builtin . .

sys.displayhook is called on the result of evaluating an expression entered in an interactive Python
session. The display of these values can be customized by assigning another one-argument function to
sys.displayhook .

excepthook (type, value, traceback)
This function prints out a given traceback and exception tosys.stderr .

When an exception is raised and uncaught, the interpreter callssys.excepthook with three arguments,
the exception class, exception instance, and a traceback object. In an interactive session this happens just
before control is returned to the prompt; in a Python program this happens just before the program exits.
The handling of such top-level exceptions can be customized by assigning another three-argument function
to sys.excepthook .

displayhook
excepthook

These objects contain the original values ofdisplayhook andexcepthook at the start of the program.
They are saved so thatdisplayhook andexcepthook can be restored in case they happen to get replaced
with broken objects.

exc info ()
This function returns a tuple of three values that give information about the exception that is currently being
handled. The information returned is specific both to the current thread and to the current stack frame. If the
current stack frame is not handling an exception, the information is taken from the calling stack frame, or its
caller, and so on until a stack frame is found that is handling an exception. Here, “handling an exception” is
defined as “executing or having executed an except clause.” For any stack frame, only information about the
most recently handled exception is accessible.

If no exception is being handled anywhere on the stack, a tuple containing threeNone values is returned.
Otherwise, the values returned are(type, value, traceback) . Their meaning is:typegets the exception type
of the exception being handled (a string or class object);value gets the exception parameter (itsassociated
valueor the second argument toraise , which is always a class instance if the exception type is a class object);
tracebackgets a traceback object (see the Reference Manual) which encapsulates the call stack at the point
where the exception originally occurred.

Warning: assigning thetracebackreturn value to a local variable in a function that is handling an exception
will cause a circular reference. This will prevent anything referenced by a local variable in the same function or
by the traceback from being garbage collected. Since most functions don’t need access to the traceback, the best
solution is to use something liketype, value = sys.exc info()[:2] to extract only the exception
type and value. If you do need the traceback, make sure to delete it after use (best done with atry ... finally

30 Chapter 3. Python Runtime Services

statement) or to callexc info() in a function that does not itself handle an exception.

exc type
exc value
exc traceback

Deprecated since release 1.5.Useexc info() instead.

Since they are global variables, they are not specific to the current thread, so their use is not safe in a multi-
threaded program. When no exception is being handled,exc type is set toNone and the other two are
undefined.

exec prefix
A string giving the site-specific directory prefix where the platform-dependent Python files are installed; by
default, this is also’/usr/local’ . This can be set at build time with the--exec-prefixargument to the
configure script. Specifically, all configuration files (e.g. the ‘config.h’ header file) are installed in the di-
rectoryexec prefix + ’/lib/python version/config’ , and shared library modules are installed in
exec prefix + ’/lib/python version/lib-dynload’ , whereversionis equal toversion[:3] .

executable
A string giving the name of the executable binary for the Python interpreter, on systems where this makes sense.

exit ([arg])
Exit from Python. This is implemented by raising theSystemExit exception, so cleanup actions specified by
finally clauses oftry statements are honored, and it is possible to intercept the exit attempt at an outer level.
The optional argumentarg can be an integer giving the exit status (defaulting to zero), or another type of object.
If it is an integer, zero is considered “successful termination” and any nonzero value is considered “abnormal
termination” by shells and the like. Most systems require it to be in the range 0-127, and produce undefined
results otherwise. Some systems have a convention for assigning specific meanings to specific exit codes, but
these are generally underdeveloped; Unix programs generally use 2 for command line syntax errors and 1 for
all other kind of errors. If another type of object is passed,None is equivalent to passing zero, and any other
object is printed tosys.stderr and results in an exit code of 1. In particular,sys.exit("some error
message") is a quick way to exit a program when an error occurs.

exitfunc
This value is not actually defined by the module, but can be set by the user (or by a program) to specify a clean-
up action at program exit. When set, it should be a parameterless function. This function will be called when
the interpreter exits. Only one function may be installed in this way; to allow multiple functions which will be
called at termination, use theatexit module. Note: the exit function is not called when the program is killed
by a signal, when a Python fatal internal error is detected, or whenos. exit() is called.

getdefaultencoding ()
Return the name of the current default string encoding used by the Unicode implementation. New in version
2.0.

getrefcount (object)
Return the reference count of theobject. The count returned is generally one higher than you might expect,
because it includes the (temporary) reference as an argument togetrefcount() .

getrecursionlimit ()
Return the current value of the recursion limit, the maximum depth of the Python interpreter stack. This limit
prevents infinite recursion from causing an overflow of the C stack and crashing Python. It can be set by
setrecursionlimit() .

getframe ([depth])
Return a frame object from the call stack. If optional integerdepthis given, return the frame object that many
calls below the top of the stack. If that is deeper than the call stack,ValueError is raised. The default for
depthis zero, returning the frame at the top of the call stack.

This function should be used for internal and specialized purposes only.

hexversion

3.1. sys — System-specific parameters and functions 31

The version number encoded as a single integer. This is guaranteed to increase with each version, including
proper support for non-production releases. For example, to test that the Python interpreter is at least version
1.5.2, use:

if sys.hexversion >= 0x010502F0:
use some advanced feature
...

else:
use an alternative implementation or warn the user
...

This is called ‘hexversion ’ since it only really looks meaningful when viewed as the result of passing it to
the built-inhex() function. Theversion info value may be used for a more human-friendly encoding of
the same information. New in version 1.5.2.

last type
last value
last traceback

These three variables are not always defined; they are set when an exception is not handled and the interpreter
prints an error message and a stack traceback. Their intended use is to allow an interactive user to import a
debugger module and engage in post-mortem debugging without having to re-execute the command that caused
the error. (Typical use is ‘import pdb; pdb.pm() ’ to enter the post-mortem debugger; see the chapter
“The Python Debugger” for more information.)

The meaning of the variables is the same as that of the return values fromexc info() above. (Since there is
only one interactive thread, thread-safety is not a concern for these variables, unlike forexc type etc.)

maxint
The largest positive integer supported by Python’s regular integer type. This is at least 2**31-1. The largest
negative integer is-maxint-1 – the asymmetry results from the use of 2’s complement binary arithmetic.

modules
This is a dictionary that maps module names to modules which have already been loaded. This can be manip-
ulated to force reloading of modules and other tricks. Note that removing a module from this dictionary isnot
the same as callingreload() on the corresponding module object.

path
A list of strings that specifies the search path for modules. Initialized from the environment variable PYTHON-
PATH, or an installation-dependent default.

The first item of this list,path[0] , is the directory containing the script that was used to invoke the Python
interpreter. If the script directory is not available (e.g. if the interpreter is invoked interactively or if the script is
read from standard input),path[0] is the empty string, which directs Python to search modules in the current
directory first. Notice that the script directory is insertedbeforethe entries inserted as a result of PYTHONPATH.

platform
This string contains a platform identifier, e.g.’sunos5’ or ’linux1’ . This can be used to append platform-
specific components topath , for instance.

prefix
A string giving the site-specific directory prefix where the platform independent Python files are installed;
by default, this is the string’/usr/local’ . This can be set at build time with the--prefix argument to
the configure script. The main collection of Python library modules is installed in the directoryprefix
+ ’/lib/python version’ while the platform independent header files (all except ‘config.h’) are stored in
prefix + ’/include/python version’ , whereversionis equal toversion[:3] .

ps1
ps2

Strings specifying the primary and secondary prompt of the interpreter. These are only defined if the interpreter

32 Chapter 3. Python Runtime Services

is in interactive mode. Their initial values in this case are’>>> ’ and ’... ’ . If a non-string object is
assigned to either variable, itsstr() is re-evaluated each time the interpreter prepares to read a new interactive
command; this can be used to implement a dynamic prompt.

setcheckinterval (interval)
Set the interpreter’s “check interval”. This integer value determines how often the interpreter checks for periodic
things such as thread switches and signal handlers. The default is10 , meaning the check is performed every 10
Python virtual instructions. Setting it to a larger value may increase performance for programs using threads.
Setting it to a value<= 0 checks every virtual instruction, maximizing responsiveness as well as overhead.

setdefaultencoding (name)
Set the current default string encoding used by the Unicode implementation. Ifnamedoes not match any
available encoding,LookupError is raised. This function is only intended to be used by thesite module
implementation and, where needed, bysitecustomize . Once used by thesite module, it is removed from
thesys module’s namespace. New in version 2.0.

setprofile (profilefunc)
Set the system’s profile function, which allows you to implement a Python source code profiler in Python.
See the chapter on the Python Profiler. The system’s profile function is called similarly to the system’s trace
function (seesettrace()), but it isn’t called for each executed line of code (only on call and return and when
an exception occurs). Also, its return value is not used, so it can just returnNone.

setrecursionlimit (limit)
Set the maximum depth of the Python interpreter stack tolimit. This limit prevents infinite recursion from
causing an overflow of the C stack and crashing Python.

The highest possible limit is platform-dependent. A user may need to set the limit higher when she has a program
that requires deep recursion and a platform that supports a higher limit. This should be done with care, because
a too-high limit can lead to a crash.

settrace (tracefunc)
Set the system’s trace function, which allows you to implement a Python source code debugger in Python. See
section “How It Works” in the chapter on the Python Debugger.

stdin
stdout
stderr

File objects corresponding to the interpreter’s standard input, output and error streams.stdin is used for
all interpreter input except for scripts but including calls toinput() andraw input() . stdout is used
for the output ofprint and expression statements and for the prompts ofinput() and raw input() .
The interpreter’s own prompts and (almost all of) its error messages go tostderr . stdout andstderr
needn’t be built-in file objects: any object is acceptable as long as it has awrite() method that takes a
string argument. (Changing these objects doesn’t affect the standard I/O streams of processes executed by
os.popen() , os.system() or theexec*() family of functions in theos module.)

stdin
stdout
stderr

These objects contain the original values ofstdin , stderr andstdout at the start of the program. They
are used during finalization, and could be useful to restore the actual files to known working file objects in case
they have been overwritten with a broken object.

tracebacklimit
When this variable is set to an integer value, it determines the maximum number of levels of traceback infor-
mation printed when an unhandled exception occurs. The default is1000 . When set to 0 or less, all traceback
information is suppressed and only the exception type and value are printed.

version
A string containing the version number of the Python interpreter plus additional information on the build num-

3.1. sys — System-specific parameters and functions 33

ber and compiler used. It has a value of the form’ version (# build number, build date, build time)
[compiler]’ . The first three characters are used to identify the version in the installation directories (where
appropriate on each platform). An example:

>>> import sys
>>> sys.version
’1.5.2 (#0 Apr 13 1999, 10:51:12) [MSC 32 bit (Intel)]’

version info
A tuple containing the five components of the version number:major, minor, micro, releaselevel, andserial. All
values exceptreleaselevelare integers; the release level is’alpha’ , ’beta’ , ’candidate’ , or ’final’ .
Theversion info value corresponding to the Python version 2.0 is(2, 0, 0, ’final’, 0) . New
in version 2.0.

winver
The version number used to form registry keys on Windows platforms. This is stored as string resource 1000 in
the Python DLL. The value is normally the first three characters ofversion . It is provided in thesys module
for informational purposes; modifying this value has no effect on the registry keys used by Python. Availability:
Windows.

3.2 gc — Garbage Collector interface

The gc module is only available if the interpreter was built with the optional cyclic garbage detector (enabled by
default). If this was not enabled, anImportError is raised by attempts to import this module.

This module provides an interface to the optional garbage collector. It provides the ability to disable the collector, tune
the collection frequency, and set debugging options. It also provides access to unreachable objects that the collector
found but cannot free. Since the collector supplements the reference counting already used in Python, you can disable
the collector if you are sure your program does not create reference cycles. Automatic collection can be disabled by
callinggc.disable() . To debug a leaking program callgc.set debug(gc.DEBUG LEAK) .

Thegc module provides the following functions:

enable ()
Enable automatic garbage collection.

disable ()
Disable automatic garbage collection.

isenabled ()
Returns true if automatic collection is enabled.

collect ()
Run a full collection. All generations are examined and the number of unreachable objects found is returned.

set debug (flags)
Set the garbage collection debugging flags. Debugging information will be written tosys.stderr . See below
for a list of debugging flags which can be combined using bit operations to control debugging.

get debug ()
Return the debugging flags currently set.

set threshold (threshold0[, threshold1[, threshold2]])
Set the garbage collection thresholds (the collection frequency). Settingthreshold0to zero disables collection.

The GC classifies objects into three generations depending on how many collection sweeps they have survived.
New objects are placed in the youngest generation (generation0). If an object survives a collection it is moved
into the next older generation. Since generation2 is the oldest generation, objects in that generation remain
there after a collection. In order to decide when to run, the collector keeps track of the number object allocations

34 Chapter 3. Python Runtime Services

and deallocations since the last collection. When the number of allocations minus the number of deallocations
exceedsthreshold0, collection starts. Initially only generation0 is examined. If generation0 has been examined
more thanthreshold1times since generation1 has been examined, then generation1 is examined as well.
Similarly, threshold2controls the number of collections of generation1 before collecting generation2.

get threshold ()
Return the current collection thresholds as a tuple of(threshold0, threshold1, threshold2) .

The following variable is provided for read-only access:

garbage
A list of objects which the collector found to be unreachable but could not be freed (uncollectable objects).
Objects that have del () methods and create part of a reference cycle cause the entire reference cycle to
be uncollectable. IfDEBUGSAVEALLis set, then all unreachable objects will be added to this list rather than
freed.

The following constants are provided for use withset debug() :

DEBUGSTATS
Print statistics during collection. This information can be useful when tuning the collection frequency.

DEBUGCOLLECTABLE
Print information on collectable objects found.

DEBUGUNCOLLECTABLE
Print information of uncollectable objects found (objects which are not reachable but cannot be freed by the
collector). These objects will be added to thegarbage list.

DEBUGINSTANCES
WhenDEBUGCOLLECTABLEor DEBUGUNCOLLECTABLEis set, print information about instance objects
found.

DEBUGOBJECTS
WhenDEBUGCOLLECTABLEor DEBUGUNCOLLECTABLEis set, print information about objects other than
instance objects found.

DEBUGSAVEALL
When set, all unreachable objects found will be appended togarbagerather than being freed. This can be useful
for debugging a leaking program.

DEBUGLEAK
The debugging flags necessary for the collector to print information about a leaking program (equal to
DEBUGCOLLECTABLE | DEBUGUNCOLLECTABLE | DEBUGINSTANCES | DEBUGOBJECTS
| DEBUG SAVEALL).

3.3 weakref — Weak references

New in version 2.1.

Theweakref module allows the Python programmer to createweak referencesto objects.

XXX — need to say more here!

Not all objects can be weakly referenced; those objects which do include class instances, functions written in Python
(but not in C), and methods (both bound and unbound). Extension types can easily be made to support weak references;
see section 3.3.3, “Weak References in Extension Types,” for more information.

ref (object[, callback])
Return a weak reference toobject. If callback is provided, it will be called when the object is about to be
finalized; the weak reference object will be passed as the only parameter to the callback; the referent will no

3.3. weakref — Weak references 35

longer be available. The original object can be retrieved by calling the reference object, if the referent is still
alive.

It is allowable for many weak references to be constructed for the same object. Callbacks registered for each
weak reference will be called from the most recently registered callback to the oldest registered callback.

Exceptions raised by the callback will be noted on the standard error output, but cannot be propagated; they are
handled in exactly the same way as exceptions raised from an object’sdel () method.

Weak references are hashable if theobjectis hashable. They will maintain their hash value even after theobject
was deleted. Ifhash() is called the first time only after theobjectwas deleted, the call will raiseTypeError .

Weak references support test for equality, but not ordering. If theobject is still alive, to references are equal
if the objects are equal (regardless of thecallback). If the objecthas been deleted, they are equal iff they are
identical.

proxy (object[, callback])
Return a proxy toobjectwhich uses a weak reference. This supports use of the proxy in most contexts instead
of requiring the explicit dereferencing used with weak reference objects. The returned object will have a type
of eitherProxyType or CallableProxyType , depending on whetherobjectis callable. Proxy objects are
not hashable regardless of the referent; this avoids a number of problems related to their fundamentally mutable
nature, and prevent their use as dictionary keys.callbackis the same as the parameter of the same name to the
ref() function.

getweakrefcount (object)
Return the number of weak references and proxies which refer toobject.

getweakrefs (object)
Return a list of all weak reference and proxy objects which refer toobject.

classWeakKeyDictionary ([dict])
Mapping class that references keys weakly. Entries in the dictionary will be discarded when there is no longer a
strong reference to the key. This can be used to associate additional data with an object owned by other parts of
an application without adding attributes to those objects. This can be especially useful with objects that override
attribute accesses.

classWeakValueDictionary ([dict])
Mapping class that references values weakly. Entries in the dictionary will be discarded when no strong refer-
ence to the value exists anymore.

ReferenceType
The type object for weak references objects.

ProxyType
The type object for proxies of objects which are not callable.

CallableProxyType
The type object for proxies of callable objects.

ProxyTypes
Sequence containing all the type objects for proxies. This can make it simpler to test if an object is a proxy
without being dependent on naming both proxy types.

exceptionReferenceError
Exception raised when a proxy object is used but the underlying object has been collected.

See Also:

PEP 0205, “Weak References”
The proposal and rationale for this feature, including links to earlier implementations and information about
similar features in other languages.

36 Chapter 3. Python Runtime Services

3.3.1 Weak Reference Objects

Weak reference objects have no attributes or methods, but do allow the referent to be obtained, if it still exists, by
calling it:

>>> import weakref
>>> class Object:
... pass
...
>>> o = Object()
>>> r = weakref.ref(o)
>>> o2 = r()
>>> o is o2
1

If the referent no longer exists, calling the reference object returnsNone:

>>> del o, o2
>>> print r()
None

Testing that a weak reference object is still live should be done using the expressionref .get() is not None .
Normally, application code that needs to use a reference object should follow this pattern:

o = ref.get()
if o is None:

referent has been garbage collected
print "Object has been allocated; can’t frobnicate."

else:
print "Object is still live!"
o.do_something_useful()

Using a separate test for “liveness” creates race conditions in threaded applications; another thread can cause a weak
reference to become invalidated before theget() method is called; the idiom shown above is safe in threaded
applications as well as single-threaded applications.

3.3.2 Example

This simple example shows how an application can use objects IDs to retrieve objects that it has seen before. The IDs
of the objects can then be used in other data structures without forcing the objects to remain alive, but the objects can
still be retrieved by ID if they do.

3.3. weakref — Weak references 37

import weakref

_id2obj_dict = weakref.WeakValueDictionary()

def remember(obj):
_id2obj_dict[id(obj)] = obj

def id2obj(id):
return _id2obj_dict.get(id)

3.3.3 Weak References in Extension Types

One of the goals of the implementation is to allow any type to participate in the weak reference mechanism without
incurring the overhead on those objects which do not benefit by weak referencing (such as numbers).

For an object to be weakly referencable, the extension must include aPyObject * field in the instance structure for
the use of the weak reference mechanism; it must be initialized toNULLby the object’s constructor. It must also set
thetp weaklistoffset field of the corresponding type object to the offset of the field. For example, the instance
type is defined with the following structure:

typedef struct {
PyObject_HEAD
PyClassObject *in_class; /* The class object */
PyObject *in_dict; /* A dictionary */
PyObject *in_weakreflist; /* List of weak references */

} PyInstanceObject;

The statically-declared type object for instances is defined this way:

PyTypeObject PyInstance_Type = {
PyObject_HEAD_INIT(&PyType_Type)
0,
"instance",

/* Lots of stuff omitted for brevity... */

offsetof(PyInstanceObject, in_weakreflist) /* tp_weaklistoffset */
};

The only further addition is that the destructor needs to call the weak reference manager to clear any weak references.
This should be done before any other parts of the destruction have occurred:

38 Chapter 3. Python Runtime Services

static void
instance_dealloc(PyInstanceObject *inst)
{

/* Allocate tempories if needed, but do not begin
destruction just yet.

*/

PyObject_ClearWeakRefs((PyObject *) inst);

/* Proceed with object destuction normally. */
}

3.4 fpectl — Floating point exception control

Most computers carry out floating point operations in conformance with the so-called IEEE-754 standard. On any real
computer, some floating point operations produce results that cannot be expressed as a normal floating point value.
For example, try

>>> import math
>>> math.exp(1000)
inf
>>> math.exp(1000) / math.exp(1000)
nan

(The example above will work on many platforms. DEC Alpha may be one exception.) ”Inf” is a special, non-numeric
value in IEEE-754 that stands for ”infinity”, and ”nan” means ”not a number.” Note that, other than the non-numeric
results, nothing special happened when you asked Python to carry out those calculations. That is in fact the default
behaviour prescribed in the IEEE-754 standard, and if it works for you, stop reading now.

In some circumstances, it would be better to raise an exception and stop processing at the point where the faulty
operation was attempted. Thefpectl module is for use in that situation. It provides control over floating point
units from several hardware manufacturers, allowing the user to turn on the generation ofSIGFPE whenever any of
the IEEE-754 exceptions Division by Zero, Overflow, or Invalid Operation occurs. In tandem with a pair of wrapper
macros that are inserted into the C code comprising your python system,SIGFPE is trapped and converted into the
PythonFloatingPointError exception.

Thefpectl module defines the following functions and may raise the given exception:

turnon sigfpe ()
Turn on the generation ofSIGFPE, and set up an appropriate signal handler.

turnoff sigfpe ()
Reset default handling of floating point exceptions.

exceptionFloatingPointError
After turnon sigfpe() has been executed, a floating point operation that raises one of the IEEE-754 ex-
ceptions Division by Zero, Overflow, or Invalid operation will in turn raise this standard Python exception.

3.4.1 Example

The following example demonstrates how to start up and test operation of thefpectl module.

3.4. fpectl — Floating point exception control 39

>>> import fpectl
>>> import fpetest
>>> fpectl.turnon_sigfpe()
>>> fpetest.test()
overflow PASS
FloatingPointError: Overflow

div by 0 PASS
FloatingPointError: Division by zero

[more output from test elided]
>>> import math
>>> math.exp(1000)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
FloatingPointError: in math_1

3.4.2 Limitations and other considerations

Setting up a given processor to trap IEEE-754 floating point errors currently requires custom code on a per-architecture
basis. You may have to modifyfpectl to control your particular hardware.

Conversion of an IEEE-754 exception to a Python exception requires that the wrapper macros
PyFPE START PROTECTand PyFPE END PROTECTbe inserted into your code in an appropriate fash-
ion. Python itself has been modified to support thefpectl module, but many other codes of interest to numerical
analysts have not.

Thefpectl module is not thread-safe.

See Also:

Some files in the source distribution may be interesting in learning more about how this module operates. The include
file ‘ Include/pyfpe.h’ discusses the implementation of this module at some length. ‘Modules/fpetestmodule.c’ gives
several examples of use. Many additional examples can be found in ‘Objects/floatobject.c’.

3.5 atexit — Exit handlers

New in version 2.0.

Theatexit module defines a single function to register cleanup functions. Functions thus registered are automati-
cally executed upon normal interpreter termination.

Note: the functions registered via this module are not called when the program is killed by a signal, when a Python
fatal internal error is detected, or whenos. exit() is called.

This is an alternate interface to the functionality provided by thesys.exitfunc variable.

Note: This module is unlikely to work correctly when used with other code that setssys.exitfunc . In partic-
ular, other core Python modules are free to useatexit without the programmer’s knowledge. Authors who use
sys.exitfunc should convert their code to useatexit instead. The simplest way to convert code that sets
sys.exitfunc is to importatexit and register the function that had been bound tosys.exitfunc .

register (func[, *args[, **kargs]])
Registerfuncas a function to be executed at termination. Any optional arguments that are to be passed tofunc
must be passed as arguments toregister() .

At normal program termination (for instance, ifsys.exit() is called or the main module’s execution com-

40 Chapter 3. Python Runtime Services

pletes), all functions registered are called in last in, first out order. The assumption is that lower level modules
will normally be imported before higher level modules and thus must be cleaned up later.

See Also:

Modulereadline (section 7.16):
Useful example ofatexit to read and writereadline history files.

3.5.1 atexit Example

The following simple example demonstrates how a module can initialize a counter from a file when it is imported
and save the counter’s updated value automatically when the program terminates without relying on the application
making an explicit call into this module at termination.

try:
_count = int(open("/tmp/counter").read())

except IOError:
_count = 0

def incrcounter(n):
global _count
_count = _count + n

def savecounter():
open("/tmp/counter", "w").write("%d" % _count)

import atexit
atexit.register(savecounter)

3.6 types — Names for all built-in types

This module defines names for all object types that are used by the standard Python interpreter, but not for the types
defined by various extension modules. It is safe to use ‘from types import * ’ — the module does not export
any names besides the ones listed here. New names exported by future versions of this module will all end in ‘Type ’.

Typical use is for functions that do different things depending on their argument types, like the following:

from types import *
def delete(list, item):

if type(item) is IntType:
del list[item]

else:
list.remove(item)

The module defines the following names:

NoneType
The type ofNone.

TypeType
The type of type objects (such as returned bytype()).

IntType
The type of integers (e.g.1).

3.6. types — Names for all built-in types 41

LongType
The type of long integers (e.g.1L).

FloatType
The type of floating point numbers (e.g.1.0).

ComplexType
The type of complex numbers (e.g.1.0j).

StringType
The type of character strings (e.g.’Spam’).

UnicodeType
The type of Unicode character strings (e.g.u’Spam’).

TupleType
The type of tuples (e.g.(1, 2, 3, ’Spam’)).

ListType
The type of lists (e.g.[0, 1, 2, 3]).

DictType
The type of dictionaries (e.g.{’Bacon’: 1, ’Ham’: 0}).

DictionaryType
An alternate name forDictType .

FunctionType
The type of user-defined functions and lambdas.

LambdaType
An alternate name forFunctionType .

CodeType
The type for code objects such as returned bycompile() .

ClassType
The type of user-defined classes.

InstanceType
The type of instances of user-defined classes.

MethodType
The type of methods of user-defined class instances.

UnboundMethodType
An alternate name forMethodType .

BuiltinFunctionType
The type of built-in functions likelen() or sys.exit() .

BuiltinMethodType
An alternate name forBuiltinFunction .

ModuleType
The type of modules.

FileType
The type of open file objects such assys.stdout .

XRangeType
The type of range objects returned byxrange() .

SliceType
The type of objects returned byslice() .

42 Chapter 3. Python Runtime Services

EllipsisType
The type ofEllipsis .

TracebackType
The type of traceback objects such as found insys.exc traceback .

FrameType
The type of frame objects such as found intb.tb frame if tb is a traceback object.

BufferType
The type of buffer objects created by thebuffer() function.

3.7 UserDict — Class wrapper for dictionary objects

This module defines a class that acts as a wrapper around dictionary objects. It is a useful base class for your own
dictionary-like classes, which can inherit from them and override existing methods or add new ones. In this way one
can add new behaviors to dictionaries.

TheUserDict module defines theUserDict class:

classUserDict ([initialdata])
Class that simulates a dictionary. The instance’s contents are kept in a regular dictionary, which is accessible
via thedata attribute ofUserDict instances. Ifinitialdata is provided,data is initialized with its contents;
note that a reference toinitialdata will not be kept, allowing it be used used for other purposes.

In addition to supporting the methods and operations of mappings (see section 2.1.6),UserDict instances provide
the following attribute:

data
A real dictionary used to store the contents of theUserDict class.

3.8 UserList — Class wrapper for list objects

This module defines a class that acts as a wrapper around list objects. It is a useful base class for your own list-like
classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to lists.

TheUserList module defines theUserList class:

classUserList ([list])
Class that simulates a list. The instance’s contents are kept in a regular list, which is accessible via thedata
attribute ofUserList instances. The instance’s contents are initially set to a copy oflist, defaulting to the
empty list[] . list can be either a regular Python list, or an instance ofUserList (or a subclass).

In addition to supporting the methods and operations of mutable sequences (see section 2.1.5),UserList instances
provide the following attribute:

data
A real Python list object used to store the contents of theUserList class.

Subclassing requirements:Subclasses ofUserList are expect to offer a constructor which can be called with
either no arguments or one argument. List operations which return a new sequence attempt to create an instance of the
actual implementation class. To do so, it assumes that the constructor can be called with a single parameter, which is
a sequence object used as a data source.

If a derived class does not wish to comply with this requirement, all of the special methods supported by this class will
need to be overridden; please consult the sources for information about the methods which need to be provided in that
case.

3.7. UserDict — Class wrapper for dictionary objects 43

Changed in version 2.0: Python versions 1.5.2 and 1.6 also required that the constructor be callable with no parameters,
and offer a mutabledata attribute. Earlier versions of Python did not attempt to create instances of the derived class.

3.9 UserString — Class wrapper for string objects

This module defines a class that acts as a wrapper around string objects. It is a useful base class for your own string-
like classes, which can inherit from them and override existing methods or add new ones. In this way one can add new
behaviors to strings.

It should be noted that these classes are highly inefficient compared to real string or Unicode objects; this is especially
the case forMutableString .

TheUserString module defines the following classes:

classUserString ([sequence])
Class that simulates a string or a Unicode string object. The instance’s content is kept in a regular string or
Unicode string object, which is accessible via thedata attribute ofUserString instances. The instance’s
contents are initially set to a copy ofsequence. sequencecan be either a regular Python string or Unicode string,
an instance ofUserString (or a subclass) or an arbitrary sequence which can be converted into a string using
the built-instr() function.

classMutableString ([sequence])
This class is derived from theUserString above and redefines strings to bemutable. Mutable strings can’t
be used as dictionary keys, because dictionaries requireimmutableobjects as keys. The main intention of this
class is to serve as an educational example for inheritance and necessity to remove (override) thehash ()
method in order to trap attempts to use a mutable object as dictionary key, which would be otherwise very error
prone and hard to track down.

In addition to supporting the methods and operations of string and Unicode objects (see section 2.1.5, “String Meth-
ods”),UserString instances provide the following attribute:

data
A real Python string or Unicode object used to store the content of theUserString class.

3.10 operator — Standard operators as functions.

Theoperator module exports a set of functions implemented in C corresponding to the intrinsic operators of Python.
For example,operator.add(x, y) is equivalent to the expressionx+y . The function names are those used for
special class methods; variants without leading and trailing ‘’ are also provided for convenience.

Theoperator module defines the following functions:

add (a, b)
add (a, b)

Returna + b, for a andb numbers.

sub (a, b)
sub (a, b)

Returna - b.

mul (a, b)
mul (a, b)

Returna * b, for a andb numbers.

div (a, b)
div (a, b)

Returna / b.

44 Chapter 3. Python Runtime Services

mod(a, b)
mod (a, b)

Returna %b.

neg (o)
neg (o)

Returno negated.

pos (o)
pos (o)

Returno positive.

abs (o)
abs (o)

Return the absolute value ofo.

inv (o)
invert (o)

inv (o)
invert (o)

Return the bitwise inverse of the numbero. The namesinvert() and invert () were added in Python
2.0.

lshift (a, b)
lshift (a, b)

Returna shifted left byb.

rshift (a, b)
rshift (a, b)

Returna shifted right byb.

and (a, b)
and (a, b)

Return the bitwise and ofa andb.

or (a, b)
or (a, b)

Return the bitwise or ofa andb.

xor (a, b)
xor (a, b)

Return the bitwise exclusive or ofa andb.

not (o)
not (o)

Return the outcome ofnot o. (Note that there is no not () method for object instances; only the inter-
preter core defines this operation.)

truth (o)
Return1 if o is true, and 0 otherwise.

concat (a, b)
concat (a, b)

Returna + b for a andb sequences.

repeat (a, b)
repeat (a, b)

Returna * b wherea is a sequence andb is an integer.

contains (a, b)
contains (a, b)

3.10. operator — Standard operators as functions. 45

Return the outcome of the testb in a. Note the reversed operands. The namecontains () was added
in Python 2.0.

sequenceIncludes (...)
Deprecated since release 2.0.Usecontains() instead.

Alias for contains() .

countOf (a, b)
Return the number of occurrences ofb in a.

indexOf (a, b)
Return the index of the first of occurrence ofb in a.

getitem (a, b)
getitem (a, b)

Return the value ofa at indexb.

setitem (a, b, c)
setitem (a, b, c)

Set the value ofa at indexb to c.

delitem (a, b)
delitem (a, b)

Remove the value ofa at indexb.

getslice (a, b, c)
getslice (a, b, c)

Return the slice ofa from indexb to indexc-1 .

setslice (a, b, c, v)
setslice (a, b, c, v)

Set the slice ofa from indexb to indexc-1 to the sequencev.

delslice (a, b, c)
delslice (a, b, c)

Delete the slice ofa from indexb to indexc-1 .

The operator also defines a few predicates to test the type of objects.Note: Be careful not to misinterpret the
results of these functions; onlyisCallable() has any measure of reliability with instance objects. For example:

>>> class C:
... pass
...
>>> import operator
>>> o = C()
>>> operator.isMappingType(o)
1

isCallable (o)
Deprecated since release 2.0.Use thecallable() built-in function instead.

Returns true if the objecto can be called like a function, otherwise it returns false. True is returned for functions,
bound and unbound methods, class objects, and instance objects which support thecall () method.

isMappingType (o)
Returns true if the objecto supports the mapping interface. This is true for dictionaries and all instance objects.
Warning: There is no reliable way to test if an instance supports the complete mapping protocol since the
interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isNumberType (o)

46 Chapter 3. Python Runtime Services

Returns true if the objecto represents a number. This is true for all numeric types implemented in C, and for
all instance objects.Warning: There is no reliable way to test if an instance supports the complete numeric
interface since the interface itself is ill-defined. This makes this test less useful than it otherwise might be.

isSequenceType (o)
Returns true if the objecto supports the sequence protocol. This returns true for all objects which define se-
quence methods in C, and for all instance objects.Warning: There is no reliable way to test if an instance
supports the complete sequence interface since the interface itself is ill-defined. This makes this test less useful
than it otherwise might be.

Example: Build a dictionary that maps the ordinals from0 to 256 to their character equivalents.

>>> import operator
>>> d = {}
>>> keys = range(256)
>>> vals = map(chr, keys)
>>> map(operator.setitem, [d]*len(keys), keys, vals)

3.10.1 Mapping Operators to Functions

This table shows how abstract operations correspond to operator symbols in the Python syntax and the functions in the
operator module.

Operation Syntax Function
Addition a + b add(a, b)
Concatenation seq1 + seq2 concat(seq1, seq2)
Containment Test o in seq contains(seq, o)
Division a / b div(a, b)
Bitwise And a & b and (a, b)
Bitwise Exclusive Or a ˆ b xor(a, b)
Bitwise Inversion ˜ a invert(a)
Bitwise Or a | b or (a, b)
Indexed Assignment o[k] = v setitem(o, k, v)
Indexed Deletion del o[k] delitem(o, k)
Indexing o[k] getitem(o, k)
Left Shift a << b lshift(a, b)
Modulo a % b mod(a, b)
Multiplication a * b mul(a, b)
Negation (Arithmetic) - a neg(a)
Negation (Logical) not a not (a)
Right Shift a >> b rshift(a, b)
Sequence Repitition seq * i repeat(seq, i)
Slice Assignment seq[i: j] = values setslice(seq, i, j, values)
Slice Deletion del seq[i: j] delslice(seq, i, j)
Slicing seq[i: j] getslice(seq, i, j)
String Formatting s % o mod(s, o)
Subtraction a - b sub(a, b)
Truth Test o truth(o)

3.11 inspect — Inspect live objects

3.11. inspect — Inspect live objects 47

New in version 2.1.

The inspect module provides several useful functions to help get information about live objects such as modules,
classes, methods, functions, tracebacks, frame objects, and code objects. For example, it can help you examine the
contents of a class, retrieve the source code of a method, extract and format the argument list for a function, or get all
the information you need to display a detailed traceback.

There are four main kinds of services provided by this module: type checking, getting source code, inspecting classes
and functions, and examining the interpreter stack.

3.11.1 Types and members

Thegetmembers() function retrieves the members of an object such as a class or module. The nine functions whose
names begin with “is” are mainly provided as convenient choices for the second argument togetmembers() . They
also help you determine when you can expect to find the following special attributes:

48 Chapter 3. Python Runtime Services

Type Attribute Description
module doc documentation string

file filename (missing for built-in modules)
class doc documentation string

module name of module in which this class was defined
method doc documentation string

name name with which this method was defined
im class class object in which this method belongs
im func function object containing implementation of method
im self instance to which this method is bound, orNone

function doc documentation string
name name with which this function was defined

func code code object containing compiled function bytecode
func defaults tuple of any default values for arguments
func doc (same as doc)
func globals global namespace in which this function was defined
func name (same as name)

traceback tb frame frame object at this level
tb lasti index of last attempted instruction in bytecode
tb lineno current line number in Python source code
tb next next inner traceback object (called by this level)

frame f back next outer frame object (this frame’s caller)
f builtins built-in namespace seen by this frame
f code code object being executed in this frame
f exc traceback traceback if raised in this frame, orNone
f exc type exception type if raised in this frame, orNone
f exc value exception value if raised in this frame, orNone
f globals global namespace seen by this frame
f lasti index of last attempted instruction in bytecode
f lineno current line number in Python source code
f locals local namespace seen by this frame
f restricted 0 or 1 if frame is in restricted execution mode
f trace tracing function for this frame, orNone

code co argcount number of arguments (not including * or ** args)
co code string of raw compiled bytecode
co consts tuple of constants used in the bytecode
co filename name of file in which this code object was created
co firstlineno number of first line in Python source code
co flags bitmap: 1=optimized| 2=newlocals| 4=*arg | 8=**arg
co lnotab encoded mapping of line numbers to bytecode indices
co name name with which this code object was defined
co names tuple of names of local variables
co nlocals number of local variables
co stacksize virtual machine stack space required
co varnames tuple of names of arguments and local variables

builtin doc documentation string
name original name of this function or method
self instance to which a method is bound, orNone

getmembers (object[, predicate])
Return all the members of an object in a list of (name, value) pairs sorted by name. If the optionalpredicate
argument is supplied, only members for which the predicate returns a true value are included.

getmoduleinfo (path)
Return a tuple of values that describe how Python will interpret the file identified bypath if it is a module, or

3.11. inspect — Inspect live objects 49

None if it would not be identified as a module. The return tuple is(name, suffix, mode, mtype) , where
nameis the name of the module without the name of any enclosing package,suffixis the trailing part of the file
name (which may not be a dot-delimited extension),modeis theopen() mode that would be used (’r’ or
’rb’), andmtypeis an integer giving the type of the module.mtypewill have a value which can be compared
to the constants defined in theimp module; see the documentation for that module for more information on
module types.

getmodulename (path)
Return the name of the module named by the filepath, without including the names of enclosing packages. This
uses the same algortihm as the interpreter uses when searching for modules. If the name cannot be matched
according to the interpreter’s rules,None is returned.

ismodule (object)
Return true if the object is a module.

isclass (object)
Return true if the object is a class.

ismethod (object)
Return true if the object is a method.

isfunction (object)
Return true if the object is a Python function or unnamed (lambda) function.

istraceback (object)
Return true if the object is a traceback.

isframe (object)
Return true if the object is a frame.

iscode (object)
Return true if the object is a code.

isbuiltin (object)
Return true if the object is a built-in function.

isroutine (object)
Return true if the object is a user-defined or built-in function or method.

3.11.2 Retrieving source code

getdoc (object)
Get the documentation string for an object. All tabs are expanded to spaces. To clean up docstrings that are
indented to line up with blocks of code, any whitespace than can be uniformly removed from the second line
onwards is removed.

getcomments (object)
Return in a single string any lines of comments immediately preceding the object’s source code (for a class,
function, or method), or at the top of the Python source file (if the object is a module).

getfile (object)
Return the name of the (text or binary) file in which an object was defined. This will fail with aTypeError if
the object is a built-in module, class, or function.

getmodule (object)
Try to guess which module an object was defined in.

getsourcefile (object)
Return the name of the Python source file in which an object was defined. This will fail with aTypeError if
the object is a built-in module, class, or function.

50 Chapter 3. Python Runtime Services

getsourcelines (object)
Return a list of source lines and starting line number for an object. The argument may be a module, class,
method, function, traceback, frame, or code object. The source code is returned as a list of the lines correspond-
ing to the object and the line number indicates where in the original source file the first line of code was found.
An IOError is raised if the source code cannot be retrieved.

getsource (object)
Return the text of the source code for an object. The argument may be a module, class, method, function,
traceback, frame, or code object. The source code is returned as a single string. AnIOError is raised if the
source code cannot be retrieved.

3.11.3 Classes and functions

getclasstree (classes[, unique])
Arrange the given list of classes into a hierarchy of nested lists. Where a nested list appears, it contains classes
derived from the class whose entry immediately precedes the list. Each entry is a 2-tuple containing a class and
a tuple of its base classes. If theuniqueargument is true, exactly one entry appears in the returned structure
for each class in the given list. Otherwise, classes using multiple inheritance and their descendants will appear
multiple times.

getargspec (func)
Get the names and default values of a function’s arguments. A tuple of four things is returned:(args, varargs,
varkw, defaults) . args is a list of the argument names (it may contain nested lists).varargsandvarkware the
names of the* and** arguments orNone. defaultsis a tuple of default argument values; if this tuple hasn
elements, they correspond to the lastn elements listed inargs.

getargvalues (frame)
Get information about arguments passed into a particular frame. A tuple of four things is returned:(args,
varargs, varkw, locals) . args is a list of the argument names (it may contain nested lists).varargs and
varkware the names of the* and** arguments orNone. locals is the locals dictionary of the given frame.

formatargspec (args[, varargs, varkw, defaults, argformat, varargsformat, varkwformat, defaultformat])
Format a pretty argument spec from the four values returned bygetargspec() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

formatargvalues (args[, varargs, varkw, locals, argformat, varargsformat, varkwformat, valueformat])
Format a pretty argument spec from the four values returned bygetargvalues() . The other four arguments
are the corresponding optional formatting functions that are called to turn names and values into strings.

3.11.4 The interpreter stack

When the following functions return “frame records,” each record is a tuple of six items: the frame object, the filename,
the line number of the current line, the function name, a list of lines of context from the source code, and the index of
the current line within that list. The optionalcontextargument specifies the number of lines of context to return, which
are centered around the current line.

getouterframes (frame[, context])
Get a list of frame records for a frame and all higher (calling) frames.

getinnerframes (traceback[, context])
Get a list of frame records for a traceback’s frame and all lower frames.

currentframe ()
Return the frame object for the caller’s stack frame.

stack ([context])
Return a list of frame records for the stack above the caller’s frame.

3.11. inspect — Inspect live objects 51

trace ([context])
Return a list of frame records for the stack below the current exception.

3.12 traceback — Print or retrieve a stack traceback

This module provides a standard interface to extract, format and print stack traces of Python programs. It exactly
mimics the behavior of the Python interpreter when it prints a stack trace. This is useful when you want to print stack
traces under program control, e.g. in a “wrapper” around the interpreter.

The module uses traceback objects — this is the object type that is stored in the variablessys.exc traceback
andsys.last traceback and returned as the third item fromsys.exc info() .

The module defines the following functions:

print tb (traceback[, limit[, file]])
Print up tolimit stack trace entries fromtraceback. If limit is omitted orNone, all entries are printed. Iffile
is omitted orNone, the output goes tosys.stderr ; otherwise it should be an open file or file-like object to
receive the output.

print exception (type, value, traceback[, limit[, file]])
Print exception information and up tolimit stack trace entries fromtracebackto file. This differs from
print tb() in the following ways: (1) iftracebackis notNone, it prints a header ‘Traceback (most
recent call last): ’; (2) it prints the exceptiontypeandvalueafter the stack trace; (3) iftypeis Syn-
taxError andvaluehas the appropriate format, it prints the line where the syntax error occurred with a caret
indicating the approximate position of the error.

print exc ([limit[, file]])
This is a shorthand for ‘print exception(sys.exc type, sys.exc value,
sys.exc traceback, limit, file) ’. (In fact, it usessys.exc info() to retrieve the same infor-
mation in a thread-safe way.)

print last ([limit[, file]])
This is a shorthand for ‘print exception(sys.last type, sys.last value,
sys.last traceback, limit, file) ’.

print stack ([f [, limit[, file]]])
This function prints a stack trace from its invocation point. The optionalf argument can be used to spec-
ify an alternate stack frame to start. The optionallimit and file arguments have the same meaning as for
print exception() .

extract tb (traceback[, limit])
Return a list of up tolimit “pre-processed” stack trace entries extracted from the traceback objecttraceback.
It is useful for alternate formatting of stack traces. Iflimit is omitted orNone, all entries are extracted. A
“pre-processed” stack trace entry is a quadruple (filename, line number, function name, text) representing the
information that is usually printed for a stack trace. Thetext is a string with leading and trailing whitespace
stripped; if the source is not available it isNone.

extract stack ([f [, limit]])
Extract the raw traceback from the current stack frame. The return value has the same format as forex-
tract tb() . The optionalf andlimit arguments have the same meaning as forprint stack() .

format list (list)
Given a list of tuples as returned byextract tb() or extract stack() , return a list of strings ready
for printing. Each string in the resulting list corresponds to the item with the same index in the argument list.
Each string ends in a newline; the strings may contain internal newlines as well, for those items whose source
text line is notNone.

format exception only (type, value)

52 Chapter 3. Python Runtime Services

Format the exception part of a traceback. The arguments are the exception type and value such as given by
sys.last type andsys.last value . The return value is a list of strings, each ending in a newline.
Normally, the list contains a single string; however, forSyntaxError exceptions, it contains several lines
that (when printed) display detailed information about where the syntax error occurred. The message indicating
which exception occurred is the always last string in the list.

format exception (type, value, tb[, limit])
Format a stack trace and the exception information. The arguments have the same meaning as the corresponding
arguments toprint exception() . The return value is a list of strings, each ending in a newline and some
containing internal newlines. When these lines are concatenated and printed, exactly the same text is printed as
doesprint exception() .

format tb (tb[, limit])
A shorthand forformat list(extract tb(tb, limit)) .

format stack ([f [, limit]])
A shorthand forformat list(extract stack(f , limit)) .

tb lineno (tb)
This function returns the current line number set in the traceback object. This is normally the same as the
tb.tb lineno field of the object, but when optimization is used (the -O flag) this field is not updated correctly;
this function calculates the correct value.

3.12.1 Traceback Example

This simple example implements a basic read-eval-print loop, similar to (but less useful than) the standard Python
interactive interpreter loop. For a more complete implementation of the interpreter loop, refer to thecode module.

import sys, traceback

def run_user_code(envdir):
source = raw_input(">>> ")
try:

exec source in envdir
except:

print "Exception in user code:"
print ’-’*60
traceback.print_exc(file=sys.stdout)
print ’-’*60

envdir = {}
while 1:

run_user_code(envdir)

3.13 linecache — Random access to text lines

The linecache module allows one to get any line from any file, while attempting to optimize internally, using a
cache, the common case where many lines are read from a single file. This is used by thetraceback module to
retrieve source lines for inclusion in the formatted traceback.

The linecache module defines the following functions:

getline (filename, lineno)
Get line lineno from file namedfilename. This function will never throw an exception — it will return’’ on

3.13. linecache — Random access to text lines 53

errors (the terminating newline character will be included for lines that are found).

If a file namedfilenameis not found, the function will look for it in the module search path,sys.path .

clearcache ()
Clear the cache. Use this function if you no longer need lines from files previously read usinggetline() .

checkcache ()
Check the cache for validity. Use this function if files in the cache may have changed on disk, and you require
the updated version.

Example:

>>> import linecache
>>> linecache.getline(’/etc/passwd’, 4)
’sys:x:3:3:sys:/dev:/bin/sh\n’

3.14 pickle — Python object serialization

The pickle module implements a basic but powerful algorithm for “pickling” (a.k.a. serializing, marshalling or
flattening) nearly arbitrary Python objects. This is the act of converting objects to a stream of bytes (and back:
“unpickling”). This is a more primitive notion than persistence — althoughpickle reads and writes file objects, it
does not handle the issue of naming persistent objects, nor the (even more complicated) area of concurrent access to
persistent objects. Thepickle module can transform a complex object into a byte stream and it can transform the
byte stream into an object with the same internal structure. The most obvious thing to do with these byte streams is to
write them onto a file, but it is also conceivable to send them across a network or store them in a database. The module
shelve provides a simple interface to pickle and unpickle objects on DBM-style database files.

Note: Thepickle module is rather slow. A reimplementation of the same algorithm in C, which is up to 1000 times
faster, is available as thecPickle module. This has the same interface except thatPickler andUnpickler are
factory functions, not classes (so they cannot be used as base classes for inheritance).

Although thepickle module can use the built-in modulemarshal internally, it differs frommarshal in the way
it handles certain kinds of data:

• Recursive objects (objects containing references to themselves):pickle keeps track of the objects it has
already serialized, so later references to the same object won’t be serialized again. (Themarshal module
breaks for this.)

• Object sharing (references to the same object in different places): This is similar to self-referencing objects;
pickle stores the object once, and ensures that all other references point to the master copy. Shared objects
remain shared, which can be very important for mutable objects.

• User-defined classes and their instances:marshal does not support these at all, butpickle can save and
restore class instances transparently. The class definition must be importable and live in the same module as
when the object was stored.

The data format used bypickle is Python-specific. This has the advantage that there are no restrictions imposed by
external standards such as XDR (which can’t represent pointer sharing); however it means that non-Python programs
may not be able to reconstruct pickled Python objects.

By default, thepickle data format uses a printableASCII representation. This is slightly more voluminous than a
binary representation. The big advantage of using printableASCII (and of some other characteristics ofpickle ’s
representation) is that for debugging or recovery purposes it is possible for a human to read the pickled file with a
standard text editor.

54 Chapter 3. Python Runtime Services

A binary format, which is slightly more efficient, can be chosen by specifying a nonzero (true) value for thebin
argument to thePickler constructor or thedump() anddumps() functions. The binary format is not the default
because of backwards compatibility with the Python 1.4 pickle module. In a future version, the default may change to
binary.

Thepickle module doesn’t handle code objects, which themarshal module does. I supposepickle could, and
maybe it should, but there’s probably no great need for it right now (as long asmarshal continues to be used for
reading and writing code objects), and at least this avoids the possibility of smuggling Trojan horses into a program.

For the benefit of persistence modules written usingpickle , it supports the notion of a reference to an object outside
the pickled data stream. Such objects are referenced by a name, which is an arbitrary string of printableASCII

characters. The resolution of such names is not defined by thepickle module — the persistent object module will
have to implement a methodpersistent load() . To write references to persistent objects, the persistent module
must define a methodpersistent id() which returns eitherNone or the persistent ID of the object.

There are some restrictions on the pickling of class instances.

First of all, the class must be defined at the top level in a module. Furthermore, all its instance variables must be
picklable.

When a pickled class instance is unpickled, itsinit () method is normallynot invoked. Note: This is a
deviation from previous versions of this module; the change was introduced in Python 1.5b2. The reason for the
change is that in many cases it is desirable to have a constructor that requires arguments; it is a (minor) nuisance to
have to provide a getinitargs () method.

If it is desirable that the init () method be called on unpickling, a class can define a method
getinitargs () , which should return atuple containing the arguments to be passed to the class construc-

tor (init ()). This method is called at pickle time; the tuple it returns is incorporated in the pickle for the
instance.

Classes can further influence how their instances are pickled — if the class defines the methodgetstate () ,
it is called and the return state is pickled as the contents for the instance, and if the class defines the method

setstate () , it is called with the unpickled state. (Note that these methods can also be used to implement
copying class instances.) If there is nogetstate () method, the instance’s dict is pickled. If there
is no setstate () method, the pickled object must be a dictionary and its items are assigned to the new in-
stance’s dictionary. (If a class defines bothgetstate () and setstate () , the state object needn’t be
a dictionary — these methods can do what they want.) This protocol is also used by the shallow and deep copying
operations defined in thecopy module.

Note that when class instances are pickled, their class’s code and data are not pickled along with them. Only the
instance data are pickled. This is done on purpose, so you can fix bugs in a class or add methods and still load objects
that were created with an earlier version of the class. If you plan to have long-lived objects that will see many versions
of a class, it may be worthwhile to put a version number in the objects so that suitable conversions can be made by the
class’s setstate () method.

When a class itself is pickled, only its name is pickled — the class definition is not pickled, but re-imported by the
unpickling process. Therefore, the restriction that the class must be defined at the top level in a module applies to
pickled classes as well.

The interface can be summarized as follows.

To pickle an objectx onto a filef , open for writing:

p = pickle.Pickler(f)
p.dump(x)

A shorthand for this is:

pickle.dump(x, f)

3.14. pickle — Python object serialization 55

To unpickle an objectx from a filef , open for reading:

u = pickle.Unpickler(f)
x = u.load()

A shorthand is:

x = pickle.load(f)

ThePickler class only calls the methodf.write() with a string argument. TheUnpickler calls the meth-
ods f.read() (with an integer argument) andf.readline() (without argument), both returning a string. It is
explicitly allowed to pass non-file objects here, as long as they have the right methods.

The constructor for thePickler class has an optional second argument,bin. If this is present and true, the binary
pickle format is used; if it is absent or false, the (less efficient, but backwards compatible) text pickle format is used.
TheUnpickler class does not have an argument to distinguish between binary and text pickle formats; it accepts
either format.

The following types can be pickled:

• None

• integers, long integers, floating point numbers

• normal and Unicode strings

• tuples, lists and dictionaries containing only picklable objects

• functions defined at the top level of a module (by name reference, not storage of the implementation)

• built-in functions

• classes that are defined at the top level in a module

• instances of such classes whosedict or setstate () is picklable

Attempts to pickle unpicklable objects will raise thePicklingError exception; when this happens, an unspecified
number of bytes may have been written to the file.

It is possible to make multiple calls to thedump() method of the samePickler instance. These must then be
matched to the same number of calls to theload() method of the correspondingUnpickler instance. If the same
object is pickled by multipledump() calls, theload() will all yield references to the same object.Warning: this
is intended for pickling multiple objects without intervening modifications to the objects or their parts. If you modify
an object and then pickle it again using the samePickler instance, the object is not pickled again — a reference to
it is pickled and theUnpickler will return the old value, not the modified one. (There are two problems here: (a)
detecting changes, and (b) marshalling a minimal set of changes. I have no answers. Garbage Collection may also
become a problem here.)

Apart from thePickler andUnpickler classes, the module defines the following functions, and an exception:

dump(object, file[, bin])
Write a pickled representation ofobject to the open file objectfile. This is equivalent to ‘Pickler(file,
bin).dump(object) ’. If the optionalbin argument is present and nonzero, the binary pickle format is used; if
it is zero or absent, the (less efficient) text pickle format is used.

load (file)
Read a pickled object from the open file objectfile. This is equivalent to ‘Unpickler(file).load() ’.

56 Chapter 3. Python Runtime Services

dumps(object[, bin])
Return the pickled representation of the object as a string, instead of writing it to a file. If the optionalbin
argument is present and nonzero, the binary pickle format is used; if it is zero or absent, the (less efficient) text
pickle format is used.

loads (string)
Read a pickled object from a string instead of a file. Characters in the string past the pickled object’s represen-
tation are ignored.

exceptionPicklingError
This exception is raised when an unpicklable object is passed toPickler.dump() .

See Also:

Modulecopy reg (section 3.16):
Pickle interface constructor registration for extension types.

Moduleshelve (section 3.17):
Indexed databases of objects; usespickle .

Modulecopy (section 3.18):
Shallow and deep object copying.

Modulemarshal (section 3.19):
High-performance serialization of built-in types.

3.14.1 Example

Here’s a simple example of how to modify pickling behavior for a class. TheTextReader class opens a text file, and
returns the line number and line contents each time itsreadline() method is called. If aTextReader instance
is pickled, all attributesexceptthe file object member are saved. When the instance is unpickled, the file is reopened,
and reading resumes from the last location. Thesetstate () and getstate () methods are used to
implement this behavior.

3.14. pickle — Python object serialization 57

illustrate __setstate__ and __getstate__ methods
used in pickling.

class TextReader:
"Print and number lines in a text file."
def __init__(self,file):

self.file = file
self.fh = open(file,’r’)
self.lineno = 0

def readline(self):
self.lineno = self.lineno + 1
line = self.fh.readline()
if not line:

return None
return "%d: %s" % (self.lineno,line[:-1])

return data representation for pickled object
def __getstate__(self):

odict = self.__dict__ # get attribute dictionary
del odict[’fh’] # remove filehandle entry
return odict

restore object state from data representation generated
by __getstate__
def __setstate__(self,dict):

fh = open(dict[’file’]) # reopen file
count = dict[’lineno’] # read from file...
while count: # until line count is restored

fh.readline()
count = count - 1

dict[’fh’] = fh # create filehandle entry
self.__dict__ = dict # make dict our attribute dictionary

A sample usage might be something like this:

>>> import TextReader
>>> obj = TextReader.TextReader("TextReader.py")
>>> obj.readline()
’1: #!/usr/local/bin/python’
>>> # (more invocations of obj.readline() here)
... obj.readline()
’7: class TextReader:’
>>> import pickle
>>> pickle.dump(obj,open(’save.p’,’w’))

(start another Python session)

>>> import pickle
>>> reader = pickle.load(open(’save.p’))
>>> reader.readline()
’8: "Print and number lines in a text file."’

58 Chapter 3. Python Runtime Services

3.15 cPickle — Alternate implementation of pickle

ThecPickle module provides a similar interface and identical functionality as thepickle module, but can be up
to 1000 times faster since it is implemented in C. The only other important difference to note is thatPickler() and
Unpickler() are functions and not classes, and so cannot be subclassed. This should not be an issue in most cases.

The format of the pickle data is identical to that produced using thepickle module, so it is possible to usepickle
andcPickle interchangeably with existing pickles.

(Since the pickle data format is actually a tiny stack-oriented programming language, and there are some freedoms in
the encodings of certain objects, it’s possible that the two modules produce different pickled data for the same input
objects; however they will always be able to read each other’s pickles back in.)

3.16 copy reg — Register pickle support functions

Thecopy reg module provides support for thepickle andcPickle modules. Thecopy module is likely to use
this in the future as well. It provides configuration information about object constructors which are not classes. Such
constructors may be factory functions or class instances.

constructor (object)
Declaresobjectto be a valid constructor. Ifobject is not callable (and hence not valid as a constructor), raises
TypeError .

pickle (type, function[, constructor])
Declares thatfunctionshould be used as a “reduction” function for objects of typetype; typeshould not a class
object. functionshould return either a string or a tuple. The optionalconstructorparameter, if provided, is a
callable object which can be used to reconstruct the object when called with the tuple of arguments returned by
functionat pickling time.TypeError will be raised ifobjectis a class orconstructoris not callable.

3.17 shelve — Python object persistence

A “shelf” is a persistent, dictionary-like object. The difference with “dbm” databases is that the values (not the keys!)
in a shelf can be essentially arbitrary Python objects — anything that thepickle module can handle. This includes
most class instances, recursive data types, and objects containing lots of shared sub-objects. The keys are ordinary
strings.

To summarize the interface (key is a string,data is an arbitrary object):

import shelve

d = shelve.open(filename) # open, with (g)dbm filename -- no suffix

d[key] = data # store data at key (overwrites old data if
using an existing key)

data = d[key] # retrieve data at key (raise KeyError if no
such key)

del d[key] # delete data stored at key (raises KeyError
if no such key)

flag = d.has_key(key) # true if the key exists
list = d.keys() # a list of all existing keys (slow!)

d.close() # close it

3.15. cPickle — Alternate implementation of pickle 59

Restrictions:

• The choice of which database package will be used (e.g.dbmor gdbm) depends on which interface is available.
Therefore it is not safe to open the database directly usingdbm. The database is also (unfortunately) subject to
the limitations ofdbm, if it is used — this means that (the pickled representation of) the objects stored in the
database should be fairly small, and in rare cases key collisions may cause the database to refuse updates.

• Dependent on the implementation, closing a persistent dictionary may or may not be necessary to flush changes
to disk.

• Theshelve module does not supportconcurrentread/write access to shelved objects. (Multiple simultaneous
read accesses are safe.) When a program has a shelf open for writing, no other program should have it open
for reading or writing. UNIX file locking can be used to solve this, but this differs across UNIX versions and
requires knowledge about the database implementation used.

See Also:

Moduleanydbm (section 7.8):
Generic interface todbm-style databases.

Moduledbhash (section 7.10):
BSDdb database interface.

Moduledbm (section 8.6):
Standard UNIX database interface.

Moduledumbdbm(section 7.9):
Portable implementation of thedbm interface.

Modulegdbm (section 8.7):
GNU database interface, based on thedbm interface.

Modulepickle (section 3.14):
Object serialization used byshelve .

ModulecPickle (section 3.15):
High-performance version ofpickle .

3.18 copy — Shallow and deep copy operations

This module provides generic (shallow and deep) copying operations.

Interface summary:

import copy

x = copy.copy(y) # make a shallow copy of y
x = copy.deepcopy(y) # make a deep copy of y

For module specific errors,copy.error is raised.

The difference between shallow and deep copying is only relevant for compound objects (objects that contain other
objects, like lists or class instances):

• A shallow copyconstructs a new compound object and then (to the extent possible) insertsreferencesinto it to
the objects found in the original.

60 Chapter 3. Python Runtime Services

• A deep copyconstructs a new compound object and then, recursively, insertscopiesinto it of the objects found
in the original.

Two problems often exist with deep copy operations that don’t exist with shallow copy operations:

• Recursive objects (compound objects that, directly or indirectly, contain a reference to themselves) may cause a
recursive loop.

• Because deep copy copieseverythingit may copy too much, e.g., administrative data structures that should be
shared even between copies.

Thedeepcopy() function avoids these problems by:

• keeping a “memo” dictionary of objects already copied during the current copying pass; and

• letting user-defined classes override the copying operation or the set of components copied.

This version does not copy types like module, class, function, method, stack trace, stack frame, file, socket, window,
array, or any similar types.

Classes can use the same interfaces to control copying that they use to control pickling: they can define methods called
getinitargs () , getstate () and setstate () . See the description of modulepickle for

information on these methods. Thecopy module does not use thecopy reg registration module.

In order for a class to define its own copy implementation, it can define special methodscopy () and
deepcopy () . The former is called to implement the shallow copy operation; no additional arguments are

passed. The latter is called to implement the deep copy operation; it is passed one argument, the memo dictionary. If
the deepcopy () implementation needs to make a deep copy of a component, it should call thedeepcopy()
function with the component as first argument and the memo dictionary as second argument.

See Also:

Modulepickle (section 3.14):
Discussion of the special methods used to support object state retrieval and restoration.

3.19 marshal — Alternate Python object serialization

This module contains functions that can read and write Python values in a binary format. The format is specific to
Python, but independent of machine architecture issues (e.g., you can write a Python value to a file on a PC, transport
the file to a Sun, and read it back there). Details of the format are undocumented on purpose; it may change between
Python versions (although it rarely does).1

This is not a general “persistence” module. For general persistence and transfer of Python objects through RPC calls,
see the modulespickle andshelve . The marshal module exists mainly to support reading and writing the
“pseudo-compiled” code for Python modules of ‘.pyc’ files.

Not all Python object types are supported; in general, only objects whose value is independent from a particular
invocation of Python can be written and read by this module. The following types are supported:None, integers,
long integers, floating point numbers, strings, Unicode objects, tuples, lists, dictionaries, and code objects, where it
should be understood that tuples, lists and dictionaries are only supported as long as the values contained therein are
themselves supported; and recursive lists and dictionaries should not be written (they will cause infinite loops).

1The name of this module stems from a bit of terminology used by the designers of Modula-3 (amongst others), who use the term “marshalling”
for shipping of data around in a self-contained form. Strictly speaking, “to marshal” means to convert some data from internal to external form (in
an RPC buffer for instance) and “unmarshalling” for the reverse process.

3.19. marshal — Alternate Python object serialization 61

Caveat: On machines where C’slong int type has more than 32 bits (such as the DEC Alpha), it is possible to
create plain Python integers that are longer than 32 bits. Since the currentmarshal module uses 32 bits to transfer
plain Python integers, such values are silently truncated. This particularly affects the use of very long integer literals
in Python modules — these will be accepted by the parser on such machines, but will be silently be truncated when
the module is read from the ‘.pyc’ instead.2

There are functions that read/write files as well as functions operating on strings.

The module defines these functions:

dump(value, file)
Write the value on the open file. The value must be a supported type. The file must be an open file object such
assys.stdout or returned byopen() or posix.popen() . It must be opened in binary mode (’wb’ or
’w+b’).

If the value has (or contains an object that has) an unsupported type, aValueError exception is raised — but
garbage data will also be written to the file. The object will not be properly read back byload() .

load (file)
Read one value from the open file and return it. If no valid value is read, raiseEOFError , ValueError or
TypeError . The file must be an open file object opened in binary mode (’rb’ or ’r+b’).

Warning: If an object containing an unsupported type was marshalled withdump() , load() will substitute
None for the unmarshallable type.

dumps(value)
Return the string that would be written to a file bydump(value, file) . The value must be a supported type.
Raise aValueError exception if value has (or contains an object that has) an unsupported type.

loads (string)
Convert the string to a value. If no valid value is found, raiseEOFError , ValueError or TypeError .
Extra characters in the string are ignored.

3.20 warnings — Warning control

New in version 2.1.

Warning messages are typically issued in situations where it is useful to alert the user of some condition in a program,
where that condition (normally) doesn’t warrant raising an exception and terminating the program. For example, one
might want to issue a warning when a program uses an obsolete module.

Python programmers issue warnings by calling thewarn() function defined in this module. (C programmers use
PyErr Warn() ; see thePython/C API Reference Manualfor details).

Warning messages are normally written tosys.stderr , but their disposition can be changed flexibly, from ignoring
all warnings to turning them into exceptions. The disposition of warnings can vary based on the warning category (see
below), the text of the warning message, and the source location where it is issued. Repetitions of a particular warning
for the same source location are typically suppressed.

There are two stages in warning control: first, each time a warning is issued, a determination is made whether a
message should be issued or not; next, if a message is to be issued, it is formatted and printed using a user-settable
hook.

The determination whether to issue a warning message is controlled by the warning filter, which is a sequence of
matching rules and actions. Rules can be added to the filter by callingfilterwarnings() and reset to its default
state by callingresetwarnings() .

2A solution would be to refuse such literals in the parser, since they are inherently non-portable. Another solution would be to let themarshal
module raise an exception when an integer value would be truncated. At least one of these solutions will be implemented in a future version.

62 Chapter 3. Python Runtime Services

The printing of warning messages is done by callingshowwarning() , which may be overidden; the default imple-
mentation of this function formats the message by callingformatwarning() , which is also available for use by
custom implementations.

3.20.1 Warning Categories

There are a number of built-in exceptions that represent warning categories. This categorization is useful to be able to
filter out groups of warnings. The following warnings category classes are currently defined:

Class Description
Warning This is the base class of all warning category classes. It itself a subclass of Exception.
UserWarning The default category forwarn() .
DeprecationWarning Base category for warnings about deprecated features.
SyntaxWarning Base category for warnings about dubious syntactic features.
RuntimeWarning Base category for warnings about dubious runtime features.

While these are technically built-in exceptions, they are documented here, because conceptually they belong to the
warnings mechanism.

User code can define additional warning categories by subclassing one of the standard warning categories. A warning
category must always be a subclass of theWarning class.

3.20.2 The Warnings Filter

The warnings filter controls whether warnings are ignored, displayed, or turned into errors (raising an exception).

Conceptually, the warnings filter maintains an ordered list of filter specifications; any specific warning is matched
against each filter specification in the list in turn until a match is found; the match determines the disposition of the
match. Each entry is a tuple of the form (action, message, category, module, lineno), where:

• action is one of the following strings:

Value Disposition
"error" turn matching warnings into exceptions
"ignore" never print matching warnings
"always" always print matching warnings
"default" print the first occurrence of matching warnings for each location where the warning is issued
"module" print the first occurrence of matching warnings for each module where the warning is issued
"once" print only the first occurrence of matching warnings, regardless of location

• messageis a compiled regular expression that the warning message must match (the match is case-insensitive)

• categoryis a class (a subclass ofWarning) of which the warning category must be a subclass in order to match

• moduleis a compiled regular expression that the module name must match

• linenois an integer that the line number where the warning occurred must match, or0 to match all line numbers

Since theWarning class is derived from the built-inException class, to turn a warning into an error we simply
raisecategory(message) .

The warnings filter is initialized by-W options passed to the Python interpreter command line. The interpreter saves
the arguments for all-W options without interpretation insys.warnoptions ; thewarnings module parses these
when it is first imported (invalid options are ignored, after printing a message tosys.stderr).

3.20. warnings — Warning control 63

3.20.3 Available Functions

warn (message[, category[, stacklevel]])
Issue a warning, or maybe ignore it or raise an exception. Thecategoryargument, if given, must be a warning
category class (see above); it defaults toUserWarning . This function raises an exception if the particular
warning issued is changed into an error by the warnings filter see above. Thestacklevelargument can be used
by wrapper functions written in Python, like this:

def deprecation(message):
warnings.warn(message, DeprecationWarning, level=2)

This makes the warning refer todeprecation() ’s caller, rather than to the source ofdeprecation()
itself (since the latter would defeat the purpose of the warning message).

warn explicit (message, category, filename, lineno[, module[, registry]])
This is a low-level interface to the functionality ofwarn() , passing in explicitly the message, cate-
gory, filename and line number, and optionally the module name and the registry (which should be the

warningregistry dictionary of the module). The module name defaults to the filename with.py
stripped; if no registry is passed, the warning is never suppressed.

showwarning (message, category, filename, lineno[, file])
Write a warning to a file. The default implementation callsshowwarning(message, category, filename,
lineno) and writes the resulting string tofile, which defaults tosys.stderr . You may replace this function
with an alternative implementation by assigning towarnings.showwarning .

formatwarning (message, category, filename, lineno)
Format a warning the standard way. This returns a string which may contain embedded newlines and ends in a
newline.

filterwarnings (action[, message[, category[, module[, lineno[, append]]]]])
Insert an entry into the list of warnings filters. The entry is inserted at the front by default; ifappendis true, it
is inserted at the end. This checks the types of the arguments, compiles the message and module regular expres-
sions, and inserts them as a tuple in front of the warnings filter. Entries inserted later override entries inserted
earlier, if both match a particular warning. Omitted arguments default to a value that matches everything.

resetwarnings ()
Reset the warnings filter. This discards the effect of all previous calls tofilterwarnings() , including that
of the-W command line options.

3.21 imp — Access the import internals

This module provides an interface to the mechanisms used to implement theimport statement. It defines the follow-
ing constants and functions:

get magic ()
Return the magic string value used to recognize byte-compiled code files (‘.pyc’ files). (This value may be
different for each Python version.)

get suffixes ()
Return a list of triples, each describing a particular type of module. Each triple has the form(suffix, mode,
type) , wheresuffix is a string to be appended to the module name to form the filename to search for,mode
is the mode string to pass to the built-inopen() function to open the file (this can be’r’ for text files or
’rb’ for binary files), andtypeis the file type, which has one of the valuesPY SOURCE, PY COMPILED, or
C EXTENSION, described below.

find module (name[, path])
Try to find the modulenameon the search pathpath. If path is a list of directory names, each directory is

64 Chapter 3. Python Runtime Services

searched for files with any of the suffixes returned byget suffixes() above. Invalid names in the list are
silently ignored (but all list items must be strings). Ifpath is omitted orNone, the list of directory names given
by sys.path is searched, but first it searches a few special places: it tries to find a built-in module with the
given name (C BUILTIN), then a frozen module (PY FROZEN), and on some systems some other places are
looked in as well (on the Mac, it looks for a resource (PY RESOURCE); on Windows, it looks in the registry
which may point to a specific file).

If search is successful, the return value is a triple(file, pathname, description) wherefile is an open file
object positioned at the beginning,pathnameis the pathname of the file found, anddescriptionis a triple as
contained in the list returned byget suffixes() describing the kind of module found. If the module does
not live in a file, the returnedfile is None, filenameis the empty string, and thedescriptiontuple contains empty
strings for its suffix and mode; the module type is as indicate in parentheses above. If the search is unsuccessful,
ImportError is raised. Other exceptions indicate problems with the arguments or environment.

This function does not handle hierarchical module names (names containing dots). In order to findP.M, i.e.,
submoduleM of packageP, usefind module() and load module() to find and load packageP, and
then usefind module() with the path argument set toP. path . WhenP itself has a dotted name,
apply this recipe recursively.

load module (name, file, filename, description)
Load a module that was previously found byfind module() (or by an otherwise conducted search yielding
compatible results). This function does more than importing the module: if the module was already imported,
it is equivalent to areload() ! The nameargument indicates the full module name (including the package
name, if this is a submodule of a package). Thefile argument is an open file, andfilenameis the corresponding
file name; these can beNone and ’’ , respectively, when the module is not being loaded from a file. The
descriptionargument is a tuple, as would be returned byget suffixes() , describing what kind of module
must be loaded.

If the load is successful, the return value is the module object; otherwise, an exception (usuallyImportError)
is raised.

Important: the caller is responsible for closing thefile argument, if it was notNone, even when an exception
is raised. This is best done using atry ... finally statement.

new module (name)
Return a new empty module object calledname. This object isnot inserted insys.modules .

The following constants with integer values, defined in this module, are used to indicate the search result of
find module() .

PY SOURCE
The module was found as a source file.

PY COMPILED
The module was found as a compiled code object file.

C EXTENSION
The module was found as dynamically loadable shared library.

PY RESOURCE
The module was found as a Macintosh resource. This value can only be returned on a Macintosh.

PKG DIRECTORY
The module was found as a package directory.

C BUILTIN
The module was found as a built-in module.

PY FROZEN
The module was found as a frozen module (seeinit frozen()).

The following constant and functions are obsolete; their functionality is available throughfind module() or
load module() . They are kept around for backward compatibility:

3.21. imp — Access the import internals 65

SEARCHERROR
Unused.

init builtin (name)
Initialize the built-in module callednameand return its module object. If the module was already initialized, it
will be initialized again. A few modules cannot be initialized twice — attempting to initialize these again will
raise anImportError exception. If there is no built-in module calledname, None is returned.

init frozen (name)
Initialize the frozen module callednameand return its module object. If the module was already initialized,
it will be initialized again. If there is no frozen module calledname, None is returned. (Frozen modules
are modules written in Python whose compiled byte-code object is incorporated into a custom-built Python
interpreter by Python’sfreezeutility. See ‘Tools/freeze/’ for now.)

is builtin (name)
Return1 if there is a built-in module callednamewhich can be initialized again. Return-1 if there is a built-in
module callednamewhich cannot be initialized again (seeinit builtin()). Return0 if there is no built-in
module calledname.

is frozen (name)
Return1 if there is a frozen module (seeinit frozen()) calledname, or 0 if there is no such module.

load compiled (name, pathname, file)
Load and initialize a module implemented as a byte-compiled code file and return its module object. If the
module was already initialized, it will be initializedagain. Thenameargument is used to create or access a
module object. Thepathnameargument points to the byte-compiled code file. Thefile argument is the byte-
compiled code file, open for reading in binary mode, from the beginning. It must currently be a real file object,
not a user-defined class emulating a file.

load dynamic (name, pathname[, file])
Load and initialize a module implemented as a dynamically loadable shared library and return its module object.
If the module was already initialized, it will be initializedagain. Some modules don’t like that and may raise
an exception. Thepathnameargument must point to the shared library. Thenameargument is used to construct
the name of the initialization function: an external C function called ‘init name() ’ in the shared library is
called. The optionalfile argument is ignored. (Note: using shared libraries is highly system dependent, and not
all systems support it.)

load source (name, pathname, file)
Load and initialize a module implemented as a Python source file and return its module object. If the module
was already initialized, it will be initializedagain. Thenameargument is used to create or access a module
object. Thepathnameargument points to the source file. Thefile argument is the source file, open for reading
as text, from the beginning. It must currently be a real file object, not a user-defined class emulating a file.
Note that if a properly matching byte-compiled file (with suffix ‘.pyc’ or ‘ .pyo’) exists, it will be used instead of
parsing the given source file.

3.21.1 Examples

The following function emulates what was the standard import statement up to Python 1.4 (i.e., no hierarchical mod-
ule names). (Thisimplementationwouldn’t work in that version, sincefind module() has been extended and
load module() has been added in 1.4.)

66 Chapter 3. Python Runtime Services

import imp
import sys

def __import__(name, globals=None, locals=None, fromlist=None):
Fast path: see if the module has already been imported.
try:

return sys.modules[name]
except KeyError:

pass

If any of the following calls raises an exception,
there’s a problem we can’t handle -- let the caller handle it.

fp, pathname, description = imp.find_module(name)

try:
return imp.load_module(name, fp, pathname, description)

finally:
Since we may exit via an exception, close fp explicitly.
if fp:

fp.close()

A more complete example that implements hierarchical module names and includes areload() function can be
found in the standard moduleknee (which is intended as an example only — don’t rely on any part of it being a
standard interface).

3.22 code — Interpreter base classes

The code module provides facilities to implement read-eval-print loops in Python. Two classes and convenience
functions are included which can be used to build applications which provide an interactive interpreter prompt.

classInteractiveInterpreter ([locals])
This class deals with parsing and interpreter state (the user’s namespace); it does not deal with input buffering
or prompting or input file naming (the filename is always passed in explicitly). The optionallocals argument
specifies the dictionary in which code will be executed; it defaults to a newly created dictionary with key
’ name ’ set to’ console ’ and key’ doc ’ set toNone.

classInteractiveConsole ([locals[, filename]])
Closely emulate the behavior of the interactive Python interpreter. This class builds onInteractiveIn-
terpreter and adds prompting using the familiarsys.ps1 andsys.ps2 , and input buffering.

interact ([banner[, readfunc[, local]]])
Convenience function to run a read-eval-print loop. This creates a new instance ofInteractiveConsole
and setsreadfuncto be used as theraw input() method, if provided. Iflocal is provided, it is passed
to the InteractiveConsole constructor for use as the default namespace for the interpreter loop. The
interact() method of the instance is then run withbannerpassed as the banner to use, if provided. The
console object is discarded after use.

compile command(source[, filename[, symbol]])
This function is useful for programs that want to emulate Python’s interpreter main loop (a.k.a. the read-eval-
print loop). The tricky part is to determine when the user has entered an incomplete command that can be
completed by entering more text (as opposed to a complete command or a syntax error). This functionalmost
always makes the same decision as the real interpreter main loop.

sourceis the source string;filenameis the optional filename from which source was read, defaulting to’<in-

3.22. code — Interpreter base classes 67

put>’ ; andsymbolis the optional grammar start symbol, which should be either’single’ (the default) or
’eval’ .

Returns a code object (the same ascompile(source, filename, symbol)) if the command is complete and
valid; None if the command is incomplete; raisesSyntaxError if the command is complete and contains a
syntax error, or raisesOverflowError if the command includes a numeric constant which exceeds the range
of the appropriate numeric type.

3.22.1 Interactive Interpreter Objects

runsource (source[, filename[, symbol]])
Compile and run some source in the interpreter. Arguments are the same as forcompile command() ; the
default forfilenameis ’<input>’ , and forsymbolis ’single’ . One several things can happen:

•The input is incorrect;compile command() raised an exception (SyntaxError or Overflow-
Error). A syntax traceback will be printed by calling theshowsyntaxerror() method. run-
source() returns0.

•The input is incomplete, and more input is required;compile command() returnedNone. run-
source() returns1.

•The input is complete;compile command() returned a code object. The code is executed by calling
the runcode() (which also handles run-time exceptions, except forSystemExit). runsource()
returns0.

The return value can be used to decide whether to usesys.ps1 or sys.ps2 to prompt the next line.

runcode (code)
Execute a code object. When an exception occurs,showtraceback() is called to display a traceback. All
exceptions are caught exceptSystemExit , which is allowed to propagate.

A note aboutKeyboardInterrupt : this exception may occur elsewhere in this code, and may not always
be caught. The caller should be prepared to deal with it.

showsyntaxerror ([filename])
Display the syntax error that just occurred. This does not display a stack trace because there isn’t one for syntax
errors. Iffilenameis given, it is stuffed into the exception instead of the default filename provided by Python’s
parser, because it always uses’<string>’ when reading from a string. The output is written by thewrite()
method.

showtraceback ()
Display the exception that just occurred. We remove the first stack item because it is within the interpreter object
implementation. The output is written by thewrite() method.

write (data)
Write a string to the standard error stream (sys.stderr). Derived classes should override this to provide the
appropriate output handling as needed.

3.22.2 Interactive Console Objects

The InteractiveConsole class is a subclass ofInteractiveInterpreter , and so offers all the methods
of the interpreter objects as well as the following additions.

interact ([banner])
Closely emulate the interactive Python console. The optional banner argument specify the banner to print before
the first interaction; by default it prints a banner similar to the one printed by the standard Python interpreter,
followed by the class name of the console object in parentheses (so as not to confuse this with the real interpreter
– since it’s so close!).

68 Chapter 3. Python Runtime Services

push (line)
Push a line of source text to the interpreter. The line should not have a trailing newline; it may have internal
newlines. The line is appended to a buffer and the interpreter’srunsource() method is called with the
concatenated contents of the buffer as source. If this indicates that the command was executed or invalid,
the buffer is reset; otherwise, the command is incomplete, and the buffer is left as it was after the line was
appended. The return value is1 if more input is required,0 if the line was dealt with in some way (this is the
same asrunsource()).

resetbuffer ()
Remove any unhandled source text from the input buffer.

raw input ([prompt])
Write a prompt and read a line. The returned line does not include the trailing newline. When the user enters the
EOF key sequence,EOFError is raised. The base implementation uses the built-in functionraw input() ;
a subclass may replace this with a different implementation.

3.23 codeop — Compile Python code

The codeop module provides a function to compile Python code with hints on whether it is certainly complete,
possibly complete or definitely incomplete. This is used by thecode module and should not normally be used
directly.

Thecodeop module defines the following function:

compile command(source[, filename[, symbol]])
Tries to compilesource, which should be a string of Python code and return a code object ifsourceis valid
Python code. In that case, the filename attribute of the code object will befilename, which defaults to’<in-
put>’ . ReturnsNone if sourceis notvalid Python code, but is a prefix of valid Python code.

If there is a problem withsource, an exception will be raised.SyntaxError is raised if there is invalid Python
syntax, andOverflowError if there is an invalid numeric constant.

Thesymbolargument determines whethersourceis compiled as a statement (’single’ , the default) or as an
expression (’eval’). Any other value will causeValueError to be raised.

Caveat: It is possible (but not likely) that the parser stops parsing with a successful outcome before reaching
the end of the source; in this case, trailing symbols may be ignored instead of causing an error. For example, a
backslash followed by two newlines may be followed by arbitrary garbage. This will be fixed once the API for
the parser is better.

3.24 pprint — Data pretty printer

Thepprint module provides a capability to “pretty-print” arbitrary Python data structures in a form which can be
used as input to the interpreter. If the formatted structures include objects which are not fundamental Python types,
the representation may not be loadable. This may be the case if objects such as files, sockets, classes, or instances are
included, as well as many other builtin objects which are not representable as Python constants.

The formatted representation keeps objects on a single line if it can, and breaks them onto multiple lines if they don’t
fit within the allowed width. ConstructPrettyPrinter objects explicitly if you need to adjust the width constraint.

Thepprint module defines one class:

classPrettyPrinter (...)
Construct aPrettyPrinter instance. This constructor understands several keyword parameters. An output
stream may be set using thestreamkeyword; the only method used on the stream object is the file protocol’s
write() method. If not specified, thePrettyPrinter adoptssys.stdout . Three additional parameters
may be used to control the formatted representation. The keywords areindent, depth, andwidth. The amount

3.23. codeop — Compile Python code 69

of indentation added for each recursive level is specified byindent; the default is one. Other values can cause
output to look a little odd, but can make nesting easier to spot. The number of levels which may be printed
is controlled bydepth; if the data structure being printed is too deep, the next contained level is replaced by
‘ ... ’. By default, there is no constraint on the depth of the objects being formatted. The desired output width
is constrained using thewidth parameter; the default is eighty characters. If a structure cannot be formatted
within the constrained width, a best effort will be made.

>>> import pprint, sys
>>> stuff = sys.path[:]
>>> stuff.insert(0, stuff[:])
>>> pp = pprint.PrettyPrinter(indent=4)
>>> pp.pprint(stuff)
[[’’,

’/usr/local/lib/python1.5’,
’/usr/local/lib/python1.5/test’,
’/usr/local/lib/python1.5/sunos5’,
’/usr/local/lib/python1.5/sharedmodules’,
’/usr/local/lib/python1.5/tkinter’],

’’,
’/usr/local/lib/python1.5’,
’/usr/local/lib/python1.5/test’,
’/usr/local/lib/python1.5/sunos5’,
’/usr/local/lib/python1.5/sharedmodules’,
’/usr/local/lib/python1.5/tkinter’]

>>>
>>> import parser
>>> tup = parser.ast2tuple(
... parser.suite(open(’pprint.py’).read()))[1][1][1]
>>> pp = pprint.PrettyPrinter(depth=6)
>>> pp.pprint(tup)
(266, (267, (307, (287, (288, (...))))))

ThePrettyPrinter class supports several derivative functions:

pformat (object)
Return the formatted representation ofobjectas a string. The default parameters for formatting are used.

pprint (object[, stream])
Prints the formatted representation ofobject on stream, followed by a newline. Ifstream is omitted,
sys.stdout is used. This may be used in the interactive interpreter instead of aprint statement for in-
specting values. The default parameters for formatting are used.

>>> stuff = sys.path[:]
>>> stuff.insert(0, stuff)
>>> pprint.pprint(stuff)
[<Recursion on list with id=869440>,

’’,
’/usr/local/lib/python1.5’,
’/usr/local/lib/python1.5/test’,
’/usr/local/lib/python1.5/sunos5’,
’/usr/local/lib/python1.5/sharedmodules’,
’/usr/local/lib/python1.5/tkinter’]

isreadable (object)
Determine if the formatted representation ofobject is “readable,” or can be used to reconstruct the value using
eval() . This always returns false for recursive objects.

70 Chapter 3. Python Runtime Services

>>> pprint.isreadable(stuff)
0

isrecursive (object)
Determine ifobjectrequires a recursive representation.

One more support function is also defined:

saferepr (object)
Return a string representation ofobject, protected against recursive data structures. If the representation of
objectexposes a recursive entry, the recursive reference will be represented as ‘<Recursion on typename
with id= number>’. The representation is not otherwise formatted.

>>> pprint.saferepr(stuff)
"[<Recursion on list with id=682968>, ’’, ’/usr/local/lib/python1.5’, ’/usr/loca
l/lib/python1.5/test’, ’/usr/local/lib/python1.5/sunos5’, ’/usr/local/lib/python
1.5/sharedmodules’, ’/usr/local/lib/python1.5/tkinter’]"

3.24.1 PrettyPrinter Objects

PrettyPrinter instances have the following methods:

pformat (object)
Return the formatted representation ofobject. This takes into Account the options passed to thePret-
tyPrinter constructor.

pprint (object)
Print the formatted representation ofobjecton the configured stream, followed by a newline.

The following methods provide the implementations for the corresponding functions of the same names. Using these
methods on an instance is slightly more efficient since newPrettyPrinter objects don’t need to be created.

isreadable (object)
Determine if the formatted representation of the object is “readable,” or can be used to reconstruct the value using
eval() . Note that this returns false for recursive objects. If thedepthparameter of thePrettyPrinter is
set and the object is deeper than allowed, this returns false.

isrecursive (object)
Determine if the object requires a recursive representation.

3.25 repr — Alternate repr() implementation

Therepr module provides a means for producing object representations with limits on the size of the resulting strings.
This is used in the Python debugger and may be useful in other contexts as well.

This module provides a class, an instance, and a function:

classRepr ()
Class which provides formatting services useful in implementing functions similar to the built-inrepr() ; size
limits for different object types are added to avoid the generation of representations which are excessively long.

aRepr
This is an instance ofRepr which is used to provide therepr() function described below. Changing the
attributes of this object will affect the size limits used byrepr() and the Python debugger.

3.25. repr — Alternate repr() implementation 71

repr (obj)
This is therepr() method ofaRepr . It returns a string similar to that returned by the built-in function of the
same name, but with limits on most sizes.

3.25.1 Repr Objects

Repr instances provide several members which can be used to provide size limits for the representations of different
object types, and methods which format specific object types.

maxlevel
Depth limit on the creation of recursive representations. The default is6.

maxdict
maxlist
maxtuple

Limits on the number of entries represented for the named object type. The default formaxdict is 4, for the
others,6.

maxlong
Maximum number of characters in the representation for a long integer. Digits are dropped from the middle.
The default is40 .

maxstring
Limit on the number of characters in the representation of the string. Note that the “normal” representation of
the string is used as the character source: if escape sequences are needed in the representation, these may be
mangled when the representation is shortened. The default is30 .

maxother
This limit is used to control the size of object types for which no specific formatting method is available on the
Repr object. It is applied in a similar manner asmaxstring . The default is20 .

repr (obj)
The equivalent to the built-inrepr() that uses the formatting imposed by the instance.

repr1 (obj, level)
Recursive implementation used byrepr() . This uses the type ofobj to determine which formatting method to
call, passing itobj andlevel. The type-specific methods should callrepr1() to perform recursive formatting,
with level - 1 for the value oflevel in the recursive call.

repr type(obj, level)
Formatting methods for specific types are implemented as methods with a name based on the type name. In
the method name,typeis replaced bystring.join(string.split(type(obj). name , ’ ’) .
Dispatch to these methods is handled byrepr1() . Type-specific methods which need to recursively format a
value should call ‘self.repr1(subobj, level - 1) ’.

3.25.2 Subclassing Repr Objects

The use of dynamic dispatching byRepr.repr1() allows subclasses ofRepr to add support for additional built-in
object types or to modify the handling of types already supported. This example shows how special support for file
objects could be added:

72 Chapter 3. Python Runtime Services

import repr
import sys

class MyRepr(repr.Repr):
def repr_file(self, obj, level):

if obj.name in [’<stdin>’, ’<stdout>’, ’<stderr>’]:
return obj.name

else:
return ‘obj‘

aRepr = MyRepr()
print aRepr.repr(sys.stdin) # prints ’<stdin>’

3.26 new — Creation of runtime internal objects

Thenew module allows an interface to the interpreter object creation functions. This is for use primarily in marshal-
type functions, when a new object needs to be created “magically” and not by using the regular creation functions.
This module provides a low-level interface to the interpreter, so care must be exercised when using this module.

Thenew module defines the following functions:

instance (class[, dict])
This function creates an instance ofclasswith dictionarydict without calling the init () constructor.
If dict is omitted orNone, a new, empty dictionary is created for the new instance. Note that there are no
guarantees that the object will be in a consistent state.

instancemethod (function, instance, class)
This function will return a method object, bound toinstance, or unbound ifinstanceis None. functionmust be
callable, andinstancemust be an instance object orNone.

function (code, globals[, name[, argdefs]])
Returns a (Python) function with the given code and globals. Ifnameis given, it must be a string orNone. If it is
a string, the function will have the given name, otherwise the function name will be taken fromcode.co name.
If argdefsis given, it must be a tuple and will be used to determine the default values of parameters.

code (argcount, nlocals, stacksize, flags, codestring, constants, names, varnames, filename, name, firstlineno, lnotab)
This function is an interface to thePyCode New() C function.

module (name)
This function returns a new module object with namename. namemust be a string.

classobj (name, baseclasses, dict)
This function returns a new class object, with namename, derived frombaseclasses(which should be a tuple of
classes) and with namespacedict.

3.27 site — Site-specific configuration hook

This module is automatically imported during initialization.

In earlier versions of Python (up to and including 1.5a3), scripts or modules that needed to use site-specific modules
would place ‘import site ’ somewhere near the top of their code. This is no longer necessary.

This will append site-specific paths to the module search path.

3.26. new — Creation of runtime internal objects 73

It starts by constructing up to four directories from a head and a tail part. For the head part, it usessys.prefix and
sys.exec prefix ; empty heads are skipped. For the tail part, it uses the empty string (on Macintosh or Windows)
or it uses first ‘lib/python2.1/site-packages’ and then ‘lib/site-python’ (on UNIX). For each of the distinct head-tail
combinations, it sees if it refers to an existing directory, and if so, adds tosys.path , and also inspects the path for
configuration files.

A path configuration file is a file whose name has the form ‘package.pth’; its contents are additional items (one per
line) to be added tosys.path . Non-existing items are never added tosys.path , but no check is made that the
item refers to a directory (rather than a file). No item is added tosys.path more than once. Blank lines and lines
beginning with# are skipped. Lines starting withimport are executed.

For example, supposesys.prefix andsys.exec prefix are set to ‘/usr/local’. The Python 2.1.1 library is
then installed in ‘/usr/local/lib/python2.1’ (where only the first three characters ofsys.version are used to form the
installation path name). Suppose this has a subdirectory ‘/usr/local/lib/python2.1/site-packages’ with three subsubdi-
rectories, ‘foo’, ‘ bar’ and ‘spam’, and two path configuration files, ‘foo.pth’ and ‘bar.pth’. Assume ‘foo.pth’ contains
the following:

foo package configuration

foo
bar
bletch

and ‘bar.pth’ contains:

bar package configuration

bar

Then the following directories are added tosys.path , in this order:

/usr/local/lib/python1.5/site-packages/bar
/usr/local/lib/python1.5/site-packages/foo

Note that ‘bletch’ is omitted because it doesn’t exist; the ‘bar’ directory precedes the ‘foo’ directory because ‘bar.pth’
comes alphabetically before ‘foo.pth’; and ‘spam’ is omitted because it is not mentioned in either path configuration
file.

After these path manipulations, an attempt is made to import a module namedsitecustomize , which can perform
arbitrary site-specific customizations. If this import fails with anImportError exception, it is silently ignored.

Note that for some non-UNIX systems,sys.prefix andsys.exec prefix are empty, and the path manipula-
tions are skipped; however the import ofsitecustomize is still attempted.

3.28 user — User-specific configuration hook

As a policy, Python doesn’t run user-specified code on startup of Python programs. (Only interactive sessions execute
the script specified in the PYTHONSTARTUP environment variable if it exists).

However, some programs or sites may find it convenient to allow users to have a standard customization file, which
gets run when a program requests it. This module implements such a mechanism. A program that wishes to use the
mechanism must execute the statement

74 Chapter 3. Python Runtime Services

import user

Theuser module looks for a file ‘.pythonrc.py’ in the user’s home directory and if it can be opened, executes it (using
execfile()) in its own (i.e. the moduleuser ’s) global namespace. Errors during this phase are not caught; that’s
up to the program that imports theuser module, if it wishes. The home directory is assumed to be named by the
HOME environment variable; if this is not set, the current directory is used.

The user’s ‘.pythonrc.py’ could conceivably test forsys.version if it wishes to do different things depending on
the Python version.

A warning to users: be very conservative in what you place in your ‘.pythonrc.py’ file. Since you don’t know which
programs will use it, changing the behavior of standard modules or functions is generally not a good idea.

A suggestion for programmers who wish to use this mechanism: a simple way to let users specify options for your
package is to have them define variables in their ‘.pythonrc.py’ file that you test in your module. For example, a module
spam that has a verbosity level can look for a variableuser.spam verbose , as follows:

import user
try:

verbose = user.spam_verbose # user’s verbosity preference
except AttributeError:

verbose = 0 # default verbosity

Programs with extensive customization needs are better off reading a program-specific customization file.

Programs with security or privacy concerns shouldnot import this module; a user can easily break into a program by
placing arbitrary code in the ‘.pythonrc.py’ file.

Modules for general use shouldnot import this module; it may interfere with the operation of the importing program.

See Also:

Modulesite (section 3.27):
Site-wide customization mechanism.

3.29 builtin — Built-in functions

This module provides direct access to all ‘built-in’ identifiers of Python; e.g.builtin .open is the full name
for the built-in functionopen() . See section 2.3, “Built-in Functions.”

3.30 main — Top-level script environment

This module represents the (otherwise anonymous) scope in which the interpreter’s main program executes — com-
mands read either from standard input, from a script file, or from an interactive prompt. It is this environment in which
the idiomatic “conditional script” stanza causes a script to run:

if __name__ == "__main__":
main()

3.29. builtin — Built-in functions 75

76

CHAPTER

FOUR

String Services

The modules described in this chapter provide a wide range of string manipulation operations. Here’s an overview:

string Common string operations.
re Regular expression search and match operations with a Perl-style expression syntax.
struct Interpret strings as packed binary data.
difflib Helpers for computing differences between objects.
fpformat General floating point formatting functions.
StringIO Read and write strings as if they were files.
cStringIO Faster version ofStringIO , but not subclassable.
codecs Encode and decode data and streams.
unicodedata Access the Unicode Database.

4.1 string — Common string operations

This module defines some constants useful for checking character classes and some useful string functions. See the
modulere for string functions based on regular expressions.

The constants defined in this module are:

digits
The string’0123456789’ .

hexdigits
The string’0123456789abcdefABCDEF’ .

letters
The concatenation of the stringslowercase anduppercase described below.

lowercase
A string containing all the characters that are considered lowercase letters. On most systems this is the string
’abcdefghijklmnopqrstuvwxyz’ . Do not change its definition — the effect on the routinesupper()
andswapcase() is undefined.

octdigits
The string’01234567’ .

punctuation
String ofASCII characters which are considered punctuation characters in the ‘C’ locale.

printable
String of characters which are considered printable. This is a combination ofdigits , letters , punctua-
tion , andwhitespace .

uppercase

77

A string containing all the characters that are considered uppercase letters. On most systems this is the string
’ABCDEFGHIJKLMNOPQRSTUVWXYZ’. Do not change its definition — the effect on the routineslower()
andswapcase() is undefined.

whitespace
A string containing all characters that are considered whitespace. On most systems this includes the characters
space, tab, linefeed, return, formfeed, and vertical tab. Do not change its definition — the effect on the routines
strip() andsplit() is undefined.

Many of the functions provided by this module are also defined as methods of string and Unicode objects; see “String
Methods” (section 2.1.5) for more information on those. The functions defined in this module are:

atof (s)
Deprecated since release 2.0.Use thefloat() built-in function.

Convert a string to a floating point number. The string must have the standard syntax for a floating point literal
in Python, optionally preceded by a sign (‘+’ or ‘ - ’). Note that this behaves identical to the built-in function
float() when passed a string.

Note: When passing in a string, values for NaN and Infinity may be returned, depending on the underlying C
library. The specific set of strings accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

atoi (s[, base])
Deprecated since release 2.0.Use theint() built-in function.

Convert strings to an integer in the givenbase. The string must consist of one or more digits, optionally
preceded by a sign (‘+’ or ‘ - ’). The basedefaults to 10. If it is 0, a default base is chosen depending on the
leading characters of the string (after stripping the sign): ‘0x ’ or ‘ 0X’ means 16, ‘0’ means 8, anything else
means 10. Ifbaseis 16, a leading ‘0x ’ or ‘ 0X’ is always accepted, though not required. This behaves identically
to the built-in functionint() when passed a string. (Also note: for a more flexible interpretation of numeric
literals, use the built-in functioneval() .)

atol (s[, base])
Deprecated since release 2.0.Use thelong() built-in function.

Convert strings to a long integer in the givenbase. The string must consist of one or more digits, optionally
preceded by a sign (‘+’ or ‘ - ’). The baseargument has the same meaning as foratoi() . A trailing ‘ l ’ or ‘ L’
is not allowed, except if the base is 0. Note that when invoked withoutbaseor with baseset to 10, this behaves
identical to the built-in functionlong() when passed a string.

capitalize (word)
Capitalize the first character of the argument.

capwords (s)
Split the argument into words usingsplit() , capitalize each word usingcapitalize() , and join the
capitalized words usingjoin() . Note that this replaces runs of whitespace characters by a single space, and
removes leading and trailing whitespace.

expandtabs (s[, tabsize])
Expand tabs in a string, i.e. replace them by one or more spaces, depending on the current column and the given
tab size. The column number is reset to zero after each newline occurring in the string. This doesn’t understand
other non-printing characters or escape sequences. The tab size defaults to 8.

find (s, sub[, start[,end]])
Return the lowest index inswhere the substringsubis found such thatsubis wholly contained ins[start: end] .
Return-1 on failure. Defaults forstart andendand interpretation of negative values is the same as for slices.

rfind (s, sub[, start[, end]])
Like find() but find the highest index.

index (s, sub[, start[, end]])
Like find() but raiseValueError when the substring is not found.

78 Chapter 4. String Services

rindex (s, sub[, start[, end]])
Like rfind() but raiseValueError when the substring is not found.

count (s, sub[, start[, end]])
Return the number of (non-overlapping) occurrences of substringsubin strings[start: end] . Defaults forstart
andendand interpretation of negative values are the same as for slices.

lower (s)
Return a copy ofs, but with upper case letters converted to lower case.

maketrans (from, to)
Return a translation table suitable for passing totranslate() or regex.compile() , that will map each
character infrom into the character at the same position into; from andto must have the same length.

Warning: don’t use strings derived fromlowercase anduppercase as arguments; in some locales, these
don’t have the same length. For case conversions, always uselower() andupper() .

split (s[, sep[, maxsplit]])
Return a list of the words of the strings. If the optional second argumentsepis absent orNone, the words
are separated by arbitrary strings of whitespace characters (space, tab, newline, return, formfeed). If the second
argumentsepis present and notNone, it specifies a string to be used as the word separator. The returned list
will then have one more item than the number of non-overlapping occurrences of the separator in the string.
The optional third argumentmaxsplitdefaults to 0. If it is nonzero, at mostmaxsplitnumber of splits occur, and
the remainder of the string is returned as the final element of the list (thus, the list will have at mostmaxsplit+1
elements).

splitfields (s[, sep[, maxsplit]])
This function behaves identically tosplit() . (In the past,split() was only used with one argument, while
splitfields() was only used with two arguments.)

join (words[, sep])
Concatenate a list or tuple of words with intervening occurrences ofsep. The default value forsepis a single
space character. It is always true that ‘string.join(string.split(s, sep), sep) ’ equalss.

joinfields (words[, sep])
This function behaves identical tojoin() . (In the past,join() was only used with one argument, while
joinfields() was only used with two arguments.)

lstrip (s)
Return a copy ofs but without leading whitespace characters.

rstrip (s)
Return a copy ofs but without trailing whitespace characters.

strip (s)
Return a copy ofs without leading or trailing whitespace.

swapcase (s)
Return a copy ofs, but with lower case letters converted to upper case and vice versa.

translate (s, table[, deletechars])
Delete all characters froms that are indeletechars(if present), and then translate the characters usingtable,
which must be a 256-character string giving the translation for each character value, indexed by its ordinal.

upper (s)
Return a copy ofs, but with lower case letters converted to upper case.

ljust (s, width)
rjust (s, width)
center (s, width)

These functions respectively left-justify, right-justify and center a string in a field of given width. They return a
string that is at leastwidth characters wide, created by padding the strings with spaces until the given width on

4.1. string — Common string operations 79

the right, left or both sides. The string is never truncated.

zfill (s, width)
Pad a numeric string on the left with zero digits until the given width is reached. Strings starting with a sign are
handled correctly.

replace (str, old, new[, maxsplit])
Return a copy of stringstr with all occurrences of substringold replaced bynew. If the optional argument
maxsplitis given, the firstmaxsplitoccurrences are replaced.

4.2 re — Regular expression operations

This module provides regular expression matching operations similar to those found in Perl. Regular expression
pattern strings may not contain null bytes, but can specify the null byte using the\ numbernotation. Both patterns and
strings to be searched can be Unicode strings as well as 8-bit strings. There module is always available.

Regular expressions use the backslash character (‘\ ’) to indicate special forms or to allow special characters to be
used without invoking their special meaning. This collides with Python’s usage of the same character for the same
purpose in string literals; for example, to match a literal backslash, one might have to write’\\\\’ as the pattern
string, because the regular expression must be ‘\\ ’, and each backslash must be expressed as ‘\\ ’ inside a regular
Python string literal.

The solution is to use Python’s raw string notation for regular expression patterns; backslashes are not handled in any
special way in a string literal prefixed with ‘r ’. So r"\n" is a two-character string containing ‘\ ’ and ‘n’, while
"\n" is a one-character string containing a newline. Usually patterns will be expressed in Python code using this raw
string notation.

Implementation note: The re module has two distinct implementations:sre is the default implementation and
includes Unicode support, but may run into stack limitations for some patterns. Though this will be fixed for a future
release of Python, the older implementation (without Unicode support) is still available as thepre module.

See Also:

Mastering Regular Expressions
Book on regular expressions by Jeffrey Friedl, published by O’Reilly. The Python material in this book dates
from before there module, but it covers writing good regular expression patterns in great detail.

4.2.1 Regular Expression Syntax

A regular expression (or RE) specifies a set of strings that matches it; the functions in this module let you check if a
particular string matches a given regular expression (or if a given regular expression matches a particular string, which
comes down to the same thing).

Regular expressions can be concatenated to form new regular expressions; ifA andB are both regular expressions,
thenAB is also an regular expression. If a stringp matches A and another stringq matches B, the stringpqwill match
AB. Thus, complex expressions can easily be constructed from simpler primitive expressions like the ones described
here. For details of the theory and implementation of regular expressions, consult the Friedl book referenced below,
or almost any textbook about compiler construction.

A brief explanation of the format of regular expressions follows. For further information and a gentler presentation,
consult the Regular Expression HOWTO, accessible fromhttp://www.python.org/doc/howto/.

Regular expressions can contain both special and ordinary characters. Most ordinary characters, like ‘A’, ‘ a’, or
‘0’, are the simplest regular expressions; they simply match themselves. You can concatenate ordinary characters,
so dlast cmatches the string’last’ . (In the rest of this section, we’ll write RE’s indthis special style c,
usually without quotes, and strings to be matched’in single quotes’ .)

80 Chapter 4. String Services

Some characters, like ‘| ’ or ‘ (’, are special. Special characters either stand for classes of ordinary characters, or affect
how the regular expressions around them are interpreted.

The special characters are:

‘ . ’ (Dot.) In the default mode, this matches any character except a newline. If theDOTALLflag has been
specified, this matches any character including a newline.

‘ ˆ ’ (Caret.) Matches the start of the string, and inMULTILINE mode also matches immediately after each
newline.

‘$’ Matches the end of the string, and inMULTILINE mode also matches before a newline.dfoo cmatches
both ’foo’ and ’foobar’, while the regular expressiondfoo$ cmatches only ’foo’.

‘* ’ Causes the resulting RE to match 0 or more repetitions of the preceding RE, as many repetitions as are
possible.dab* cwill match ’a’, ’ab’, or ’a’ followed by any number of ’b’s.

‘+’ Causes the resulting RE to match 1 or more repetitions of the preceding RE.dab+cwill match ’a’ followed
by any non-zero number of ’b’s; it will not match just ’a’.

‘?’ Causes the resulting RE to match 0 or 1 repetitions of the preceding RE.dab?cwill match either ’a’ or
’ab’.

? , +?, ?? The ‘ ’, ‘ +’, and ‘?’ qualifiers are allgreedy; they match as much text as possible. Sometimes this
behaviour isn’t desired; if the REd<.*> c is matched against’<H1>title</H1>’ , it will match the
entire string, and not just’<H1>’ . Adding ‘?’ after the qualifier makes it perform the match innon-
greedyor minimal fashion; asfew characters as possible will be matched. Usingd.*? c in the previous
expression will match only’<H1>’ .

{ m, n} Causes the resulting RE to match fromm to n repetitions of the preceding RE, attempting to match as
many repetitions as possible. For example,da{3,5} cwill match from 3 to 5 ‘a’ characters. Omittingn
specifies an infinite upper bound; you can’t omitm.

{ m, n}? Causes the resulting RE to match fromm to n repetitions of the preceding RE, attempting to match as
few repetitions as possible. This is the non-greedy version of the previous qualifier. For example, on the
6-character string’aaaaaa’ , da{3,5} cwill match 5 ‘a’ characters, whileda{3,5}? cwill only match
3 characters.

‘ \ ’ Either escapes special characters (permitting you to match characters like ‘* ’, ‘ ?’, and so forth), or signals
a special sequence; special sequences are discussed below.

If you’re not using a raw string to express the pattern, remember that Python also uses the backslash as an
escape sequence in string literals; if the escape sequence isn’t recognized by Python’s parser, the backslash
and subsequent character are included in the resulting string. However, if Python would recognize the
resulting sequence, the backslash should be repeated twice. This is complicated and hard to understand,
so it’s highly recommended that you use raw strings for all but the simplest expressions.

[] Used to indicate a set of characters. Characters can be listed individually, or a range of characters can
be indicated by giving two characters and separating them by a ‘- ’. Special characters are not active
inside sets. For example,d[akm$] cwill match any of the characters ‘a’, ‘ k ’, ‘ m’, or ‘$’; d[a-z] cwill
match any lowercase letter, and[a-zA-Z0-9] matches any letter or digit. Character classes such as\w
or \S (defined below) are also acceptable inside a range. If you want to include a ‘] ’ or a ‘- ’ inside a
set, precede it with a backslash, or place it as the first character. The patternd[]] cwill match ’]’ , for
example.

You can match the characters not within a range bycomplementingthe set. This is indicated by including
a ‘ˆ ’ as the first character of the set; ‘ˆ ’ elsewhere will simply match the ‘ˆ ’ character. For example,
d[ˆ5] cwill match any character except ‘5’.

4.2. re — Regular expression operations 81

‘ | ’ A|B , where A and B can be arbitrary REs, creates a regular expression that will match either A or B.
An arbitrary number of REs can be separated by the ‘| ’ in this way. This can be used inside groups (see
below) as well. REs separated by ‘| ’ are tried from left to right, and the first one that allows the complete
pattern to match is considered the accepted branch. This means that ifA matches,B will never be tested,
even if it would produce a longer overall match. In other words, the ‘| ’ operator is never greedy. To
match a literal ‘| ’, used\| c, or enclose it inside a character class, as ind[|] c.

(...) Matches whatever regular expression is inside the parentheses, and indicates the start and end of a group;
the contents of a group can be retrieved after a match has been performed, and can be matched later in the
string with thed\ numberc special sequence, described below. To match the literals ‘(’ or ‘) ’, used\(cor
d\) c, or enclose them inside a character class:d[(] [)] c.

(?...) This is an extension notation (a ‘?’ following a ‘ (’ is not meaningful otherwise). The first character after
the ‘?’ determines what the meaning and further syntax of the construct is. Extensions usually do not
create a new group;d(?P< name>...) c is the only exception to this rule. Following are the currently
supported extensions.

(?iLmsux) (One or more letters from the set ‘i ’, ‘ L’, ‘ m’, ‘ s ’, ‘ u’, ‘ x ’.) The group matches the empty string;
the letters set the corresponding flags (re.I , re.L , re.M , re.S , re.U , re.X) for the entire regular
expression. This is useful if you wish to include the flags as part of the regular expression, instead of
passing aflagargument to thecompile() function.

Note that thed(?x) c flag changes how the expression is parsed. It should be used first in the expression
string, or after one or more whitespace characters. If there are non-whitespace characters before the flag,
the results are undefined.

(?:...) A non-grouping version of regular parentheses. Matches whatever regular expression is inside the paren-
theses, but the substring matched by the groupcannotbe retrieved after performing a match or referenced
later in the pattern.

(?P< name>...) Similar to regular parentheses, but the substring matched by the group is accessible via the sym-
bolic group namename. Group names must be valid Python identifiers. A symbolic group is also a
numbered group, just as if the group were not named. So the group named ’id’ in the example above can
also be referenced as the numbered group 1.

For example, if the pattern isd(?P<id>[a-zA-Z]\w*) c, the group can be referenced by its name
in arguments to methods of match objects, such asm.group(’id’) or m.end(’id’) , and also by
name in pattern text (e.g.d(?P=id) c) and replacement text (e.g.\g<id>).

(?P= name) Matches whatever text was matched by the earlier group namedname.

(?#...) A comment; the contents of the parentheses are simply ignored.

(?=...) Matches ifd... cmatches next, but doesn’t consume any of the string. This is called a lookahead assertion.
For example,dIsaac (?=Asimov) cwill match ’Isaac ’ only if it’s followed by ’Asimov’ .

(?!...) Matches if d... c doesn’t match next. This is a negative lookahead assertion. For example,dIsaac
(?!Asimov) cwill match ’Isaac ’ only if it’s not followed by ’Asimov’ .

(?<=...) Matches if the current position in the string is preceded by a match ford... c that ends at the current
position. This is called a positive lookbehind assertion.d(?<=abc)def cwill match ‘abcdef ’, since the
lookbehind will back up 3 characters and check if the contained pattern matches. The contained pattern
must only match strings of some fixed length, meaning thatdabccor da|b care allowed, butda* c isn’t.

(?<!...) Matches if the current position in the string is not preceded by a match ford... c. This is called a negative
lookbehind assertion. Similar to positive lookbehind assertions, the contained pattern must only match
strings of some fixed length.

The special sequences consist of ‘\ ’ and a character from the list below. If the ordinary character is not on the list,
then the resulting RE will match the second character. For example,d\$ cmatches the character ‘$’.

82 Chapter 4. String Services

\ number Matches the contents of the group of the same number. Groups are numbered starting from 1. For
example,d(.+) \1 cmatches’the the’ or ’55 55’ , but not’the end’ (note the space after the
group). This special sequence can only be used to match one of the first 99 groups. If the first digit
of numberis 0, ornumberis 3 octal digits long, it will not be interpreted as a group match, but as the
character with octal valuenumber. Inside the ‘[’ and ‘] ’ of a character class, all numeric escapes are
treated as characters.

\A Matches only at the start of the string.

\b Matches the empty string, but only at the beginning or end of a word. A word is defined as a sequence of
alphanumeric characters, so the end of a word is indicated by whitespace or a non-alphanumeric character.
Inside a character range,d\b c represents the backspace character, for compatibility with Python’s string
literals.

\B Matches the empty string, but only when it isnotat the beginning or end of a word.

\d Matches any decimal digit; this is equivalent to the setd[0-9] c.

\D Matches any non-digit character; this is equivalent to the setd[ˆ0-9] c.

\s Matches any whitespace character; this is equivalent to the setd[\t\n\r\f\v] c.

\S Matches any non-whitespace character; this is equivalent to the setd[ˆ \t\n\r\f\v] c.

\w When theLOCALEandUNICODEflags are not specified, matches any alphanumeric character; this is
equivalent to the setd[a-zA-Z0-9] c. With LOCALE, it will match the setd[0-9] c plus whatever
characters are defined as letters for the current locale. IfUNICODEis set, this will match the characters
d[0-9] cplus whatever is classified as alphanumeric in the Unicode character properties database.

\W When theLOCALEandUNICODEflags are not specified, matches any non-alphanumeric character; this
is equivalent to the setd[ˆa-zA-Z0-9] c. With LOCALE, it will match any character not in the set
d[0-9] c, and not defined as a letter for the current locale. IfUNICODEis set, this will match anything
other thand[0-9] cand characters marked at alphanumeric in the Unicode character properties database.

\Z Matches only at the end of the string.

\\ Matches a literal backslash.

4.2.2 Matching vs. Searching

Python offers two different primitive operations based on regular expressions: match and search. If you are accustomed
to Perl’s semantics, the search operation is what you’re looking for. See thesearch() function and corresponding
method of compiled regular expression objects.

Note that match may differ from search using a regular expression beginning with ‘ˆ ’: ‘ ˆ ’ matches only at the start
of the string, or inMULTILINE mode also immediately following a newline. The “match” operation succeeds only
if the pattern matches at the start of the string regardless of mode, or at the starting position given by the optionalpos
argument regardless of whether a newline precedes it.

re.compile("a").match("ba", 1) # succeeds
re.compile("ˆa").search("ba", 1) # fails; ’a’ not at start
re.compile("ˆa").search("\na", 1) # fails; ’a’ not at start
re.compile("ˆa", re.M).search("\na", 1) # succeeds
re.compile("ˆa", re.M).search("ba", 1) # fails; no preceding \n

4.2. re — Regular expression operations 83

4.2.3 Module Contents

The module defines the following functions and constants, and an exception:

compile (pattern[, flags])
Compile a regular expression pattern into a regular expression object, which can be used for matching using its
match() andsearch() methods, described below.

The expression’s behaviour can be modified by specifying aflagsvalue. Values can be any of the following
variables, combined using bitwise OR (the| operator).

The sequence

prog = re.compile(pat)
result = prog.match(str)

is equivalent to

result = re.match(pat, str)

but the version usingcompile() is more efficient when the expression will be used several times in a single
program.

I
IGNORECASE

Perform case-insensitive matching; expressions liked[A-Z] c will match lowercase letters, too. This is not
affected by the current locale.

L
LOCALE

Maked\wc, d\Wc, d\b c, andd\B cdependent on the current locale.

M
MULTILINE

When specified, the pattern character ‘ˆ ’ matches at the beginning of the string and at the beginning of each
line (immediately following each newline); and the pattern character ‘$’ matches at the end of the string and at
the end of each line (immediately preceding each newline). By default, ‘ˆ ’ matches only at the beginning of the
string, and ‘$’ only at the end of the string and immediately before the newline (if any) at the end of the string.

S
DOTALL

Make the ‘. ’ special character match any character at all, including a newline; without this flag, ‘. ’ will match
anythingexcepta newline.

U
UNICODE

Maked\wc, d\Wc, d\b c, andd\B cdependent on the Unicode character properties database. New in version 2.0.

X
VERBOSE

This flag allows you to write regular expressions that look nicer. Whitespace within the pattern is ignored,
except when in a character class or preceded by an unescaped backslash, and, when a line contains a ‘#’ neither
in a character class or preceded by an unescaped backslash, all characters from the leftmost such ‘#’ through
the end of the line are ignored.

search (pattern, string[, flags])
Scan throughstring looking for a location where the regular expressionpatternproduces a match, and return a
correspondingMatchObject instance. ReturnNone if no position in the string matches the pattern; note that
this is different from finding a zero-length match at some point in the string.

84 Chapter 4. String Services

match (pattern, string[, flags])
If zero or more characters at the beginning ofstringmatch the regular expressionpattern, return a corresponding
MatchObject instance. ReturnNone if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywhere instring, usesearch() instead.

split (pattern, string[, maxsplit = 0])
Split stringby the occurrences ofpattern. If capturing parentheses are used inpattern, then the text of all groups
in the pattern are also returned as part of the resulting list. Ifmaxsplitis nonzero, at mostmaxsplitsplits occur,
and the remainder of the string is returned as the final element of the list. (Incompatibility note: in the original
Python 1.5 release,maxsplitwas ignored. This has been fixed in later releases.)

>>> re.split(’\W+’, ’Words, words, words.’)
[’Words’, ’words’, ’words’, ’’]
>>> re.split(’(\W+)’, ’Words, words, words.’)
[’Words’, ’, ’, ’words’, ’, ’, ’words’, ’.’, ’’]
>>> re.split(’\W+’, ’Words, words, words.’, 1)
[’Words’, ’words, words.’]

This function combines and extends the functionality of the oldregsub.split() andregsub.splitx() .

findall (pattern, string)
Return a list of all non-overlapping matches ofpatternin string. If one or more groups are present in the pattern,
return a list of groups; this will be a list of tuples if the pattern has more than one group. Empty matches are
included in the result. New in version 1.5.2.

sub (pattern, repl, string[, count = 0])
Return the string obtained by replacing the leftmost non-overlapping occurrences ofpattern in string by the
replacementrepl. If the pattern isn’t found,string is returned unchanged.repl can be a string or a function; if a
function, it is called for every non-overlapping occurrence ofpattern. The function takes a single match object
argument, and returns the replacement string. For example:

>>> def dashrepl(matchobj):
.... if matchobj.group(0) == ’-’: return ’ ’
.... else: return ’-’
>>> re.sub(’-{1,2}’, dashrepl, ’pro----gram-files’)
’pro--gram files’

The pattern may be a string or an RE object; if you need to specify regular expression flags, you must use a RE
object, or use embedded modifiers in a pattern; e.g. ‘sub("(?i)b+", "x", "bbbb BBBB") ’ returns’x
x’ .

The optional argumentcount is the maximum number of pattern occurrences to be replaced;countmust be a
non-negative integer, and the default value of 0 means to replace all occurrences.

Empty matches for the pattern are replaced only when not adjacent to a previous match, so ‘sub(’x*’, ’-’,
’abc’) ’ returns’-a-b-c-’ .

If repl is a string, any backslash escapes in it are processed. That is, ‘\n ’ is converted to a single newline charac-
ter, ‘\r ’ is converted to a linefeed, and so forth. Unknown escapes such as ‘\j ’ are left alone. Backreferences,
such as ‘\6 ’, are replaced with the substring matched by group 6 in the pattern.

In addition to character escapes and backreferences as described above, ‘\g<name> ’ will use the substring
matched by the group named ‘name’, as defined by thed(?P<name>...) c syntax. ‘\g<number> ’ uses the
corresponding group number; ‘\g<2> ’ is therefore equivalent to ‘\2 ’, but isn’t ambiguous in a replacement
such as ‘\g<2>0 ’. ‘ \20 ’ would be interpreted as a reference to group 20, not a reference to group 2 followed
by the literal character ‘0’.

subn (pattern, repl, string[, count = 0])
Perform the same operation assub() , but return a tuple(new string, number of subs made) .

4.2. re — Regular expression operations 85

escape (string)
Returnstring with all non-alphanumerics backslashed; this is useful if you want to match an arbitrary literal
string that may have regular expression metacharacters in it.

exceptionerror
Exception raised when a string passed to one of the functions here is not a valid regular expression (e.g., un-
matched parentheses) or when some other error occurs during compilation or matching. It is never an error if a
string contains no match for a pattern.

4.2.4 Regular Expression Objects

Compiled regular expression objects support the following methods and attributes:

search (string[, pos[, endpos]])
Scan throughstring looking for a location where this regular expression produces a match, and return a corre-
spondingMatchObject instance. ReturnNone if no position in the string matches the pattern; note that this
is different from finding a zero-length match at some point in the string.

The optionalposandendposparameters have the same meaning as for thematch() method.

match (string[, pos[, endpos]])
If zero or more characters at the beginning ofstring match this regular expression, return a corresponding
MatchObject instance. ReturnNone if the string does not match the pattern; note that this is different from
a zero-length match.

Note: If you want to locate a match anywhere instring, usesearch() instead.

The optional second parameterposgives an index in the string where the search is to start; it defaults to0. This
is not completely equivalent to slicing the string; the’ˆ’ pattern character matches at the real beginning of the
string and at positions just after a newline, but not necessarily at the index where the search is to start.

The optional parameterendposlimits how far the string will be searched; it will be as if the string isendpos
characters long, so only the characters fromposto endposwill be searched for a match.

split (string[, maxsplit = 0])
Identical to thesplit() function, using the compiled pattern.

findall (string)
Identical to thefindall() function, using the compiled pattern.

sub (repl, string[, count = 0])
Identical to thesub() function, using the compiled pattern.

subn (repl, string[, count = 0])
Identical to thesubn() function, using the compiled pattern.

flags
The flags argument used when the RE object was compiled, or0 if no flags were provided.

groupindex
A dictionary mapping any symbolic group names defined byd(?P< id>) c to group numbers. The dictionary is
empty if no symbolic groups were used in the pattern.

pattern
The pattern string from which the RE object was compiled.

4.2.5 Match Objects

MatchObject instances support the following methods and attributes:

86 Chapter 4. String Services

expand (template)
Return the string obtained by doing backslash substitution on the template stringtemplate, as done by thesub()
method. Escapes such as ‘\n ’ are converted to the appropriate characters, and numeric backreferences (‘\1 ’,
‘ \2 ’) and named backreferences (‘\g<1> ’, ‘ \g<name> ’) are replaced by the contents of the corresponding
group.

group ([group1, ...])
Returns one or more subgroups of the match. If there is a single argument, the result is a single string; if there
are multiple arguments, the result is a tuple with one item per argument. Without arguments,group1defaults
to zero (i.e. the whole match is returned). If agroupN argument is zero, the corresponding return value is
the entire matching string; if it is in the inclusive range [1..99], it is the string matching the the corresponding
parenthesized group. If a group number is negative or larger than the number of groups defined in the pattern,
an IndexError exception is raised. If a group is contained in a part of the pattern that did not match, the
corresponding result isNone. If a group is contained in a part of the pattern that matched multiple times, the
last match is returned.

If the regular expression uses thed(?P< name>...) csyntax, thegroupNarguments may also be strings identify-
ing groups by their group name. If a string argument is not used as a group name in the pattern, anIndexError
exception is raised.

A moderately complicated example:

m = re.match(r"(?P<int>\d+)\.(\d*)", ’3.14’)

After performing this match,m.group(1) is ’3’ , as ism.group(’int’) , andm.group(2) is ’14’ .

groups ([default])
Return a tuple containing all the subgroups of the match, from 1 up to however many groups are in the pattern.
Thedefaultargument is used for groups that did not participate in the match; it defaults toNone. (Incompat-
ibility note: in the original Python 1.5 release, if the tuple was one element long, a string would be returned
instead. In later versions (from 1.5.1 on), a singleton tuple is returned in such cases.)

groupdict ([default])
Return a dictionary containing all thenamedsubgroups of the match, keyed by the subgroup name. Thedefault
argument is used for groups that did not participate in the match; it defaults toNone.

start ([group])
end ([group])

Return the indices of the start and end of the substring matched bygroup; groupdefaults to zero (meaning the
whole matched substring). Return-1 if groupexists but did not contribute to the match. For a match objectm,
and a groupg that did contribute to the match, the substring matched by groupg (equivalent tom.group(g))
is

m.string[m.start(g):m.end(g)]

Note thatm.start(group) will equalm.end(group) if groupmatched a null string. For example, afterm =
re.search(’b(c?)’, ’cba’) , m.start(0) is 1, m.end(0) is 2, m.start(1) andm.end(1)
are both 2, andm.start(2) raises anIndexError exception.

span ([group])
ForMatchObject m, return the 2-tuple(m.start(group), m.end(group)) . Note that ifgroupdid not
contribute to the match, this is(-1, -1) . Again,groupdefaults to zero.

pos
The value ofposwhich was passed to thesearch() or match() function. This is the index into the string at
which the RE engine started looking for a match.

endpos
The value ofendposwhich was passed to thesearch() or match() function. This is the index into the

4.2. re — Regular expression operations 87

string beyond which the RE engine will not go.

lastgroup
The name of the last matched capturing group, orNone if the group didn’t have a name, or if no group was
matched at all.

lastindex
The integer index of the last matched capturing group, orNone if no group was matched at all.

re
The regular expression object whosematch() or search() method produced thisMatchObject instance.

string
The string passed tomatch() or search() .

4.3 struct — Interpret strings as packed binary data

This module performs conversions between Python values and C structs represented as Python strings. It usesformat
strings(explained below) as compact descriptions of the lay-out of the C structs and the intended conversion to/from
Python values. This can be used in handling binary data stored in files or from network connections, among other
sources.

The module defines the following exception and functions:

exceptionerror
Exception raised on various occasions; argument is a string describing what is wrong.

pack (fmt, v1, v2, . . .)
Return a string containing the valuesv1, v2, . . . packed according to the given format. The arguments must
match the values required by the format exactly.

unpack (fmt, string)
Unpack the string (presumably packed bypack(fmt, . . .)) according to the given format. The result is a
tuple even if it contains exactly one item. The string must contain exactly the amount of data required by the
format (i.e.len(string) must equalcalcsize(fmt)).

calcsize (fmt)
Return the size of the struct (and hence of the string) corresponding to the given format.

Format characters have the following meaning; the conversion between C and Python values should be obvious given
their types:

Format C Type Python Notes
‘x ’ pad byte no value
‘c ’ char string of length 1
‘b’ signed char integer
‘B’ unsigned char integer
‘h’ short integer
‘H’ unsigned short integer
‘ i ’ int integer
‘ I ’ unsigned int long (1)
‘ l ’ long integer
‘L’ unsigned long long
‘ f ’ float float
‘d’ double float
‘s ’ char[] string
‘p’ char[] string
‘P’ void * integer

88 Chapter 4. String Services

Notes:

(1) The ‘I ’ conversion code will convert to a Python long if the Cint is the same size as a Clong , which is typical
on most modern systems. If a Cint is smaller than a Clong , an Python integer will be created instead.

A format character may be preceded by an integral repeat count; e.g. the format string’4h’ means exactly the same
as’hhhh’ .

Whitespace characters between formats are ignored; a count and its format must not contain whitespace though.

For the ‘s ’ format character, the count is interpreted as the size of the string, not a repeat count like for the other
format characters; e.g.’10s’ means a single 10-byte string, while’10c’ means 10 characters. For packing, the
string is truncated or padded with null bytes as appropriate to make it fit. For unpacking, the resulting string always
has exactly the specified number of bytes. As a special case,’0s’ means a single, empty string (while’0c’ means
0 characters).

The ‘p’ format character can be used to encode a Pascal string. The first byte is the length of the stored string, with the
bytes of the string following. If count is given, it is used as the total number of bytes used, including the length byte.
If the string passed in topack() is too long, the stored representation is truncated. If the string is too short, padding
is used to ensure that exactly enough bytes are used to satisfy the count.

For the ‘I ’ and ‘L’ format characters, the return value is a Python long integer.

For the ‘P’ format character, the return value is a Python integer or long integer, depending on the size needed to hold
a pointer when it has been cast to an integer type. ANULL pointer will always be returned as the Python integer0.
When packing pointer-sized values, Python integer or long integer objects may be used. For example, the Alpha and
Merced processors use 64-bit pointer values, meaning a Python long integer will be used to hold the pointer; other
platforms use 32-bit pointers and will use a Python integer.

By default, C numbers are represented in the machine’s native format and byte order, and properly aligned by skipping
pad bytes if necessary (according to the rules used by the C compiler).

Alternatively, the first character of the format string can be used to indicate the byte order, size and alignment of the
packed data, according to the following table:

Character Byte order Size and alignment
‘@’ native native
‘=’ native standard
‘<’ little-endian standard
‘>’ big-endian standard
‘ ! ’ network (= big-endian) standard

If the first character is not one of these, ‘@’ is assumed.

Native byte order is big-endian or little-endian, depending on the host system (e.g. Motorola and Sun are big-endian;
Intel and DEC are little-endian).

Native size and alignment are determined using the C compiler’ssizeof expression. This is always combined with
native byte order.

Standard size and alignment are as follows: no alignment is required for any type (so you have to use pad bytes);
short is 2 bytes; int and long are 4 bytes. float and double are 32-bit and 64-bit IEEE floating point
numbers, respectively.

Note the difference between ‘@’ and ‘=’: both use native byte order, but the size and alignment of the latter is stan-
dardized.

The form ‘! ’ is available for those poor souls who claim they can’t remember whether network byte order is big-endian
or little-endian.

4.3. struct — Interpret strings as packed binary data 89

There is no way to indicate non-native byte order (i.e. force byte-swapping); use the appropriate choice of ‘<’ or ‘ >’.

The ‘P’ format character is only available for the native byte ordering (selected as the default or with the ‘@’ byte order
character). The byte order character ‘=’ chooses to use little- or big-endian ordering based on the host system. The
struct module does not interpret this as native ordering, so the ‘P’ format is not available.

Examples (all using native byte order, size and alignment, on a big-endian machine):

>>> from struct import *
>>> pack(’hhl’, 1, 2, 3)
’\x00\x01\x00\x02\x00\x00\x00\x03’
>>> unpack(’hhl’, ’\x00\x01\x00\x02\x00\x00\x00\x03’)
(1, 2, 3)
>>> calcsize(’hhl’)
8

Hint: to align the end of a structure to the alignment requirement of a particular type, end the format with the code
for that type with a repeat count of zero, e.g. the format’llh0l’ specifies two pad bytes at the end, assuming longs
are aligned on 4-byte boundaries. This only works when native size and alignment are in effect; standard size and
alignment does not enforce any alignment.

See Also:

Modulearray (section 5.8):
Packed binary storage of homogeneous data.

Modulexdrlib (section 12.9):
Packing and unpacking of XDR data.

4.4 difflib — Helpers for computing deltas

New in version 2.1.

get close matches (word, possibilities[, n[, cutoff]])
Return a list of the best “good enough” matches.word is a sequence for which close matches are desired
(typically a string), andpossibilitiesis a list of sequences against which to matchword (typically a list of
strings).

Optional argumentn (default3) is the maximum number of close matches to return;n must be greater than0.

Optional argumentcutoff (default0.6) is a float in the range [0, 1]. Possibilities that don’t score at least that
similar toword are ignored.

The best (no more thann) matches among the possibilities are returned in a list, sorted by similarity score, most
similar first.

>>> get_close_matches(’appel’, [’ape’, ’apple’, ’peach’, ’puppy’])
[’apple’, ’ape’]
>>> import keyword
>>> get_close_matches(’wheel’, keyword.kwlist)
[’while’]
>>> get_close_matches(’apple’, keyword.kwlist)
[]
>>> get_close_matches(’accept’, keyword.kwlist)
[’except’]

classSequenceMatcher (...)

90 Chapter 4. String Services

This is a flexible class for comparing pairs of sequences of any type, so long as the sequence elements are
hashable. The basic algorithm predates, and is a little fancier than, an algorithm published in the late 1980’s by
Ratcliff and Obershelp under the hyperbolic name “gestalt pattern matching.” The idea is to find the longest con-
tiguous matching subsequence that contains no “junk” elements (the Ratcliff and Obershelp algorithm doesn’t
address junk). The same idea is then applied recursively to the pieces of the sequences to the left and to the right
of the matching subsequence. This does not yield minimal edit sequences, but does tend to yield matches that
“look right” to people.

Timing: The basic Ratcliff-Obershelp algorithm is cubic time in the worst case and quadratic time in the
expected case.SequenceMatcher is quadratic time for the worst case and has expected-case behavior de-
pendent in a complicated way on how many elements the sequences have in common; best case time is linear.

See Also:

Pattern Matching: The Gestalt Approach
Discussion of a similar algorithm by John W. Ratcliff and D. E. Metzener. This was published inDr. Dobb’s
Journal in July, 1988.

4.4.1 SequenceMatcher Objects

classSequenceMatcher ([isjunk[, a[, b]]])
Optional argumentisjunkmust beNone (the default) or a one-argument function that takes a sequence element
and returns true if and only if the element is “junk” and should be ignored.None is equivalent to passing
lambda x: 0 , i.e. no elements are ignored. For example, pass

lambda x: x in " \t"

if you’re comparing lines as sequences of characters, and don’t want to synch up on blanks or hard tabs.

The optional argumentsa andb are sequences to be compared; both default to empty strings. The elements of
both sequences must be hashable.

SequenceMatcher objects have the following methods:

set seqs (a, b)
Set the two sequences to be compared.

SequenceMatcher computes and caches detailed information about the second sequence, so if you want to com-
pare one sequence against many sequences, useset seq2() to set the commonly used sequence once and call
set seq1() repeatedly, once for each of the other sequences.

set seq1 (a)
Set the first sequence to be compared. The second sequence to be compared is not changed.

set seq2 (b)
Set the second sequence to be compared. The first sequence to be compared is not changed.

find longest match (alo, ahi, blo, bhi)
Find longest matching block ina[alo: ahi] andb[blo: bhi] .

If isjunkwas omitted orNone, get longest match() returns(i, j, k) such thata[i: i+k] is equal to
b[j: j+k] , wherealo <= i <= i+k <= ahi andblo <= j <= j+k <= bhi. For all (i’ , j’ , k’) meeting
those conditions, the additional conditionsk >= k’, i <= i’ , and if i == i’ , j <= j’ are also met. In other
words, of all maximal matching blocks, return one that starts earliest ina, and of all those maximal matching
blocks that start earliest ina, return the one that starts earliest inb.

>>> s = SequenceMatcher(None, " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
(0, 4, 5)

4.4. difflib — Helpers for computing deltas 91

If isjunkwas provided, first the longest matching block is determined as above, but with the additional restriction
that no junk element appears in the block. Then that block is extended as far as possible by matching (only)
junk elements on both sides. So the resulting block never matches on junk except as identical junk happens to
be adjacent to an interesting match.

Here’s the same example as before, but considering blanks to be junk. That prevents’ abcd’ from matching
the ’ abcd’ at the tail end of the second sequence directly. Instead only the’abcd’ can match, and matches
the leftmost’abcd’ in the second sequence:

>>> s = SequenceMatcher(lambda x: x==" ", " abcd", "abcd abcd")
>>> s.find_longest_match(0, 5, 0, 9)
(1, 0, 4)

If no blocks match, this returns(alo, blo, 0) .

get matching blocks ()
Return list of triples describing matching subsequences. Each triple is of the form(i, j, n) , and means that
a[i: i+n] == b[j: j+n] . The triples are monotonically increasing ini andj.

The last triple is a dummy, and has the value(len(a), len(b), 0) . It is the only triple withn == 0.

>>> s = SequenceMatcher(None, "abxcd", "abcd")
>>> s.get_matching_blocks()
[(0, 0, 2), (3, 2, 2), (5, 4, 0)]

get opcodes ()
Return list of 5-tuples describing how to turna into b. Each tuple is of the form(tag, i1, i2, j1, j2) . The
first tuple hasi1 == j1 == 0, and remaining tuples havei1 equal to thei2 from the preceeding tuple, and,
likewise,j1 equal to the previousj2.

Thetagvalues are strings, with these meanings:

Value Meaning
’replace’ a[i1: i2] should be replaced byb[j1: j2] .
’delete’ a[i1: i2] should be deleted. Note thatj1 == j2 in this case.
’insert’ b[j1: j2] should be inserted ata[i1: i1] . Note thati1 == i2 in this case.
’equal’ a[i1: i2] == b[j1: j2] (the sub-sequences are equal).

For example:

>>> a = "qabxcd"
>>> b = "abycdf"
>>> s = SequenceMatcher(None, a, b)
>>> for tag, i1, i2, j1, j2 in s.get_opcodes():
... print ("%7s a[%d:%d] (%s) b[%d:%d] (%s)" %
... (tag, i1, i2, a[i1:i2], j1, j2, b[j1:j2]))

delete a[0:1] (q) b[0:0] ()
equal a[1:3] (ab) b[0:2] (ab)

replace a[3:4] (x) b[2:3] (y)
equal a[4:6] (cd) b[3:5] (cd)

insert a[6:6] () b[5:6] (f)

ratio ()
Return a measure of the sequences’ similarity as a float in the range [0, 1].

Where T is the total number of elements in both sequences, and M is the number of matches, this is 2.0*M / T.
Note that this is1. if the sequences are identical, and0. if they have nothing in common.

This is expensive to compute ifget matching blocks() or get opcodes() hasn’t already been
called, in which case you may want to tryquick ratio() or real quick ratio() first to get an
upper bound.

92 Chapter 4. String Services

quick ratio ()
Return an upper bound onratio() relatively quickly.

This isn’t defined beyond that it is an upper bound onratio() , and is faster to compute.

real quick ratio ()
Return an upper bound onratio() very quickly.

This isn’t defined beyond that it is an upper bound onratio() , and is faster to compute than eitherratio()
or quick ratio() .

The three methods that return the ratio of matching to total characters can give different results due to differing levels of
approximation, althoughquick ratio() andreal quick ratio() are always at least as large asratio() :

>>> s = SequenceMatcher(None, "abcd", "bcde")
>>> s.ratio()
0.75
>>> s.quick_ratio()
0.75
>>> s.real_quick_ratio()
1.0

4.4.2 Examples

This example compares two strings, considering blanks to be “junk:”

>>> s = SequenceMatcher(lambda x: x == " ",
... "private Thread currentThread;",
... "private volatile Thread currentThread;")

ratio() returns a float in [0, 1], measuring the similarity of the sequences. As a rule of thumb, aratio() value
over 0.6 means the sequences are close matches:

>>> print round(s.ratio(), 3)
0.866

If you’re only interested in where the sequences match,get matching blocks() is handy:

>>> for block in s.get_matching_blocks():
... print "a[%d] and b[%d] match for %d elements" % block
a[0] and b[0] match for 8 elements
a[8] and b[17] match for 6 elements
a[14] and b[23] match for 15 elements
a[29] and b[38] match for 0 elements

Note that the last tuple returned byget matching blocks() is always a dummy,(len(a), len(b), 0) ,
and this is the only case in which the last tuple element (number of elements matched) is0.

If you want to know how to change the first sequence into the second, useget opcodes() :

4.4. difflib — Helpers for computing deltas 93

>>> for opcode in s.get_opcodes():
... print "%6s a[%d:%d] b[%d:%d]" % opcode

equal a[0:8] b[0:8]
insert a[8:8] b[8:17]

equal a[8:14] b[17:23]
equal a[14:29] b[23:38]

See ‘Tools/scripts/ndiff.py’ from the Python source distribution for a fancy human-friendly file differencer, which uses
SequenceMatcher both to view files as sequences of lines, and lines as sequences of characters.

See also the functionget close matches() in this module, which shows how simple code building onSe-
quenceMatcher can be used to do useful work.

4.5 fpformat — Floating point conversions

The fpformat module defines functions for dealing with floating point numbers representations in 100% pure
Python.Note: This module is unneeded: everything here could be done via the%string interpolation operator.

Thefpformat module defines the following functions and an exception:

fix (x, digs)
Formatx as [-]ddd.ddd with digs digits after the point and at least one digit before. Ifdigs <= 0, the
decimal point is suppressed.

x can be either a number or a string that looks like one.digs is an integer.

Return value is a string.

sci (x, digs)
Formatx as[-]d.dddE[+-]ddd with digsdigits after the point and exactly one digit before. Ifdigs <= 0,
one digit is kept and the point is suppressed.

x can be either a real number, or a string that looks like one.digs is an integer.

Return value is a string.

exceptionNotANumber
Exception raised when a string passed tofix() or sci() as thex parameter does not look like a number. This
is a subclass ofValueError when the standard exceptions are strings. The exception value is the improperly
formatted string that caused the exception to be raised.

Example:

>>> import fpformat
>>> fpformat.fix(1.23, 1)
’1.2’

4.6 StringIO — Read and write strings as files

This module implements a file-like class,StringIO , that reads and writes a string buffer (also known asmemory
files). See the description of file objects for operations (section 2.1.7).

classStringIO ([buffer])
When aStringIO object is created, it can be initialized to an existing string by passing the string to the

94 Chapter 4. String Services

constructor. If no string is given, theStringIO will start empty.

The StringIO object can accept either Unicode or 8-bit strings, but mixing the two may take some care.
If both are used, 8-bit strings that cannot be interpreted as 7-bitASCII (i.e., that use the 8th bit) will cause a
UnicodeError to be raised whengetvalue() is called.

The following methods ofStringIO objects require special mention:

getvalue ()
Retrieve the entire contents of the “file” at any time before theStringIO object’sclose() method is called.
See the note above for information about mixing Unicode and 8-bit strings; such mixing can cause this method
to raiseUnicodeError .

close ()
Free the memory buffer.

4.7 cStringIO — Faster version of StringIO

The modulecStringIO provides an interface similar to that of theStringIO module. Heavy use ofStrin-
gIO.StringIO objects can be made more efficient by using the functionStringIO() from this module instead.

Since this module provides a factory function which returns objects of built-in types, there’s no way to build your own
version using subclassing. Use the originalStringIO module in that case.

Unlike the memory files implemented by theStringIO module, those provided by this module are not able to accept
Unicode strings that cannot be encoded as plainASCII strings.

The following data objects are provided as well:

InputType
The type object of the objects created by callingStringIO with a string parameter.

OutputType
The type object of the objects returned by callingStringIO with no parameters.

There is a C API to the module as well; refer to the module source for more information.

4.8 codecs — Codec registry and base classes

This module defines base classes for standard Python codecs (encoders and decoders) and provides access to the
internal Python codec registry which manages the codec lookup process.

It defines the following functions:

register (search function)
Register a codec search function. Search functions are expected to take one argument, the encoding name in
all lower case letters, and return a tuple of functions(encoder, decoder, stream reader, stream writer)
taking the following arguments:

encoderand decoder: These must be functions or methods which have the same interface as theen-
code() /decode() methods of Codec instances (see Codec Interface). The functions/methods are expected
to work in a stateless mode.

stream readerandstream writer: These have to be factory functions providing the following interface:

factory(stream, errors=’strict’)

The factory functions must return objects providing the interfaces defined by the base classesStreamWriter
andStreamReader , respectively. Stream codecs can maintain state.

4.7. cStringIO — Faster version of StringIO 95

Possible values for errors are’strict’ (raise an exception in case of an encoding error),’replace’ (re-
place malformed data with a suitable replacement marker, such as ‘?’) and ’ignore’ (ignore malformed data
and continue without further notice).

In case a search function cannot find a given encoding, it should returnNone.

lookup (encoding)
Looks up a codec tuple in the Python codec registry and returns the function tuple as defined above.

Encodings are first looked up in the registry’s cache. If not found, the list of registered search functions is
scanned. If no codecs tuple is found, aLookupError is raised. Otherwise, the codecs tuple is stored in the
cache and returned to the caller.

To simplify working with encoded files or stream, the module also defines these utility functions:

open (filename, mode[, encoding[, errors[, buffering]]])
Open an encoded file using the givenmode and return a wrapped version providing transparent encod-
ing/decoding.

Note: The wrapped version will only accept the object format defined by the codecs, i.e. Unicode objects for
most built-in codecs. Output is also codec-dependent and will usually be Unicode as well.

encodingspecifies the encoding which is to be used for the the file.

errorsmay be given to define the error handling. It defaults to’strict’ which causes aValueError to be
raised in case an encoding error occurs.

bufferinghas the same meaning as for the built-inopen() function. It defaults to line buffered.

EncodedFile (file, input[, output[, errors]])
Return a wrapped version of file which provides transparent encoding translation.

Strings written to the wrapped file are interpreted according to the giveninput encoding and then written to
the original file as strings using theoutputencoding. The intermediate encoding will usually be Unicode but
depends on the specified codecs.

If outputis not given, it defaults toinput.

errors may be given to define the error handling. It defaults to’strict’ , which causesValueError to be
raised in case an encoding error occurs.

The module also provides the following constants which are useful for reading and writing to platform dependent files:

BOM
BOMBE
BOMLE
BOM32 BE
BOM32 LE
BOM64 BE
BOM64 LE

These constants define the byte order marks (BOM) used in data streams to indicate the byte order used in the
stream or file.BOMis eitherBOMBEor BOMLE depending on the platform’s native byte order, while the others
represent big endian (‘BE’ suffix) and little endian (‘ LE’ suffix) byte order using 32-bit and 64-bit encodings.

See Also:

http://sourceforge.net/projects/python-codecs/
A SourceForge project working on additional support for Asian codecs for use with Python. They are in the
early stages of development at the time of this writing — look in their FTP area for downloadable files.

4.8.1 Codec Base Classes

The codecs defines a set of base classes which define the interface and can also be used to easily write you own
codecs for use in Python.

96 Chapter 4. String Services

Each codec has to define four interfaces to make it usable as codec in Python: stateless encoder, stateless decoder,
stream reader and stream writer. The stream reader and writers typically reuse the stateless encoder/decoder to imple-
ment the file protocols.

TheCodec class defines the interface for stateless encoders/decoders.

To simplify and standardize error handling, theencode() anddecode() methods may implement different error
handling schemes by providing theerrors string argument. The following string values are defined and implemented
by all standard Python codecs:

Value Meaning
’strict’ RaiseValueError (or a subclass); this is the default.
’ignore’ Ignore the character and continue with the next.
’replace’ Replace with a suitable replacement character; Python will use the official U+FFFD REPLACEMENT CHARACTER for the built-in Unicode codecs.

Codec Objects

TheCodec class defines these methods which also define the function interfaces of the stateless encoder and decoder:

encode (input[, errors])
Encodes the objectinput and returns a tuple (output object, length consumed).

errorsdefines the error handling to apply. It defaults to’strict’ handling.

The method may not store state in theCodec instance. UseStreamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The encoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

decode (input[, errors])
Decodes the objectinput and returns a tuple (output object, length consumed).

input must be an object which provides thebf getreadbuf buffer slot. Python strings, buffer objects and
memory mapped files are examples of objects providing this slot.

errorsdefines the error handling to apply. It defaults to’strict’ handling.

The method may not store state in theCodec instance. UseStreamCodec for codecs which have to keep
state in order to make encoding/decoding efficient.

The decoder must be able to handle zero length input and return an empty object of the output object type in this
situation.

TheStreamWriter andStreamReader classes provide generic working interfaces which can be used to imple-
ment new encodings submodules very easily. Seeencodings.utf 8 for an example on how this is done.

StreamWriter Objects

TheStreamWriter class is a subclass ofCodec and defines the following methods which every stream writer must
define in order to be compatible to the Python codec registry.

classStreamWriter (stream[, errors])
Constructor for aStreamWriter instance.

All stream writers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for writing (binary) data.

TheStreamWriter may implement different error handling schemes by providing theerrors keyword argu-
ment. These parameters are defined:

4.8. codecs — Codec registry and base classes 97

•’strict’ RaiseValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character

write (object)
Writes the object’s contents encoded to the stream.

writelines (list)
Writes the concatenated list of strings to the stream (possibly by reusing thewrite() method).

reset ()
Flushes and resets the codec buffers used for keeping state.

Calling this method should ensure that the data on the output is put into a clean state, that allows appending of
new fresh data without having to rescan the whole stream to recover state.

In addition to the above methods, theStreamWriter must also inherit all other methods and attribute from the
underlying stream.

StreamReader Objects

The StreamReader class is a subclass ofCodec and defines the following methods which every stream reader
must define in order to be compatible to the Python codec registry.

classStreamReader (stream[, errors])
Constructor for aStreamReader instance.

All stream readers must provide this constructor interface. They are free to add additional keyword arguments,
but only the ones defined here are used by the Python codec registry.

streammust be a file-like object open for reading (binary) data.

TheStreamReader may implement different error handling schemes by providing theerrors keyword argu-
ment. These parameters are defined:

•’strict’ RaiseValueError (or a subclass); this is the default.

•’ignore’ Ignore the character and continue with the next.

•’replace’ Replace with a suitable replacement character.

read ([size])
Decodes data from the stream and returns the resulting object.

sizeindicates the approximate maximum number of bytes to read from the stream for decoding purposes. The
decoder can modify this setting as appropriate. The default value -1 indicates to read and decode as much as
possible.sizeis intended to prevent having to decode huge files in one step.

The method should use a greedy read strategy meaning that it should read as much data as is allowed within the
definition of the encoding and the given size, e.g. if optional encoding endings or state markers are available on
the stream, these should be read too.

readline ([size])
Read one line from the input stream and return the decoded data.

Note: Unlike thereadlines() method, this method inherits the line breaking knowledge from the underlying
stream’sreadline() method – there is currently no support for line breaking using the codec decoder due
to lack of line buffering. Sublcasses should however, if possible, try to implement this method using their own
knowledge of line breaking.

size, if given, is passed as size argument to the stream’sreadline() method.

98 Chapter 4. String Services

readlines ([sizehint])
Read all lines available on the input stream and return them as list of lines.

Line breaks are implemented using the codec’s decoder method and are included in the list entries.

sizehint, if given, is passed assizeargument to the stream’sread() method.

reset ()
Resets the codec buffers used for keeping state.

Note that no stream repositioning should take place. This method is primarily intended to be able to recover
from decoding errors.

In addition to the above methods, theStreamReader must also inherit all other methods and attribute from the
underlying stream.

The next two base classes are included for convenience. They are not needed by the codec registry, but may provide
useful in practice.

StreamReaderWriter Objects

TheStreamReaderWriter allows wrapping streams which work in both read and write modes.

The design is such that one can use the factory functions returned by thelookup() function to construct the instance.

classStreamReaderWriter (stream, Reader, Writer, errors)
Creates aStreamReaderWriter instance.streammust be a file-like object.ReaderandWriter must be fac-
tory functions or classes providing theStreamReader andStreamWriter interface resp. Error handling
is done in the same way as defined for the stream readers and writers.

StreamReaderWriter instances define the combined interfaces ofStreamReader and StreamWriter
classes. They inherit all other methods and attribute from the underlying stream.

StreamRecoder Objects

TheStreamRecoder provide a frontend - backend view of encoding data which is sometimes useful when dealing
with different encoding environments.

The design is such that one can use the factory functions returned by thelookup() function to construct the instance.

classStreamRecoder (stream, encode, decode, Reader, Writer, errors)
Creates aStreamRecoder instance which implements a two-way conversion:encodeanddecodework on
the frontend (the input toread() and output ofwrite()) while ReaderandWriter work on the backend
(reading and writing to the stream).

You can use these objects to do transparent direct recodings from e.g. Latin-1 to UTF-8 and back.

streammust be a file-like object.

encode, decodemust adhere to theCodec interface,Reader, Writer must be factory functions or classes pro-
viding objects of the theStreamReader andStreamWriter interface respectively.

encodeanddecodeare needed for the frontend translation,ReaderandWriter for the backend translation. The
intermediate format used is determined by the two sets of codecs, e.g. the Unicode codecs will use Unicode as
intermediate encoding.

Error handling is done in the same way as defined for the stream readers and writers.

StreamRecoder instances define the combined interfaces ofStreamReader andStreamWriter classes. They
inherit all other methods and attribute from the underlying stream.

4.8. codecs — Codec registry and base classes 99

4.9 unicodedata — Unicode Database

This module provides access to the Unicode Character Database which defines character properties for all Unicode
characters. The data in this database is based on the ‘UnicodeData.txt’ file version 3.0.0 which is publically available
from ftp://ftp.unicode.org/.

The module uses the same names and symbols as defined by the UnicodeData File Format 3.0.0 (see
http://www.unicode.org/Public/UNIDATA/UnicodeData.html). It defines the following functions:

lookup (name)
Look up character by name. If a character with the given name is found, return the corresponding Unicode
character. If not found,KeyError is raised.

name(unichr[, default])
Returns the name assigned to the Unicode characterunichras a string. If no name is defined,defaultis returned,
or, if not given,ValueError is raised.

decimal (unichr[, default])
Returns the decimal value assigned to the Unicode characterunichr as integer. If no such value is defined,
defaultis returned, or, if not given,ValueError is raised.

digit (unichr[, default])
Returns the digit value assigned to the Unicode characterunichr as integer. If no such value is defined,default
is returned, or, if not given,ValueError is raised.

numeric (unichr[, default])
Returns the numeric value assigned to the Unicode characterunichr as float. If no such value is defined,default
is returned, or, if not given,ValueError is raised.

category (unichr)
Returns the general category assigned to the Unicode characterunichr as string.

bidirectional (unichr)
Returns the bidirectional category assigned to the Unicode characterunichras string. If no such value is defined,
an empty string is returned.

combining (unichr)
Returns the canonical combining class assigned to the Unicode characterunichr as integer. Returns0 if no
combining class is defined.

mirrored (unichr)
Returns the mirrored property of assigned to the Unicode characterunichr as integer. Returns1 if the character
has been identified as a “mirrored” character in bidirectional text,0 otherwise.

decomposition (unichr)
Returns the character decomposition mapping assigned to the Unicode characterunichr as string. An empty
string is returned in case no such mapping is defined.

100 Chapter 4. String Services

CHAPTER

FIVE

Miscellaneous Services

The modules described in this chapter provide miscellaneous services that are available in all Python versions. Here’s
an overview:

doctest A framework for verifying examples in docstrings.
unittest Unit testing framework for Python.
math Mathematical functions (sin() etc.).
cmath Mathematical functions for complex numbers.
random Generate pseudo-random numbers with various common distributions.
whrandom Floating point pseudo-random number generator.
bisect Array bisection algorithms for binary searching.
array Efficient arrays of uniformly typed numeric values.
ConfigParser Configuration file parser.
fileinput Perl-like iteration over lines from multiple input streams, with “save in place” capability.
xreadlines Efficient iteration over the lines of a file.
calendar General functions for working with the calendar, including some emulation of the UNIX cal program.
cmd Build line-oriented command interpreters.
shlex Simple lexical analysis for UNIX shell-like languages.

5.1 doctest — Test docstrings represent reality

The doctest module searches a module’s docstrings for text that looks like an interactive Python session, then
executes all such sessions to verify they still work exactly as shown. Here’s a complete but small example:

101

"""
This is module example.

Example supplies one function, factorial. For example,

>>> factorial(5)
120
"""

def factorial(n):
"""Return the factorial of n, an exact integer >= 0.

If the result is small enough to fit in an int, return an int.
Else return a long.

>>> [factorial(n) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> [factorial(long(n)) for n in range(6)]
[1, 1, 2, 6, 24, 120]
>>> factorial(30)
265252859812191058636308480000000L
>>> factorial(30L)
265252859812191058636308480000000L
>>> factorial(-1)
Traceback (most recent call last):

...
ValueError: n must be >= 0

Factorials of floats are OK, but the float must be an exact integer:
>>> factorial(30.1)
Traceback (most recent call last):

...
ValueError: n must be exact integer
>>> factorial(30.0)
265252859812191058636308480000000L

It must also not be ridiculously large:
>>> factorial(1e100)
Traceback (most recent call last):

...
OverflowError: n too large
"""

102 Chapter 5. Miscellaneous Services

import math
if not n >= 0:

raise ValueError("n must be >= 0")
if math.floor(n) != n:

raise ValueError("n must be exact integer")
if n+1 == n: # e.g., 1e300

raise OverflowError("n too large")
result = 1
factor = 2
while factor <= n:

try:
result *= factor

except OverflowError:
result *= long(factor)

factor += 1
return result

def _test():
import doctest, example
return doctest.testmod(example)

if __name__ == "__main__":
_test()

If you run ‘example.py’ directly from the command line, doctest works its magic:

$ python example.py
$

There’s no output! That’s normal, and it means all the examples worked. Pass-v to the script, and doctest prints a
detailed log of what it’s trying, and prints a summary at the end:

$ python example.py -v
Running example.__doc__
Trying: factorial(5)
Expecting: 120
ok
0 of 1 examples failed in example.__doc__
Running example.factorial.__doc__
Trying: [factorial(n) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]
ok
Trying: [factorial(long(n)) for n in range(6)]
Expecting: [1, 1, 2, 6, 24, 120]
ok
Trying: factorial(30)
Expecting: 265252859812191058636308480000000L
ok

And so on, eventually ending with:

5.1. doctest — Test docstrings represent reality 103

Trying: factorial(1e100)
Expecting:
Traceback (most recent call last):

...
OverflowError: n too large
ok
0 of 8 examples failed in example.factorial.__doc__
2 items passed all tests:

1 tests in example
8 tests in example.factorial

9 tests in 2 items.
9 passed and 0 failed.
Test passed.
$

That’s all you need to know to start making productive use of doctest! Jump in. The docstrings in doctest.py contain
detailed information about all aspects of doctest, and we’ll just cover the more important points here.

5.1.1 Normal Usage

In normal use, end each moduleMwith:

def _test():
import doctest, M # replace M with your module’s name
return doctest.testmod(M) # ditto

if __name__ == "__main__":
_test()

Then running the module as a script causes the examples in the docstrings to get executed and verified:

python M.py

This won’t display anything unless an example fails, in which case the failing example(s) and the cause(s) of the
failure(s) are printed to stdout, and the final line of output is’Test failed.’ .

Run it with the-v switch instead:

python M.py -v

and a detailed report of all examples tried is printed tostdout , along with assorted summaries at the end.

You can force verbose mode by passingverbose=1 to testmod, or prohibit it by passingverbose=0 . In either of
those cases,sys.argv is not examined by testmod.

In any case, testmod returns a 2-tuple of ints(f , t) , wheref is the number of docstring examples that failed andt is
the total number of docstring examples attempted.

104 Chapter 5. Miscellaneous Services

5.1.2 Which Docstrings Are Examined?

See ‘docstring.py’ for all the details. They’re unsurprising: the module docstring, and all function, class and method
docstrings are searched, with the exception of docstrings attached to objects with private names.

In addition, ifM. test exists and ”is true”, it must be a dict, and each entry maps a (string) name to a function
object, class object, or string. Function and class object docstrings found fromM. test are searched even if
the name is private, and strings are searched directly as if they were docstrings. In output, a keyK in M. test
appears with name

<name of M>.__test__.K

Any classes found are recursively searched similarly, to test docstrings in their contained methods and nested classes.
While private names reached fromM’s globals are skipped, all names reached fromM. test are searched.

5.1.3 What’s the Execution Context?

By default, each time testmod finds a docstring to test, it uses acopyof M’s globals, so that running tests on a module
doesn’t change the module’s real globals, and so that one test inMcan’t leave behind crumbs that accidentally allow
another test to work. This means examples can freely use any names defined at top-level inM, and names defined earlier
in the docstring being run. It also means that sloppy imports (see below) can cause examples in external docstrings to
use globals inappropriate for them.

You can force use of your own dict as the execution context by passingglobs=your dict to testmod() instead.
Presumably this would be a copy ofM. dict merged with the globals from other imported modules.

5.1.4 What About Exceptions?

No problem, as long as the only output generated by the example is the traceback itself. For example:

>>> [1, 2, 3].remove(42)
Traceback (most recent call last):

File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list
>>>

Note that only the exception type and value are compared (specifically, only the last line in the traceback). The various
“File” lines in between can be left out (unless they add significantly to the documentation value of the example).

5.1.5 Advanced Usage

testmod() actually creates a local instance of classTester , runs appropriate methods of that class, and merges
the results into globalTester instancemaster .

You can create your own instances ofTester , and so build your own policies, or even run methods ofmaster
directly. SeeTester. doc for details.

5.1. doctest — Test docstrings represent reality 105

5.1.6 How are Docstring Examples Recognized?

In most cases a copy-and-paste of an interactive console session works fine — just make sure the leading whitespace
is rigidly consistent (you can mix tabs and spaces if you’re too lazy to do it right, but doctest is not in the business of
guessing what you think a tab means).

>>> # comments are ignored
>>> x = 12
>>> x
12
>>> if x == 13:
... print "yes"
... else:
... print "no"
... print "NO"
... print "NO!!!"
...
no
NO
NO!!!
>>>

Any expected output must immediately follow the final’>>> ’ or ’... ’ line containing the code, and the ex-
pected output (if any) extends to the next’>>> ’ or all-whitespace line.

The fine print:

• Expected output cannot contain an all-whitespace line, since such a line is taken to signal the end of expected
output.

• Output to stdout is captured, but not output to stderr (exception tracebacks are captured via a different means).

• If you continue a line via backslashing in an interactive session, or for any other reason use a backslash, you
need to double the backslash in the docstring version. This is simply because you’re in a string, and so the
backslash must be escaped for it to survive intact. Like:

>>> if "yes" == \\
... "y" + \\
... "es":
... print ’yes’
yes

• The starting column doesn’t matter:

>>> assert "Easy!"
>>> import math

>>> math.floor(1.9)
1.0

and as many leading whitespace characters are stripped from the expected output as appeared in the initial
’>>> ’ line that triggered it.

106 Chapter 5. Miscellaneous Services

5.1.7 Warnings

1. Sloppy imports can cause trouble; e.g., if you do

from XYZ import XYZclass

thenXYZclass is a name inM. dict too, and doctest has no way to know thatXYZclass wasn’t
definedin M. So it may try to execute the examples inXYZclass ’s docstring, and those in turn may require a
different set of globals to work correctly. I prefer to do “import * ”-friendly imports, a la

from XYZ import XYZclass as _XYZclass

and then the leading underscore makesXYZclass a private name so testmod skips it by default. Other
approaches are described in ‘doctest.py’.

2. doctest is serious about requiring exact matches in expected output. If even a single character doesn’t match,
the test fails. This will probably surprise you a few times, as you learn exactly what Python does and doesn’t
guarantee about output. For example, when printing a dict, Python doesn’t guarantee that the key-value pairs
will be printed in any particular order, so a test like

>>> foo()
{"Hermione": "hippogryph", "Harry": "broomstick"}
>>>

is vulnerable! One workaround is to do

>>> foo() == {"Hermione": "hippogryph", "Harry": "broomstick"}
1
>>>

instead. Another is to do

>>> d = foo().items()
>>> d.sort()
>>> d
[(’Harry’, ’broomstick’), (’Hermione’, ’hippogryph’)]

There are others, but you get the idea.

Another bad idea is to print things that embed an object address, like

>>> id(1.0) # certain to fail some of the time
7948648
>>>

Floating-point numbers are also subject to small output variations across platforms, because Python defers to
the platform C library for float formatting, and C libraries vary widely in quality here.

5.1. doctest — Test docstrings represent reality 107

>>> 1./7 # risky
0.14285714285714285
>>> print 1./7 # safer
0.142857142857
>>> print round(1./7, 6) # much safer
0.142857

Numbers of the formI/2.**J are safe across all platforms, and I often contrive doctest examples to produce
numbers of that form:

>>> 3./4 # utterly safe
0.75

Simple fractions are also easier for people to understand, and that makes for better documentation.

3. Be careful if you have code that must only execute once.

If you have module-level code that must only execute once, a more foolproof definition oftest() is

def _test():
import doctest, sys
doctest.testmod(sys.modules["__main__"])

5.1.8 Soapbox

The first word in doctest is ”doc”, and that’s why the author wrote doctest: to keep documentation up to date. It so
happens that doctest makes a pleasant unit testing environment, but that’s not its primary purpose.

Choose docstring examples with care. There’s an art to this that needs to be learned — it may not be natural at
first. Examples should add genuine value to the documentation. A good example can often be worth many words. If
possible, show just a few normal cases, show endcases, show interesting subtle cases, and show an example of each
kind of exception that can be raised. You’re probably testing for endcases and subtle cases anyway in an interactive
shell: doctest wants to make it as easy as possible to capture those sessions, and will verify they continue to work as
designed forever after.

If done with care, the examples will be invaluable for your users, and will pay back the time it takes to collect them
many times over as the years go by and ”things change”. I’m still amazed at how often one of my doctest examples
stops working after a ”harmless” change.

For exhaustive testing, or testing boring cases that add no value to the docs, define atest dict instead. That’s
what it’s for.

5.2 unittest — Unit testing framework

The Python unit testing framework, often referred to as “PyUnit,” is a Python language version of JUnit, by Kent
Beck and Erich Gamma. JUnit is, in turn, a Java version of Kent’s Smalltalk testing framework. Each is the de facto
standard unit testing framework for its respective language.

PyUnit supports test automation, sharing of setup and shutdown code for tests, aggregation of tests into collections,
and independence of the tests from the reporting framework. Theunittest module provides classes that make it
easy to support these qualities for a set of tests.

108 Chapter 5. Miscellaneous Services

To achieve this, PyUnit supports some important concepts:

test fixture
A test fixturerepresents the preparation needed to perform one or more tests, and any associate cleanup actions.
This may involve, for example, creating temporary or proxy databases, directories, or starting a server process.

test case
A test caseis the smallest unit of testing. It checks for a specific response to a particular set of inputs. PyUnit
provides a base class,TestCase , which may be used to create new test cases.

test suite
A test suiteis a collection of test cases, test suites, or both. It is used to aggregate tests that should be executed
together.

test runner
A test runneris a component which orchestrates the execution of tests and provides the outcome to the user.
The runner may use a graphical interface, a textual interface, or return a special value to indicate the results of
executing the tests.

The test case and test fixture concepts are supported through theTestCase andFunctionTestCase classes;
the former should be used when creating new tests, and the later can be used when integrating existing test code
with a PyUnit-driven framework. When building test fixtures usingTestCase , thesetUp() and tearDown()
methods can be overridden to provide initialization and cleanup for the fixture. WithFunctionTestCase , existing
functions can be passed to the constructor for these purposes. When the test is run, the fixture initialization is run first;
if it succeeds, the cleanup method is run after the test has been executed, regardless of the outcome of the test. Each
instance of theTestCase will only be used to run a single test method, so a new fixture is created for each test.

Test suites are implemented by theTestSuite class. This class allows individual tests and test suites to be aggre-
gated; when the suite is executed, all tests added directly to the suite and in “child” test suites are run.

A test runner is an object that provides a single method,run() , which accepts aTestCase or TestSuite object
as a parameter, and returns a result object. The classTestResult is provided for use as the result object. PyUnit
provide theTextTestRunner as an example test runner which reports test results on the standard error stream by
default. Alternate runners can be implemented for other environments (such as graphical environments) without any
need to derive from a specific class.

See Also:

PyUnit Web Site
(http://pyunit.sourceforge.net/)

The source for further information on PyUnit.

Simple Smalltalk Testing: With Patterns
(http://www.XProgramming.com/testfram.htm)

Kent Beck’s original paper on testing frameworks using the pattern shared byunittest .

5.2.1 Organizing test code

The basic building blocks of unit testing aretest cases— single scenarios that must be set up and checked for correct-
ness. In PyUnit, test cases are represented by instances of theTestCase class in theunittest module. To make
your own test cases you must write subclasses ofTestCase , or useFunctionTestCase .

An instance of aTestCase -derived class is an object that can completely run a single test method, together with
optional set-up and tidy-up code.

The testing code of aTestCase instance should be entirely self contained, such that it can be run either in isolation
or in arbitrary combination with any number of other test cases.

5.2. unittest — Unit testing framework 109

The simplest test case subclass will simply override therunTest() method in order to perform specific testing code:

import unittest

class DefaultWidgetSizeTestCase(unittest.TestCase):
def runTest(self):

widget = Widget("The widget")
self.failUnless(widget.size() == (50,50), ’incorrect default size’)

Note that in order to test something, we use the one of theassert*() or fail*() methods provided by the
TestCase base class. If the test fails when the test case runs, an exception will be raised, and the testing framework
will identify the test case as afailure. Other exceptions that do not arise from checks made through theassert*()
andfail*() methods are identified by the testing framework as dfnerrors.

The way to run a test case will be described later. For now, note that to construct an instance of such a test case, we
call its constructor without arguments:

testCase = DefaultWidgetSizeTestCase()

Now, such test cases can be numerous, and their set-up can be repetitive. In the above case, constructing a “Widget”
in each of 100 Widget test case subclasses would mean unsightly duplication.

Luckily, we can factor out such set-up code by implementing a method calledsetUp() , which the testing framework
will automatically call for us when we run the test:

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget("The widget")

class DefaultWidgetSizeTestCase(SimpleWidgetTestCase):
def runTest(self):

self.failUnless(self.widget.size() == (50,50),
’incorrect default size’)

class WidgetResizeTestCase(SimpleWidgetTestCase):
def runTest(self):

self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),

’wrong size after resize’)

If the setUp() method raises an exception while the test is running, the framework will consider the test to have
suffered an error, and therunTest() method will not be executed.

Similarly, we can provide atearDown() method that tidies up after therunTest() method has been run:

110 Chapter 5. Miscellaneous Services

import unittest

class SimpleWidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

If setUp() succeeded, thetearDown() method will be run regardless of whether or notrunTest() succeeded.

Such a working environment for the testing code is called afixture.

Often, many small test cases will use the same fixture. In this case, we would end up subclassingSimpleWid-
getTestCase into many small one-method classes such asDefaultWidgetSizeTestCase . This is time-
consuming and discouraging, so in the same vein as JUnit, PyUnit provides a simpler mechanism:

import unittest

class WidgetTestCase(unittest.TestCase):
def setUp(self):

self.widget = Widget("The widget")

def tearDown(self):
self.widget.dispose()
self.widget = None

def testDefaultSize(self):
self.failUnless(self.widget.size() == (50,50),

’incorrect default size’)

def testResize(self):
self.widget.resize(100,150)
self.failUnless(self.widget.size() == (100,150),

’wrong size after resize’)

Here we have not provided arunTest() method, but have instead provided two different test methods. Class
instances will now each run one of thetest*() methods, withself.widget created and destroyed separately
for each instance. When creating an instance we must specify the test method it is to run. We do this by passing the
method name in the constructor:

defaultSizeTestCase = WidgetTestCase("testDefaultSize")
resizeTestCase = WidgetTestCase("testResize")

Test case instances are grouped together according to the features they test. PyUnit provides a mechanism for this: the
test suite , represented by the classTestSuite in theunittest module:

widgetTestSuite = unittest.TestSuite()
widgetTestSuite.addTest(WidgetTestCase("testDefaultSize"))
widgetTestSuite.addTest(WidgetTestCase("testResize"))

For the ease of running tests, as we will see later, it is a good idea to provide in each test module a callable object that

5.2. unittest — Unit testing framework 111

returns a pre-built test suite:

def suite():
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase("testDefaultSize"))
suite.addTest(WidgetTestCase("testResize"))
return suite

or even:

class WidgetTestSuite(unittest.TestSuite):
def __init__(self):

unittest.TestSuite.__init__(self,map(WidgetTestCase,
("testDefaultSize",

"testResize")))

(The latter is admittedly not for the faint-hearted!)

Since it is a common pattern to create aTestCase subclass with many similarly named test functions, there is
a convenience function calledmakeSuite() provided in theunittest module that constructs a test suite that
comprises all of the test cases in a test case class:

suite = unittest.makeSuite(WidgetTestCase,’test’)

Note that when using themakeSuite() function, the order in which the various test cases will be run by the test
suite is the order determined by sorting the test function names using thecmp() built-in function.

Often it is desirable to group suites of test cases together, so as to run tests for the whole system at once. This is
easy, sinceTestSuite instances can be added to aTestSuite just asTestCase instances can be added to a
TestSuite :

suite1 = module1.TheTestSuite()
suite2 = module2.TheTestSuite()
alltests = unittest.TestSuite((suite1, suite2))

You can place the definitions of test cases and test suites in the same modules as the code they are to test (e.g.
‘widget.py’), but there are several advantages to placing the test code in a separate module, such as ‘widgettests.py’:

• The test module can be run standalone from the command line.

• The test code can more easily be separated from shipped code.

• There is less temptation to change test code to fit the code. it tests without a good reason.

• Test code should be modified much less frequently than the code it tests.

• Tested code can be refactored more easily.

• Tests for modules written in C must be in separate modules anyway, so why not be consistent?

• If the testing strategy changes, there is no need to change the source code.

112 Chapter 5. Miscellaneous Services

5.2.2 Re-using old test code

Some users will find that they have existing test code that they would like to run from PyUnit, without converting
every old test function to aTestCase subclass.

For this reason, PyUnit provides aFunctionTestCase class. This subclass ofTestCase can be used to wrap an
existing test function. Set-up and tear-down functions can also optionally be wrapped.

Given the following test function:

def testSomething():
something = makeSomething()
assert something.name is not None
...

one can create an equivalent test case instance as follows:

testcase = unittest.FunctionTestCase(testSomething)

If there are additional set-up and tear-down methods that should be called as part of the test case’s operation, they can
also be provided:

testcase = unittest.FunctionTestCase(testSomething,
setUp=makeSomethingDB,
tearDown=deleteSomethingDB)

Note: PyUnit supports the use ofAssertionError as an indicator of test failure, but does not recommend it.
Future versions may treatAssertionError differently.

5.2.3 Classes and functions

classTestCase ()
Instances of theTestCase class represent the smallest testable units in a set of tests. This class is intended to
be used as a base class, with specific tests being implemented by concrete subclasses. This class implements the
interface needed by the test runner to allow it to drive the test, and methods that the test code can use to check
for and report various kinds of failures.

classFunctionTestCase (testFunc[, setUp[, tearDown[, description]]])
This class implements the portion of theTestCase interface which allows the test runner to drive the test, but
does not provide the methods which test code can use to check and report errors. This is used to create test cases
using legacy test code, allowing it to be integrated into aunittest -based test framework.

classTestSuite ([tests])
This class represents an aggregation of individual tests cases and test suites. The class presents the interface
needed by the test runner to allow it to be run as any other test case, but all the contained tests and test suites
are executed. Additional methods are provided to add test cases and suites to the aggregation. Iftestsis given,
it must be a sequence of individual tests that will be added to the suite.

classTestLoader ()
This class is responsible for loading tests according to various criteria and returning them wrapped in aTest-
Suite . It can load all tests within a given module orTestCase class. When loading from a module, it
considers allTestCase -derived classes. For each such class, it creates an instance for each method with a

5.2. unittest — Unit testing framework 113

name beginning with the string ‘test ’.

defaultTestLoader
Instance of theTestLoader class which can be shared. If no customization of theTestLoader is needed,
this instance can always be used instead of creating new instances.

classTextTestRunner ([stream[, descriptions[, verbosity]]])
A basic test runner implementation which prints results on standard output. It has a few configurable parameters,
but is essentially very simple. Graphical applications which run test suites should provide alternate implemen-
tations.

main ([module[, defaultTest[, argv[, testRunner[, testRunner]]]]])
A command-line program that runs a set of tests; this is primarily for making test modules conveniently exe-
cutable. The simplest use for this function is:

if __name__ == ’__main__’:
unittest.main()

5.2.4 TestCase Objects

EachTestCase instance represents a single test, but each concrete subclass may be used to define multiple tests —
the concrete class represents a single test fixture. The fixture is created and cleaned up for each test case.

TestCase instances provide three groups of methods: one group used to run the test, another used by the test
implementation to check conditions and report failures, and some inquiry methods allowing information about the test
itself to be gathered.

Methods in the first group are:

setUp ()
Method called to prepare the test fixture. This is called immediately before calling the test method; any exception
raised by this method will be considered an error rather than a test failure. The default implementation does
nothing.

tearDown ()
Method called immediately after the test method has been called and the result recorded. This is called even
if the test method raised an exception, so the implementation in subclasses may need to be particularly careful
about checking internal state. Any exception raised by this method will be considered an error rather than a test
failure. This method will only be called if thesetUp() succeeds, regardless of the outcome of the test method.
The default implementation does nothing.

run ([result])
Run the test, collecting the result into the test result object passed asresult. If result is omitted orNone, a
temporary result object is created and used, but is not made available to the caller. This is equivalent to simply
calling theTestCase instance.

debug ()
Run the test without collecting the result. This allows exceptions raised by the test to be propogated to the caller,
and can be used to support running tests under a debugger.

The test code can use any of the following methods to check for and report failures.

assert (expr[, msg])
failUnless (expr[, msg])

Signal a test failure ifexpr is false; the explanation for the error will bemsgif given, otherwise it will beNone.

assertEqual (first, second[, msg])
failUnlessEqual (first, second[, msg])

Test thatfirst andsecondare equal. If the values do not compare equal, the test will fail with the explanation

114 Chapter 5. Miscellaneous Services

given bymsg, or None. Note that usingfailUnlessEqual() improves upon doing the comparison as the
first parameter tofailUnless() : the default value formsgcan be computed to include representations of
bothfirst andsecond.

assertNotEqual (first, second[, msg])
failIfEqual (first, second[, msg])

Test thatfirst andsecondare not equal. If the values do compare equal, the test will fail with the explanation
given bymsg, or None. Note that usingfailIfEqual() improves upon doing the comparison as the first
parameter tofailUnless() is that the default value formsgcan be computed to include representations of
bothfirst andsecond.

assertRaises (exception, callable, ...)
failUnlessRaises (exception, callable, ...)

Test that an exception is raised whencallable is called with any positional or keyword arguments that are also
passed toassertRaises() . The test passes ifexceptionis raised, is an error if another exception is raised,
or fails if no exception is raised. To catch any of a group of exceptions, a tuple containing the exception classes
may be passed asexception.

failIf (expr[, msg])
The inverse of thefailUnless() method is thefailIf() method. This signals a test failure ifexpr is true,
with msgor None for the error message.

fail ([msg])
Signals a test failure unconditionally, withmsgor None for the error message.

failureException
This class attribute gives the exception raised by thetest() method. If a test framework needs to use a
specialized exception, possibly to carry additional information, it must subclass this exception in order to “play
fair” with the framework. The initial value of this attribute isAssertionError .

Testing frameworks can use the following methods to collect information on the test:

countTestCases ()
Return the number of tests represented by the this test object. ForTestCase instances, this will always be1,
but this method is also implemented by theTestSuite class, which can return larger values.

defaultTestResult ()
Return the default type of test result object to be used to run this test.

id ()
Return a string identifying the specific test case. This is usually the full name of the test method, including the
module and class names.

shortDescription ()
Returns a one-line description of the test, orNone if no description has been provided. The default implemen-
tation of this method returns the first line of the test method’s docstring, if available, orNone.

5.2.5 TestSuite Objects

TestSuite objects behave much likeTestCase objects, except they do not actually implement a test. Instead,
they are used to aggregate tests into groups that should be run together. Some additional methods are available to add
tests toTestSuite instances:

addTest (test)
Add aTestCase or TestSuite to the set of tests that make up the suite.

addTests (tests)
Add all the tests from a sequence ofTestCase andTestSuite instances to this test suite.

5.2. unittest — Unit testing framework 115

5.2.6 TestResult Objects

A TestResult object stores the results of a set of tests. TheTestCase andTestSuite classes ensure that
results are properly stored; test authors do not need to worry about recording the outcome of tests.

Testing frameworks built on top ofunittest may want access to theTestResult object generated by running
a set of tests for reporting purposes; aTestResult instance is returned by theTestRunner.run() method for
this purpose.

Each instance holds the total number of tests run, and collections of failures and errors that occurred among those
test runs. The collections contain tuples of(testcase, exceptioninfo) , whereexceptioninfois a tuple as returned by
sys.exc info() .

TestResult instances have the following attributes that will be of interest when inspecting the results of running a
set of tests:

errors
A list containing pairs ofTestCase instances and thesys.exc info() results for tests which raised an
exception but did not signal a test failure.

failures
A list containing pairs ofTestCase instances and thesys.exc info() results for tests which signalled a
failure in the code under test.

testsRun
The number of tests which have been started.

wasSuccessful ()
Returns true if all tests run so far have passed, otherwise returns false.

The following methods of theTestResult class are used to maintain the internal data structures, and mmay be
extended in subclasses to support additional reporting requirements. This is particularly useful in building GUI tools
which support interactive reporting while tests are being run.

startTest (test)
Called when the test casetestis about to be run.

stopTest (test)
Called when the test casetesthas been executed, regardless of the outcome.

addError (test, err)
Called when the test casetest raises an exception without signalling a test failure.err is a tuple of the form
returned bysys.exc info() : (type, value, traceback) .

addFailure (test, err)
Called when the test casetest signals a failure.err is a tuple of the form returned bysys.exc info() :
(type, value, traceback) .

addSuccess (test)
This method is called for a test that does not fail;testis the test case object.

One additional method is available forTestResult objects:

stop ()
This method can be called to signal that the set of tests being run should be aborted. Once this has been
called, theTestRunner object return to its caller without running any additional tests. This is used by the
TextTestRunner class to stop the test framework when the user signals an interrupt from the keyboard. GUI
tools which provide runners can use this in a similar manner.

116 Chapter 5. Miscellaneous Services

5.2.7 TestLoader Objects

TheTestLoader class is used to create test suites from classes and modules. Normally, there is no need to create an
instance of this class; theunittest module provides an instance that can be shared as thedefaultTestLoader
module attribute. Using a subclass or instance would allow customization of some configurable properties.

TestLoader objects have the following methods:

loadTestsFromTestCase (testCaseClass)
Return a suite of all tests cases contained in theTestCase -derived classtestCaseClass .

loadTestsFromModule (module)
Return a suite of all tests cases contained in the given module. This method searchesmodulefor classes derived
from TestCase and creates an instance of the class for each test method defined for the class.

Warning: While using a hierarchy ofTestcase -derived classes can be convenient in sharing fixtures and
helper functions, defining test methods on base classes that are not intended to be instantiated directly does not
play well with this method. Doing so, however, can be useful when the fixtures are different and defined in
subclasses.

loadTestsFromName (name[, module])
Return a suite of all tests cases given a string specifier.

The specifiernamemay resolve either to a module, a test case class, a test method within a test case class, or a
callable object which returns aTestCase or TestSuite instance.

The method optionally resolvesnamerelative to a given module.

loadTestsFromNames (names[, module])
Similar to loadTestsFromName() , but takes a sequence of names rather than a single name. The return
value is a test suite which supports all the tests defined for each name.

getTestCaseNames (testCaseClass)
Return a sorted sequence of method names found withintestCaseClass.

The following attributes of aTestLoader can be configured either by subclassing or assignment on an instance:

testMethodPrefix
String giving the prefix of method names which will be interpreted as test methods. The default value is
’test’ .

sortTestMethodsUsing
Function to be used to compare method names when sorting them ingetTestCaseNames() . The default
value is the built-incmp() function; it can be set toNone to disable the sort.

suiteClass
Callable object that constructs a test suite from a list of tests. No methods on the resulting object are needed.
The default value is theTestSuite class.

5.3 math — Mathematical functions

This module is always available. It provides access to the mathematical functions defined by the C standard.

These functions cannot be used with complex numbers; use the functions of the same name from thecmath module
if you require support for complex numbers. The distinction between functions which support complex numbers and
those which don’t is made since most users do not want to learn quite as much mathematics as required to understand
complex numbers. Receiving an exception instead of a complex result allows earlier detection of the unexpected
complex number used as a parameter, so that the programmer can determine how and why it was generated in the first
place.

The following functions provided by this module:

5.3. math — Mathematical functions 117

acos (x)
Return the arc cosine ofx.

asin (x)
Return the arc sine ofx.

atan (x)
Return the arc tangent ofx.

atan2 (y, x)
Returnatan(y / x) .

ceil (x)
Return the ceiling ofx as a float.

cos (x)
Return the cosine ofx.

cosh (x)
Return the hyperbolic cosine ofx.

exp (x)
Returne** x.

fabs (x)
Return the absolute value of the floating point numberx.

floor (x)
Return the floor ofx as a float.

fmod (x, y)
Returnfmod(x, y) , as defined by the platform C library. Note that the Python expressionx % y may not
return the same result.

frexp (x)
Return the mantissa and exponent ofx as the pair(m, e) . m is a float ande is an integer such thatx == m *
2** e. If x is zero, returns(0.0, 0) , otherwise0.5 <= abs(m) < 1 .

hypot (x, y)
Return the Euclidean distance,sqrt(x* x + y* y) .

ldexp (x, i)
Returnx * (2** i) .

log (x)
Return the natural logarithm ofx.

log10 (x)
Return the base-10 logarithm ofx.

modf (x)
Return the fractional and integer parts ofx. Both results carry the sign ofx. The integer part is returned as a
float.

pow(x, y)
Returnx** y.

sin (x)
Return the sine ofx.

sinh (x)
Return the hyperbolic sine ofx.

sqrt (x)

118 Chapter 5. Miscellaneous Services

Return the square root ofx.

tan (x)
Return the tangent ofx.

tanh (x)
Return the hyperbolic tangent ofx.

Note thatfrexp() and modf() have a different call/return pattern than their C equivalents: they take a single
argument and return a pair of values, rather than returning their second return value through an ‘output parameter’
(there is no such thing in Python).

The module also defines two mathematical constants:

pi
The mathematical constantpi.

e
The mathematical constante.

See Also:

Modulecmath (section 5.4):
Complex number versions of many of these functions.

5.4 cmath — Mathematical functions for complex numbers

This module is always available. It provides access to mathematical functions for complex numbers. The functions
are:

acos (x)
Return the arc cosine ofx.

acosh (x)
Return the hyperbolic arc cosine ofx.

asin (x)
Return the arc sine ofx.

asinh (x)
Return the hyperbolic arc sine ofx.

atan (x)
Return the arc tangent ofx.

atanh (x)
Return the hyperbolic arc tangent ofx.

cos (x)
Return the cosine ofx.

cosh (x)
Return the hyperbolic cosine ofx.

exp (x)
Return the exponential valuee** x.

log (x)
Return the natural logarithm ofx.

log10 (x)
Return the base-10 logarithm ofx.

5.4. cmath — Mathematical functions for complex numbers 119

sin (x)
Return the sine ofx.

sinh (x)
Return the hyperbolic sine ofx.

sqrt (x)
Return the square root ofx.

tan (x)
Return the tangent ofx.

tanh (x)
Return the hyperbolic tangent ofx.

The module also defines two mathematical constants:

pi
The mathematical constantpi, as a real.

e
The mathematical constante, as a real.

Note that the selection of functions is similar, but not identical, to that in modulemath . The reason for having two
modules is that some users aren’t interested in complex numbers, and perhaps don’t even know what they are. They
would rather havemath.sqrt(-1) raise an exception than return a complex number. Also note that the functions
defined incmath always return a complex number, even if the answer can be expressed as a real number (in which
case the complex number has an imaginary part of zero).

5.5 random — Generate pseudo-random numbers

This module implements pseudo-random number generators for various distributions. For integers, uniform selection
from a range. For sequences, uniform selection of a random element, and a function to generate a random permutation
of a list in-place. On the real line, there are functions to compute uniform, normal (Gaussian), lognormal, negative
exponential, gamma, and beta distributions. For generating distribution of angles, the circular uniform and von Mises
distributions are available.

Almost all module functions depend on the basic functionrandom() , which generates a random float uniformly
in the semi-open range [0.0, 1.0). Python uses the standard Wichmann-Hill generator, combining three pure multi-
plicative congruential generators of modulus 30269, 30307 and 30323. Its period (how many numbers it generates
before repeating the sequence exactly) is 6,953,607,871,644. While of much higher quality than therand() function
supplied by most C libraries, the theoretical properties are much the same as for a single linear congruential generator
of large modulus. It is not suitable for all purposes, and is completely unsuitable for cryptographic purposes.

The functions in this module are not threadsafe: if you want to call these functions from multiple threads, you should
explicitly serialize the calls. Else, because no critical sections are implemented internally, calls from different threads
may see the same return values.

The functions supplied by this module are actually bound methods of a hidden instance of therandom.Random class.
You can instantiate your own instances ofRandom to get generators that don’t share state. This is especially useful
for multi-threaded programs, creating a different instance ofRandomfor each thread, and using thejumpahead()
method to ensure that the generated sequences seen by each thread don’t overlap (see example below).

ClassRandomcan also be subclassed if you want to use a different basic generator of your own devising: in that case,
override therandom() , seed() , getstate() , setstate() andjumpahead() methods.

Here’s one way to create threadsafe distinct and non-overlapping generators:

120 Chapter 5. Miscellaneous Services

def create_generators(num, delta, firstseed=None):
"""Return list of num distinct generators.
Each generator has its own unique segment of delta elements
from Random.random()’s full period.
Seed the first generator with optional arg firstseed (default
is None, to seed from current time).
"""

from random import Random
g = Random(firstseed)
result = [g]
for i in range(num - 1):

laststate = g.getstate()
g = Random()
g.setstate(laststate)
g.jumpahead(delta)
result.append(g)

return result

gens = create_generators(10, 1000000)

That creates 10 distinct generators, which can be passed out to 10 distinct threads. The generators don’t share state so
can be called safely in parallel. So long as no thread calls itsg.random() more than a million times (the second
argument tocreate generators() , the sequences seen by each thread will not overlap. The period of the
underlying Wichmann-Hill generator limits how far this technique can be pushed.

Just for fun, note that since we know the period,jumpahead() can also be used to “move backward in time:”

>>> g = Random(42) # arbitrary
>>> g.random()
0.25420336316883324
>>> g.jumpahead(6953607871644L - 1) # move *back* one
>>> g.random()
0.25420336316883324

Bookkeeping functions:

seed ([x])
Initialize the basic random number generator. Optional argumentx can be any hashable object. Ifx is omitted
or None, current system time is used; current system time is also used to initialize the generator when the
module is first imported. Ifx is not None or an int or long,hash(x) is used instead. Ifx is an int or long,
x is used directly. Distinct values between 0 and 27814431486575L inclusive are guaranteed to yield distinct
internal states (this guarantee is specific to the default Wichmann-Hill generator, and may not apply to subclasses
supplying their own basic generator).

whseed ([x])
This is obsolete, supplied for bit-level compatibility with versions of Python prior to 2.1. Seeseed for details.
whseed does not guarantee that distinct integer arguments yield distinct internal states, and can yield no more
than about 2**24 distinct internal states in all.

getstate ()
Return an object capturing the current internal state of the generator. This object can be passed tosetstate()
to restore the state. New in version 2.1.

setstate (state)

5.5. random — Generate pseudo-random numbers 121

stateshould have been obtained from a previous call togetstate() , andsetstate() restores the internal
state of the generator to what it was at the timesetstate() was called. New in version 2.1.

jumpahead (n)
Change the internal state to what it would be ifrandom() were calledn times, but do so quickly.n is a non-
negative integer. This is most useful in multi-threaded programs, in conjuction with multiple instances of the
Randomclass:setstate() or seed() can be used to force all instances into the same internal state, and
thenjumpahead() can be used to force the instances’ states as far apart as you like (up to the period of the
generator). New in version 2.1.

Functions for integers:

randrange ([start,] stop[, step])
Return a randomly selected element fromrange(start, stop, step) . This is equivalent to
choice(range(start, stop, step)) , but doesn’t actually build a range object. New in version 1.5.2.

randint (a, b)
Deprecated since release 2.0.Userandrange() instead.

Return a random integerN such thata <= N <= b.

Functions for sequences:

choice (seq)
Return a random element from the non-empty sequenceseq.

shuffle (x[, random])
Shuffle the sequencex in place. The optional argumentrandomis a 0-argument function returning a random
float in [0.0, 1.0); by default, this is the functionrandom() .

Note that for even rather smalllen(x) , the total number of permutations ofx is larger than the period of most
random number generators; this implies that most permutations of a long sequence can never be generated.

The following functions generate specific real-valued distributions. Function parameters are named after the corre-
sponding variables in the distribution’s equation, as used in common mathematical practice; most of these equations
can be found in any statistics text.

random ()
Return the next random floating point number in the range [0.0, 1.0).

uniform (a, b)
Return a random real numberN such thata <= N < b.

betavariate (alpha, beta)
Beta distribution. Conditions on the parameters arealpha > -1 and beta > -1 . Returned values range
between 0 and 1.

cunifvariate (mean, arc)
Circular uniform distribution.meanis the mean angle, andarc is the range of the distribution, centered around
the mean angle. Both values must be expressed in radians, and can range between 0 andpi. Returned values
range betweenmean - arc/2 andmean + arc/2 .

expovariate (lambd)
Exponential distribution.lambdis 1.0 divided by the desired mean. (The parameter would be called “lambda”,
but that is a reserved word in Python.) Returned values range from 0 to positive infinity.

gamma(alpha, beta)
Gamma distribution. (Not the gamma function!) Conditions on the parameters arealpha > -1 andbeta > 0.

gauss (mu, sigma)
Gaussian distribution.mu is the mean, andsigma is the standard deviation. This is slightly faster than the
normalvariate() function defined below.

lognormvariate (mu, sigma)

122 Chapter 5. Miscellaneous Services

Log normal distribution. If you take the natural logarithm of this distribution, you’ll get a normal distribution
with meanmuand standard deviationsigma. mucan have any value, andsigmamust be greater than zero.

normalvariate (mu, sigma)
Normal distribution.mu is the mean, andsigmais the standard deviation.

vonmisesvariate (mu, kappa)
muis the mean angle, expressed in radians between 0 and 2*pi, andkappais the concentration parameter, which
must be greater than or equal to zero. Ifkappais equal to zero, this distribution reduces to a uniform random
angle over the range 0 to 2*pi.

paretovariate (alpha)
Pareto distribution.alpha is the shape parameter.

weibullvariate (alpha, beta)
Weibull distribution.alpha is the scale parameter andbetais the shape parameter.

See Also:

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistics31 (1982) 188-190.

5.6 whrandom — Pseudo-random number generator

Deprecated since release 2.1.Userandom instead.

Note: This module was an implementation detail of therandom module in releases of Python prior to 2.1. It is no
longer used. Please do not use this module directly; userandom instead.

This module implements a Wichmann-Hill pseudo-random number generator class that is also namedwhrandom .
Instances of thewhrandom class conform to the Random Number Generator interface described in section??. They
also offer the following method, specific to the Wichmann-Hill algorithm:

seed ([x, y, z])
Initializes the random number generator from the integersx, y andz. When the module is first imported, the
random number is initialized using values derived from the current time. Ifx, y, andz are either omitted or
0, the seed will be computed from the current system time. If one or two of the parameters are0, but not all
three, the zero values are replaced by ones. This causes some apparently different seeds to be equal, with the
corresponding result on the pseudo-random series produced by the generator.

choice (seq)
Chooses a random element from the non-empty sequenceseqand returns it.

randint (a, b)
Returns a random integerN such thata<=N<=b.

random ()
Returns the next random floating point number in the range [0.0 ... 1.0).

seed (x, y, z)
Initializes the random number generator from the integersx, y andz. When the module is first imported, the
random number is initialized using values derived from the current time.

uniform (a, b)
Returns a random real numberN such thata<=N<b.

When imported, thewhrandom module also creates an instance of thewhrandom class, and makes the methods of
that instance available at the module level. Therefore one can write eitherN = whrandom.random() or:

5.6. whrandom — Pseudo-random number generator 123

generator = whrandom.whrandom()
N = generator.random()

Note that using separate instances of the generator leads to independent sequences of pseudo-random numbers.

See Also:

Modulerandom (section 5.5):
Generators for various random distributions and documentation for the Random Number Generator interface.

Wichmann, B. A. & Hill, I. D., “Algorithm AS 183: An efficient and portable pseudo-random number generator”,
Applied Statistics31 (1982) 188-190.

5.7 bisect — Array bisection algorithm

This module provides support for maintaining a list in sorted order without having to sort the list after each insertion.
For long lists of items with expensive comparison operations, this can be an improvement over the more common
approach. The module is calledbisect because it uses a basic bisection algorithm to do its work. The source code
may be most useful as a working example of the algorithm (i.e., the boundary conditions are already right!).

The following functions are provided:

bisect left (list, item[, lo[, hi]])
Locate the proper insertion point foritem in list to maintain sorted order. The parameterslo andhi may be used
to specify a subset of the list which should be considered; by default the entire list is used. Ifitem is already
present inlist, the insertion point will be before (to the left of) any existing entries. The return value is suitable
for use as the first parameter tolist.insert() . This assumes thatlist is already sorted. New in version 2.1.

bisect right (list, item[, lo[, hi]])
Similar to bisect left() , but returns an insertion point which comes after (to the right of) any existing
entries ofitem in list. New in version 2.1.

bisect (...)
Alias for bisect right() .

insort left (list, item[, lo[, hi]])
Insert item in list in sorted order. This is equivalent tolist.insert(bisect.bisect left(list, item,
lo, hi), item) . This assumes thatlist is already sorted. New in version 2.1.

insort right (list, item[, lo[, hi]])
Similar to insort left() , but insertingitem in list after any existing entries ofitem. New in version 2.1.

insort (...)
Alias for insort right() .

5.7.1 Example

Thebisect() function is generally useful for categorizing numeric data. This example usesbisect() to look up
a letter grade for an exam total (say) based on a set of ordered numeric breakpoints: 85 and up is an ‘A’, 75..84 is a
‘B’, etc.

124 Chapter 5. Miscellaneous Services

>>> grades = "FEDCBA"
>>> breakpoints = [30, 44, 66, 75, 85]
>>> from bisect import bisect
>>> def grade(total):
... return grades[bisect(breakpoints, total)]
...
>>> grade(66)
’C’
>>> map(grade, [33, 99, 77, 44, 12, 88])
[’E’, ’A’, ’B’, ’D’, ’F’, ’A’]

5.8 array — Efficient arrays of numeric values

This module defines a new object type which can efficiently represent an array of basic values: characters, integers,
floating point numbers. Arrays are sequence types and behave very much like lists, except that the type of objects
stored in them is constrained. The type is specified at object creation time by using atype code, which is a single
character. The following type codes are defined:

Type code C Type Minimum size in bytes
’c’ character 1
’b’ signed int 1
’B’ unsigned int 1
’h’ signed int 2
’H’ unsigned int 2
’i’ signed int 2
’I’ unsigned int 2
’l’ signed int 4
’L’ unsigned int 4
’f’ float 4
’d’ double 8

The actual representation of values is determined by the machine architecture (strictly speaking, by the C implemen-
tation). The actual size can be accessed through theitemsize attribute. The values stored for’L’ and’I’ items
will be represented as Python long integers when retrieved, because Python’s plain integer type cannot represent the
full range of C’s unsigned (long) integers.

The module defines the following function and type object:

array (typecode[, initializer])
Return a new array whose items are restricted bytypecode, and initialized from the optionalinitializer value,
which must be a list or a string. The list or string is passed to the new array’sfromlist() or fromstring()
method (see below) to add initial items to the array.

ArrayType
Type object corresponding to the objects returned byarray() .

Array objects support the following data items and methods:

typecode
The typecode character used to create the array.

itemsize
The length in bytes of one array item in the internal representation.

5.8. array — Efficient arrays of numeric values 125

append (x)
Append a new item with valuex to the end of the array.

buffer info ()
Return a tuple(address, length) giving the current memory address and the length in bytes of the buffer used
to hold array’s contents. This is occasionally useful when working with low-level (and inherently unsafe) I/O
interfaces that require memory addresses, such as certainioctl() operations. The returned numbers are valid
as long as the array exists and no length-changing operations are applied to it.

byteswap ()
“Byteswap” all items of the array. This is only supported for values which are 1, 2, 4, or 8 bytes in size; for other
types of values,RuntimeError is raised. It is useful when reading data from a file written on a machine with
a different byte order.

count (x)
Return the number of occurences ofx in the array.

extend (a)
Append array items froma to the end of the array.

fromfile (f, n)
Readn items (as machine values) from the file objectf and append them to the end of the array. If less than
n items are available,EOFError is raised, but the items that were available are still inserted into the array.f
must be a real built-in file object; something else with aread() method won’t do.

fromlist (list)
Append items from the list. This is equivalent to ‘for x in list: a.append(x) ’ except that if there is a
type error, the array is unchanged.

fromstring (s)
Appends items from the string, interpreting the string as an array of machine values (i.e. as if it had been read
from a file using thefromfile() method).

index (x)
Return the smallesti such thati is the index of the first occurence ofx in the array.

insert (i, x)
Insert a new item with valuex in the array before positioni.

pop ([i])
Removes the item with the indexi from the array and returns it. The optional argument defaults to-1 , so that
by default the last item is removed and returned.

read (f, n)
Deprecated since release 1.5.1.Use thefromfile() method.

Readn items (as machine values) from the file objectf and append them to the end of the array. If less than
n items are available,EOFError is raised, but the items that were available are still inserted into the array.f
must be a real built-in file object; something else with aread() method won’t do.

remove (x)
Remove the first occurence ofx from the array.

reverse ()
Reverse the order of the items in the array.

tofile (f)
Write all items (as machine values) to the file objectf .

tolist ()
Convert the array to an ordinary list with the same items.

tostring ()

126 Chapter 5. Miscellaneous Services

Convert the array to an array of machine values and return the string representation (the same sequence of bytes
that would be written to a file by thetofile() method.)

write (f)
Deprecated since release 1.5.1.Use thetofile() method.

Write all items (as machine values) to the file objectf .

When an array object is printed or converted to a string, it is represented asarray(typecode, initializer) . The
initializer is omitted if the array is empty, otherwise it is a string if thetypecodeis ’c’ , otherwise it is a list of
numbers. The string is guaranteed to be able to be converted back to an array with the same type and value using
reverse quotes (‘‘), so long as thearray() function has been imported using ‘from array import array ’.
Examples:

array(’l’)
array(’c’, ’hello world’)
array(’l’, [1, 2, 3, 4, 5])
array(’d’, [1.0, 2.0, 3.14])

See Also:

Modulestruct (section 4.3):
Packing and unpacking of heterogeneous binary data.

Modulexdrlib (section 12.9):
Packing and unpacking of External Data Representation (XDR) data as used in some remote procedure call
systems.

The Numerical Python Manual
(http://numpy.sourceforge.net/numdoc/HTML/numdoc.html)

The Numeric Python extension (NumPy) defines another array type; seehttp://numpy.sourceforge.net/ for
further information about Numerical Python. (A PDF version of the NumPy manual is available at
http://numpy.sourceforge.net/numdoc/numdoc.pdf.

5.9 ConfigParser — Configuration file parser

This module defines the classConfigParser . TheConfigParser class implements a basic configuration file
parser language which provides a structure similar to what you would find on Microsoft Windows INI files. You can
use this to write Python programs which can be customized by end users easily.

The configuration file consists of sections, lead by a ‘[section] ’ header and followed by ‘name: value ’ en-
tries, with continuations in the style of RFC 822; ‘name=value ’ is also accepted. Note that leading whitespace is
removed from values. The optional values can contain format strings which refer to other values in the same section,
or values in a specialDEFAULTsection. Additional defaults can be provided upon initialization and retrieval. Lines
beginning with ‘#’ or ‘ ; ’ are ignored and may be used to provide comments.

For example:

foodir: %(dir)s/whatever
dir=frob

would resolve the ‘%(dir)s ’ to the value of ‘dir ’ (‘ frob ’ in this case). All reference expansions are done on
demand.

Default values can be specified by passing them into theConfigParser constructor as a dictionary. Additional

5.9. ConfigParser — Configuration file parser 127

defaults may be passed into theget() method which will override all others.

classConfigParser ([defaults])
Return a new instance of theConfigParser class. Whendefaultsis given, it is initialized into the dictionary
of intrinsic defaults. The keys must be strings, and the values must be appropriate for the ‘%()s ’ string inter-
polation. Note that name is an intrinsic default; its value is the section name, and will override any value
provided indefaults.

exceptionNoSectionError
Exception raised when a specified section is not found.

exceptionDuplicateSectionError
Exception raised when multiple sections with the same name are found, or ifadd section() is called with
the name of a section that is already present.

exceptionNoOptionError
Exception raised when a specified option is not found in the specified section.

exceptionInterpolationError
Exception raised when problems occur performing string interpolation.

exceptionInterpolationDepthError
Exception raised when string interpolation cannot be completed because the number of iterations exceeds
MAX INTERPOLATION DEPTH.

exceptionMissingSectionHeaderError
Exception raised when attempting to parse a file which has no section headers.

exceptionParsingError
Exception raised when errors occur attempting to parse a file.

MAX INTERPOLATION DEPTH
The maximum depth for recursive interpolation forget() when theraw parameter is false. Setting this does
not change the allowed recursion depth.

See Also:

Moduleshlex (section 5.14):
Support for a creating UNIX shell-like minilanguages which can be used as an alternate format for application
configuration files.

5.9.1 ConfigParser Objects

ConfigParser instances have the following methods:

defaults ()
Return a dictionary containing the instance-wide defaults.

sections ()
Return a list of the sections available;DEFAULTis not included in the list.

add section (section)
Add a section namedsectionto the instance. If a section by the given name already exists,DuplicateSec-
tionError is raised.

has section (section)
Indicates whether the named section is present in the configuration. TheDEFAULTsection is not acknowledged.

options (section)
Returns a list of options available in the specifiedsection.

has option (section, option)

128 Chapter 5. Miscellaneous Services

If the given section exists, and contains the given option. return 1; otherwise return 0. (New in 1.6)

read (filenames)
Read and parse a list of filenames. Iffilenamesis a string or Unicode string, it is treated as a single filename.

readfp (fp[, filename])
Read and parse configuration data from the file or file-like object infp (only thereadline() method is used).
If filenameis omitted andfp has aname attribute, that is used forfilename; the default is ‘<???> ’.

get (section, option[, raw[, vars]])
Get anoptionvalue for the providedsection. All the ‘%’ interpolations are expanded in the return values, based
on the defaults passed into the constructor, as well as the optionsvarsprovided, unless theraw argument is true.

getint (section, option)
A convenience method which coerces theoption in the specifiedsectionto an integer.

getfloat (section, option)
A convenience method which coerces theoption in the specifiedsectionto a floating point number.

getboolean (section, option)
A convenience method which coerces theoption in the specifiedsectionto a boolean value. Note that the only
accepted values for the option are ‘0’ and ‘1’, any others will raiseValueError .

set (section, option, value)
If the given section exists, set the given option to the specified value; otherwise raiseNoSectionError . (New
in 1.6)

write (fileobject)
Write a representation of the configuration to the specified file object. This representation can be parsed by a
futureread() call. (New in 1.6)

remove option (section, option)
Remove the specifiedoptionfrom the specifiedsection. If the section does not exist, raiseNoSectionError .
If the option existed to be removed, return 1; otherwise return 0. (New in 1.6)

remove section (section)
Remove the specifiedsectionfrom the configuration. If the section in fact existed, return 1. Otherwise return 0.

optionxform (option)
Transforms the option nameoptionas found in an input file or as passed in by client code to the form that should
be used in the internal structures. The default implementation returns a lower-case version ofoption; subclasses
may override this or client code can set an attribute of this name on instances to affect this behavior. Setting this
to str() , for example, would make option names case sensitive.

5.10 fileinput — Iterate over lines from multiple input streams

This module implements a helper class and functions to quickly write a loop over standard input or a list of files.

The typical use is:

import fileinput
for line in fileinput.input():

process(line)

This iterates over the lines of all files listed insys.argv[1:] , defaulting tosys.stdin if the list is empty. If
a filename is’-’ , it is also replaced bysys.stdin . To specify an alternative list of filenames, pass it as the first
argument toinput() . A single file name is also allowed.

5.10. fileinput — Iterate over lines from multiple input streams 129

All files are opened in text mode. If an I/O error occurs during opening or reading a file,IOError is raised.

If sys.stdin is used more than once, the second and further use will return no lines, except perhaps for interactive
use, or if it has been explicitly reset (e.g. usingsys.stdin.seek(0)).

Empty files are opened and immediately closed; the only time their presence in the list of filenames is noticeable at all
is when the last file opened is empty.

It is possible that the last line of a file does not end in a newline character; lines are returned including the trailing
newline when it is present.

The following function is the primary interface of this module:

input ([files[, inplace[, backup]]])
Create an instance of theFileInput class. The instance will be used as global state for the functions of this
module, and is also returned to use during iteration. The parameters to this function will be passed along to the
constructor of theFileInput class.

The following functions use the global state created byinput() ; if there is no active state,RuntimeError is
raised.

filename ()
Return the name of the file currently being read. Before the first line has been read, returnsNone.

lineno ()
Return the cumulative line number of the line that has just been read. Before the first line has been read, returns
0. After the last line of the last file has been read, returns the line number of that line.

filelineno ()
Return the line number in the current file. Before the first line has been read, returns0. After the last line of the
last file has been read, returns the line number of that line within the file.

isfirstline ()
Returns true the line just read is the first line of its file, otherwise returns false.

isstdin ()
Returns true if the last line was read fromsys.stdin , otherwise returns false.

nextfile ()
Close the current file so that the next iteration will read the first line from the next file (if any); lines not read
from the file will not count towards the cumulative line count. The filename is not changed until after the first
line of the next file has been read. Before the first line has been read, this function has no effect; it cannot be
used to skip the first file. After the last line of the last file has been read, this function has no effect.

close ()
Close the sequence.

The class which implements the sequence behavior provided by the module is available for subclassing as well:

classFileInput ([files[, inplace[, backup]]])
ClassFileInput is the implementation; its methodsfilename() , lineno() , fileline() , is-
firstline() , isstdin() , nextfile() and close() correspond to the functions of the same
name in the module. In addition it has areadline() method which returns the next input line, and a

getitem () method which implements the sequence behavior. The sequence must be accessed in strictly
sequential order; random access andreadline() cannot be mixed.

Optional in-place filtering: if the keyword argumentinplace=1 is passed toinput() or to theFileInput con-
structor, the file is moved to a backup file and standard output is directed to the input file (if a file of the same name as
the backup file already exists, it will be replaced silently). This makes it possible to write a filter that rewrites its input
file in place. If the keyword argumentbackup=’.<some extension>’ is also given, it specifies the extension for
the backup file, and the backup file remains around; by default, the extension is’.bak’ and it is deleted when the
output file is closed. In-place filtering is disabled when standard input is read.

130 Chapter 5. Miscellaneous Services

Caveat: The current implementation does not work for MS-DOS 8+3 filesystems.

5.11 xreadlines — Efficient iteration over a file

New in version 2.1.

This module defines a new object type which can efficiently iterate over the lines of a file. An xreadlines object is
a sequence type which implements simple in-order indexing beginning at0, as required byfor statement or the
filter() function.

Thus, the code

import xreadlines, sys

for line in xreadlines.xreadlines(sys.stdin):
pass

has approximately the same speed and memory consumption as

while 1:
lines = sys.stdin.readlines(8*1024)
if not lines: break
for line in lines:

pass

except the clarity of thefor statement is retained in the former case.

xreadlines (fileobj)
Return a new xreadlines object which will iterate over the contents offileobj. fileobjmust have areadlines()
method that supports thesizehintparameter.

An xreadlines objects supports the following sequence operation:

Operation Result
s[i] i’th line of s

If successive values ofi are not sequential starting from0, this code will raiseRuntimeError .

After the last line of the file is read, this code will raise anIndexError .

5.12 calendar — General calendar-related functions

This module allows you to output calendars like the UNIX cal program, and provides additional useful functions
related to the calendar. By default, these calendars have Monday as the first day of the week, and Sunday as the last
(the European convention). Usesetfirstweekday() to set the first day of the week to Sunday (6) or to any other
weekday.

setfirstweekday (weekday)
Sets the weekday (0 is Monday,6 is Sunday) to start each week. The valuesMONDAY, TUESDAY, WEDNESDAY,
THURSDAY, FRIDAY, SATURDAY, andSUNDAYare provided for convenience. For example, to set the first
weekday to Sunday:

5.11. xreadlines — Efficient iteration over a file 131

import calendar
calendar.setfirstweekday(calendar.SUNDAY)

firstweekday ()
Returns the current setting for the weekday to start each week.

isleap (year)
Returns true ifyear is a leap year.

leapdays (y1, y2)
Returns the number of leap years in the range [y1. . .y2).

weekday (year, month, day)
Returns the day of the week (0 is Monday) foryear (1970 –. . .),month(1–12), day(1–31).

monthrange (year, month)
Returns weekday of first day of the month and number of days in month, for the specifiedyearandmonth.

monthcalendar (year, month)
Returns a matrix representing a month’s calendar. Each row represents a week; days outside of the month a
represented by zeros. Each week begins with Monday unless set bysetfirstweekday() .

prmonth (theyear, themonth[, w[, l]])
Prints a month’s calendar as returned bymonth() .

month (theyear, themonth[, w[, l]])
Returns a month’s calendar in a multi-line string. Ifw is provided, it specifies the width of the date columns,
which are centered. Ifl is given, it specifies the number of lines that each week will use. Depends on the first
weekday as set bysetfirstweekday() .

prcal (year[, w[, l[c]]])
Prints the calendar for an entire year as returned bycalendar() .

calendar (year[, w[, l[c]]])
Returns a 3-column calendar for an entire year as a multi-line string. Optional parametersw, l, andc are for
date column width, lines per week, and number of spaces between month columns, respectively. Depends on
the first weekday as set bysetfirstweekday() .

timegm (tuple)
An unrelated but handy function that takes a time tuple such as returned by thegmtime() function in the
time module, and returns the corresponding Unix timestamp value, assuming an epoch of 1970, and the POSIX
encoding. In fact,time.gmtime() andtimegm() are each others’ inverse.

See Also:

Moduletime (section 6.9):
Low-level time related functions.

5.13 cmd — Support for line-oriented command interpreters

TheCmdclass provides a simple framework for writing line-oriented command interpreters. These are often useful
for test harnesses, administrative tools, and prototypes that will later be wrapped in a more sophisticated interface.

classCmd()
A Cmdinstance or subclass instance is a line-oriented interpreter framework. There is no good reason to instan-
tiateCmditself; rather, it’s useful as a superclass of an interpreter class you define yourself in order to inherit
Cmd’s methods and encapsulate action methods.

132 Chapter 5. Miscellaneous Services

5.13.1 Cmd Objects

A Cmdinstance has the following methods:

cmdloop ([intro])
Repeatedly issue a prompt, accept input, parse an initial prefix off the received input, and dispatch to action
methods, passing them the remainder of the line as argument.

The optional argument is a banner or intro string to be issued before the first prompt (this overrides theintro
class member).

If the readline module is loaded, input will automatically inheritbash-like history-list editing (e.g.Ctrl-P
scrolls back to the last command,Ctrl-N forward to the next one,Ctrl-F moves the cursor to the right
non-destructively,Ctrl-B moves the cursor to the left non-destructively, etc.).

An end-of-file on input is passed back as the string’EOF’ .

An interpreter instance will recognize a command name ‘foo ’ if and only if it has a methoddo foo() . As
a special case, a line beginning with the character ‘?’ is dispatched to the methoddo help() . As another
special case, a line beginning with the character ‘! ’ is dispatched to the methoddo shell (if such a method
is defined).

All subclasses ofCmdinherit a predefineddo help . This method, called with an argumentbar , invokes the
corresponding methodhelp bar() . With no argument,do help() lists all available help topics (that is,
all commands with correspondinghelp *() methods), and also lists any undocumented commands.

onecmd(str)
Interpret the argument as though it had been typed in in response to the prompt.

emptyline ()
Method called when an empty line is entered in response to the prompt. If this method is not overridden, it
repeats the last nonempty command entered.

default (line)
Method called on an input line when the command prefix is not recognized. If this method is not overridden, it
prints an error message and returns.

precmd ()
Hook method executed just before the input prompt is issued. This method is a stub inCmd; it exists to be
overridden by subclasses.

postcmd ()
Hook method executed just after a command dispatch is finished. This method is a stub inCmd; it exists to be
overridden by subclasses.

preloop ()
Hook method executed once whencmdloop() is called. This method is a stub inCmd; it exists to be overrid-
den by subclasses.

postloop ()
Hook method executed once whencmdloop() is about to return. This method is a stub inCmd; it exists to be
overridden by subclasses.

Instances ofCmdsubclasses have some public instance variables:

prompt
The prompt issued to solicit input.

identchars
The string of characters accepted for the command prefix.

lastcmd
The last nonempty command prefix seen.

5.13. cmd — Support for line-oriented command interpreters 133

intro
A string to issue as an intro or banner. May be overridden by giving thecmdloop() method an argument.

doc header
The header to issue if the help output has a section for documented commands.

misc header
The header to issue if the help output has a section for miscellaneous help topics (that is, there arehelp *()
methods without correspondingdo *() methods).

undoc header
The header to issue if the help output has a section for undocumented commands (that is, there aredo *()
methods without correspondinghelp *() methods).

ruler
The character used to draw separator lines under the help-message headers. If empty, no ruler line is drawn. It
defaults to ‘=’.

use rawinput
A flag, defaulting to true. If true,cmdloop() usesraw input() to display a prompt and read the next
command; if false,sys.stdout.write() andsys.stdin.readline() are used.

5.14 shlex — Simple lexical analysis

New in version 1.5.2.

Theshlex class makes it easy to write lexical analyzers for simple syntaxes resembling that of the UNIX shell. This
will often be useful for writing minilanguages, e.g. in run control files for Python applications.

classshlex ([stream[, file]])
A shlex instance or subclass instance is a lexical analyzer object. The initialization argument, if present,
specifies where to read characters from. It must be a file- or stream-like object withread() andreadline()
methods. If no argument is given, input will be taken fromsys.stdin . The second optional argument is a
filename string, which sets the initial value of theinfile member. If the stream argument is omitted or equal
to sys.stdin , this second argument defaults to “stdin”.

See Also:

ModuleConfigParser (section 5.9):
Parser for configuration files similar to the Windows ‘.ini’ files.

5.14.1 shlex Objects

A shlex instance has the following methods:

get token ()
Return a token. If tokens have been stacked usingpush token() , pop a token off the stack. Otherwise, read
one from the input stream. If reading encounters an immediate end-of-file, an empty string is returned.

push token (str)
Push the argument onto the token stack.

read token ()
Read a raw token. Ignore the pushback stack, and do not interpret source requests. (This is not ordinarily a
useful entry point, and is documented here only for the sake of completeness.)

sourcehook (filename)
Whenshlex detects a source request (seesource below) this method is given the following token as argu-

134 Chapter 5. Miscellaneous Services

ment, and expected to return a tuple consisting of a filename and an open file-like object.

Normally, this method first strips any quotes off the argument. If the result is an absolute pathname, or there
was no previous source request in effect, or the previous source was a stream (e.g.sys.stdin), the result is
left alone. Otherwise, if the result is a relative pathname, the directory part of the name of the file immediately
before it on the source inclusion stack is prepended (this behavior is like the way the C preprocessor handles
#include "file.h").

The result of the manipulations is treated as a filename, and returned as the first component of the tuple, with
open() called on it to yield the second component. (Note: this is the reverse of the order of arguments in
instance initialization!)

This hook is exposed so that you can use it to implement directory search paths, addition of file extensions, and
other namespace hacks. There is no corresponding ‘close’ hook, but a shlex instance will call theclose()
method of the sourced input stream when it returnsEOF.

For more explicit control of source stacking, use thepush source() andpop source() methods.

push source (stream[, filename])
Push an input source stream onto the input stack. If the filename argument is specified it will later be available
for use in error messages. This is the same method used internally by thesourcehook method. New in
version 2.1.

pop source ()
Pop the last-pushed input source from the input stack. This is the same method used internally when the lexer
reachesEOFon a stacked input stream. New in version 2.1.

error leader ([file[, line]])
This method generates an error message leader in the format of a UNIX C compiler error label; the format is
’"%s", line %d: ’ , where the ‘%s’ is replaced with the name of the current source file and the ‘%d’
with the current input line number (the optional arguments can be used to override these).

This convenience is provided to encourageshlex users to generate error messages in the standard, parseable
format understood by Emacs and other UNIX tools.

Instances ofshlex subclasses have some public instance variables which either control lexical analysis or can be
used for debugging:

commenters
The string of characters that are recognized as comment beginners. All characters from the comment beginner
to end of line are ignored. Includes just ‘#’ by default.

wordchars
The string of characters that will accumulate into multi-character tokens. By default, includes allASCII alphanu-
merics and underscore.

whitespace
Characters that will be considered whitespace and skipped. Whitespace bounds tokens. By default, includes
space, tab, linefeed and carriage-return.

quotes
Characters that will be considered string quotes. The token accumulates until the same quote is encountered
again (thus, different quote types protect each other as in the shell.) By default, includesASCII single and
double quotes.

infile
The name of the current input file, as initially set at class instantiation time or stacked by later source requests.
It may be useful to examine this when constructing error messages.

instream
The input stream from which thisshlex instance is reading characters.

source

5.14. shlex — Simple lexical analysis 135

This member isNone by default. If you assign a string to it, that string will be recognized as a lexical-level
inclusion request similar to the ‘source ’ keyword in various shells. That is, the immediately following token
will opened as a filename and input taken from that stream untilEOF, at which point theclose() method of
that stream will be called and the input source will again become the original input stream. Source requests may
be stacked any number of levels deep.

debug
If this member is numeric and1 or more, ashlex instance will print verbose progress output on its behavior.
If you need to use this, you can read the module source code to learn the details.

Note that any character not declared to be a word character, whitespace, or a quote will be returned as a single-character
token.

Quote and comment characters are not recognized within words. Thus, the bare words ‘ain’t ’ and ‘ain#t ’ would
be returned as single tokens by the default parser.

lineno
Source line number (count of newlines seen so far plus one).

token
The token buffer. It may be useful to examine this when catching exceptions.

136 Chapter 5. Miscellaneous Services

CHAPTER

SIX

Generic Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on (almost) all
operating systems, such as files and a clock. The interfaces are generally modeled after the UNIX or C interfaces, but
they are available on most other systems as well. Here’s an overview:

os Miscellaneous OS interfaces.
os.path Common pathname manipulations.
dircache Return directory listing, with cache mechanism.
stat Utilities for interpreting the results ofos.stat() , os.lstat() andos.fstat() .
statcache Stat files, and remember results.
statvfs Constants for interpreting the result ofos.statvfs() .
filecmp Compare files efficiently.
popen2 Subprocesses with accessible standard I/O streams.
time Time access and conversions.
sched General purpose event scheduler.
mutex Lock and queue for mutual exclusion.
getpass Portable reading of passwords and retrieval of the userid.
curses An interface to the curses library, providing portable terminal handling.
curses.textpad Emacs-like input editing in a curses window.
curses.wrapper Terminal configuration wrapper for curses programs.
curses.ascii Constants and set-membership functions forASCII characters.
curses.panel A panel stack extension that adds depth to curses windows.
getopt Portable parser for command line options; support both short and long option names.
tempfile Generate temporary file names.
errno Standard errno system symbols.
glob UNIX shell style pathname pattern expansion.
fnmatch UNIX shell style filename pattern matching.
shutil High-level file operations, including copying.
locale Internationalization services.
gettext Multilingual internationalization services.

6.1 os — Miscellaneous OS interfaces

This module provides a more portable way of using operating system (OS) dependent functionality than importing an
OS dependent built-in module likeposix or nt .

This module searches for an OS dependent built-in module likemacor posix and exports the same functions and data
as found there. The design of all Python’s built-in OS dependent modules is such that as long as the same functionality
is available, it uses the same interface; e.g., the functionos.stat(path) returns stat information aboutpath in the
same format (which happens to have originated with the POSIX interface).

137

Extensions peculiar to a particular OS are also available through theos module, but using them is of course a threat
to portability!

Note that after the first timeos is imported, there isno performance penalty in using functions fromos instead of
directly from the OS dependent built-in module, so there should beno reason not to useos !

exceptionerror
This exception is raised when a function returns a system-related error (e.g., not for illegal argument types). This
is also known as the built-in exceptionOSError . The accompanying value is a pair containing the numeric
error code fromerrno and the corresponding string, as would be printed by the C functionperror() . See
the moduleerrno , which contains names for the error codes defined by the underlying operating system.

When exceptions are classes, this exception carries two attributes,errno andstrerror . The first holds the
value of the Cerrno variable, and the latter holds the corresponding error message fromstrerror() . For
exceptions that involve a file system path (e.g.chdir() or unlink()), the exception instance will contain a
third attribute,filename , which is the file name passed to the function.

When exceptions are strings, the string for the exception is’OSError’ .

name
The name of the OS dependent module imported. The following names have currently been registered:
’posix’ , ’nt’ , ’dos’ , ’mac’ , ’os2’ , ’ce’ , ’java’ .

path
The corresponding OS dependent standard module for pathname operations, e.g.,posixpath or macpath .
Thus, given the proper imports,os.path.split(file) is equivalent to but more portable thanposix-
path.split(file) . Note that this is also a valid module: it may be imported directly asos.path .

6.1.1 Process Parameters

These functions and data items provide information and operate on the current process and user.

environ
A mapping object representing the string environment. For example,environ[’HOME’] is the pathname of
your home directory (on some platforms), and is equivalent togetenv("HOME") in C.

If the platform supports theputenv() function, this mapping may be used to modify the environment as well
as query the environment.putenv() will be called automatically when the mapping is modified.

If putenv() is not provided, this mapping may be passed to the appropriate process-creation functions to
cause child processes to use a modified environment.

chdir (path)
getcwd ()

These functions are described in “Files and Directories” (section 6.1.4).

ctermid ()
Return the filename corresponding to the controlling terminal of the process. Availability: UNIX .

getegid ()
Return the current process’ effective group id. Availability: UNIX .

geteuid ()
Return the current process’ effective user id. Availability: UNIX .

getgid ()
Return the current process’ group id. Availability: UNIX .

getgroups ()
Return list of supplemental group ids associated with the current process. Availability: UNIX .

getlogin ()

138 Chapter 6. Generic Operating System Services

Return the actual login name for the current process, even if there are multiple login names which map to the
same user id. Availability: UNIX .

getpgrp ()
Return the current process group id. Availability: UNIX .

getpid ()
Return the current process id. Availability: UNIX , Windows.

getppid ()
Return the parent’s process id. Availability: UNIX .

getuid ()
Return the current process’ user id. Availability: UNIX .

getenv (varname[, value])
Return the value of the environment variablevarnameif it exists, orvalueif it doesn’t. valuedefaults toNone.
Availability: most flavors of UNIX , Windows.

putenv (varname, value)
Set the environment variable namedvarnameto the stringvalue. Such changes to the environment affect sub-
processes started withos.system() , popen() or fork() andexecv() . Availability: most flavors of
UNIX , Windows.

Whenputenv() is supported, assignments to items inos.environ are automatically translated into cor-
responding calls toputenv() ; however, calls toputenv() don’t updateos.environ , so it is actually
preferable to assign to items ofos.environ .

setegid (egid)
Set the current process’s effective group id. Availability: UNIX .

seteuid (euid)
Set the current process’s effective user id. Availability: UNIX .

setgid (gid)
Set the current process’ group id. Availability: UNIX .

setpgrp ()
Calls the system callsetpgrp() or setpgrp(0, 0) depending on which version is implemented (if any).
See the UNIX manual for the semantics. Availability: UNIX .

setpgid (pid, pgrp)
Calls the system callsetpgid() . See the UNIX manual for the semantics. Availability: UNIX .

setreuid (ruid, euid)
Set the current process’s real and effective user ids. Availability: UNIX .

setregid (rgid, egid)
Set the current process’s real and effective group ids. Availability: UNIX .

setsid ()
Calls the system callsetsid() . See the UNIX manual for the semantics. Availability: UNIX .

setuid (uid)
Set the current process’ user id. Availability: UNIX .

strerror (code)
Return the error message corresponding to the error code incode. Availability: UNIX , Windows.

umask(mask)
Set the current numeric umask and returns the previous umask. Availability: UNIX , Windows.

uname()
Return a 5-tuple containing information identifying the current operating system. The tuple contains 5 strings:

6.1. os — Miscellaneous OS interfaces 139

(sysname, nodename, release, version, machine) . Some systems truncate the nodename to 8 charac-
ters or to the leading component; a better way to get the hostname issocket.gethostname() or even
socket.gethostbyaddr(socket.gethostname()) . Availability: recent flavors of UNIX .

6.1.2 File Object Creation

These functions create new file objects.

fdopen (fd[, mode[, bufsize]])
Return an open file object connected to the file descriptorfd. Themodeandbufsizearguments have the same
meaning as the corresponding arguments to the built-inopen() function. Availability: Macintosh, UNIX ,
Windows.

popen (command[, mode[, bufsize]])
Open a pipe to or fromcommand. The return value is an open file object connected to the pipe, which can be read
or written depending on whethermodeis ’r’ (default) or’w’ . Thebufsizeargument has the same meaning as
the corresponding argument to the built-inopen() function. The exit status of the command (encoded in the
format specified forwait()) is available as the return value of theclose() method of the file object, except
that when the exit status is zero (termination without errors),None is returned. Availability: UNIX , Windows.

Changed in version 2.0: This function worked unreliably under Windows in earlier versions of Python. This was
due to the use of thepopen() function from the libraries provided with Windows. Newer versions of Python
do not use the broken implementation from the Windows libraries.

tmpfile ()
Return a new file object opened in update mode (‘w+’). The file has no directory entries associated with it and
will be automatically deleted once there are no file descriptors for the file. Availability: UNIX .

For each of thesepopen() variants, ifbufsizeis specified, it specifies the buffer size for the I/O pipes.mode, if
provided, should be the string’b’ or ’t’ ; on Windows this is needed to determine whether the file objects should be
opened in binary or text mode. The default value formodeis ’t’ .

popen2 (cmd[, mode[, bufsize]])
Executescmd as a sub-process. Returns the file objects(child stdin, child stdout) . Availability: UNIX ,
Windows. New in version 2.0.

popen3 (cmd[, mode[, bufsize]])
Executescmdas a sub-process. Returns the file objects(child stdin, child stdout, child stderr) . Avail-
ability: UNIX , Windows. New in version 2.0.

popen4 (cmd[, mode[, bufsize]])
Executescmdas a sub-process. Returns the file objects(child stdin, child stdout and stderr) . Availability:
UNIX , Windows. New in version 2.0.

This functionality is also available in thepopen2 module using functions of the same names, but the return values of
those functions have a different order.

6.1.3 File Descriptor Operations

These functions operate on I/O streams referred to using file descriptors.

close (fd)
Close file descriptorfd. Availability: Macintosh, UNIX , Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned byopen()
or pipe() . To close a “file object” returned by the built-in functionopen() or bypopen() or fdopen() ,
use itsclose() method.

140 Chapter 6. Generic Operating System Services

dup (fd)
Return a duplicate of file descriptorfd. Availability: Macintosh, UNIX , Windows.

dup2 (fd, fd2)
Duplicate file descriptorfd to fd2, closing the latter first if necessary. Availability: UNIX , Windows.

fpathconf (fd, name)
Return system configuration information relevant to an open file.namespecifies the configuration value to
retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, Unix95, Unix98, and others). Some platforms define additional names as well. The
names known to the host operating system are given in thepathconf names dictionary. For configuration
variables not included in that mapping, passing an integer fornameis also accepted. Availability: UNIX .

If nameis a string and is not known,ValueError is raised. If a specific value fornameis not supported by
the host system, even if it is included inpathconf names, anOSError is raised witherrno.EINVAL for
the error number.

fstat (fd)
Return status for file descriptorfd, like stat() . Availability: UNIX , Windows.

fstatvfs (fd)
Return information about the filesystem containing the file associated with file descriptorfd, like statvfs() .
Availability: UNIX .

ftruncate (fd, length)
Truncate the file corresponding to file descriptorfd, so that it is at mostlengthbytes in size. Availability: UNIX .

isatty (fd)
Return1 if the file descriptorfd is open and connected to a tty(-like) device, else0. Availability: UNIX

lseek (fd, pos, how)
Set the current position of file descriptorfd to positionpos, modified byhow: 0 to set the position relative to
the beginning of the file;1 to set it relative to the current position;2 to set it relative to the end of the file.
Availability: Macintosh, UNIX , Windows.

open (file, flags[, mode])
Open the filefile and set various flags according toflagsand possibly its mode according tomode. The default
modeis 0777 (octal), and the current umask value is first masked out. Return the file descriptor for the newly
opened file. Availability: Macintosh, UNIX , Windows.

For a description of the flag and mode values, see the C run-time documentation; flag constants (likeO RDONLY
andO WRONLY) are defined in this module too (see below).

Note: this function is intended for low-level I/O. For normal usage, use the built-in functionopen() , which
returns a “file object” withread() andwrite() methods (and many more).

openpty ()
Open a new pseudo-terminal pair. Return a pair of file descriptors(master, slave) for the pty and the tty,
respectively. For a (slightly) more portable approach, use thepty module. Availability: Some flavors of UNIX

pipe ()
Create a pipe. Return a pair of file descriptors(r, w) usable for reading and writing, respectively. Availability:
UNIX , Windows.

read (fd, n)
Read at mostn bytes from file descriptorfd. Return a string containing the bytes read. Availability: Macintosh,
UNIX , Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned byopen()
or pipe() . To read a “file object” returned by the built-in functionopen() or by popen() or fdopen() ,
or sys.stdin , use itsread() or readline() methods.

tcgetpgrp (fd)

6.1. os — Miscellaneous OS interfaces 141

Return the process group associated with the terminal given byfd (an open file descriptor as returned by
open()). Availability: UNIX .

tcsetpgrp (fd, pg)
Set the process group associated with the terminal given byfd (an open file descriptor as returned byopen())
to pg. Availability: UNIX .

ttyname (fd)
Return a string which specifies the terminal device associated with file-descriptorfd. If fd is not associated with
a terminal device, an exception is raised. Availability: UNIX .

write (fd, str)
Write the stringstr to file descriptorfd. Return the number of bytes actually written. Availability: Macintosh,
UNIX , Windows.

Note: this function is intended for low-level I/O and must be applied to a file descriptor as returned byopen()
or pipe() . To write a “file object” returned by the built-in functionopen() or bypopen() or fdopen() ,
or sys.stdout or sys.stderr , use itswrite() method.

The following data items are available for use in constructing theflagsparameter to theopen() function.

O RDONLY
O WRONLY
O RDWR
O NDELAY
O NONBLOCK
O APPEND
O DSYNC
O RSYNC
O SYNC
O NOCTTY
O CREAT
O EXCL
O TRUNC

Options for theflag argument to theopen() function. These can be bit-wise OR’d together. Availability:
Macintosh, UNIX , Windows.

O BINARY
Option for theflag argument to theopen() function. This can be bit-wise OR’d together with those listed
above. Availability: Macintosh, Windows.

6.1.4 Files and Directories

access (path, mode)
Check read/write/execute permissions for this process or existence of filepath. modeshould beF OKto test the
existence ofpath, or it can be the inclusive OR of one or more ofR OK, W OK, andX OKto test permissions.
Return1 if access is allowed,0 if not. See the UNIX man pageaccess(2) for more information. Availability:
UNIX , Windows.

F OK
Value to pass as themodeparameter ofaccess() to test the existence ofpath.

R OK
Value to include in themodeparameter ofaccess() to test the readability ofpath.

W OK
Value to include in themodeparameter ofaccess() to test the writability ofpath.

X OK

142 Chapter 6. Generic Operating System Services

Value to include in themodeparameter ofaccess() to determine ifpathcan be executed.

chdir (path)
Change the current working directory topath. Availability: Macintosh, UNIX , Windows.

getcwd ()
Return a string representing the current working directory. Availability: Macintosh, UNIX , Windows.

chmod(path, mode)
Change the mode ofpathto the numericmode. Availability: UNIX , Windows.

chown (path, uid, gid)
Change the owner and group id ofpathto the numericuid andgid. Availability: UNIX .

link (src, dst)
Create a hard link pointing tosrcnameddst. Availability: UNIX .

listdir (path)
Return a list containing the names of the entries in the directory. The list is in arbitrary order. It does not include
the special entries’.’ and ’..’ even if they are present in the directory. Availability: Macintosh, UNIX ,
Windows.

lstat (path)
Like stat() , but do not follow symbolic links. Availability: UNIX .

mkfifo (path[, mode])
Create a FIFO (a named pipe) namedpathwith numeric modemode. The defaultmodeis 0666 (octal). The
current umask value is first masked out from the mode. Availability: UNIX .

FIFOs are pipes that can be accessed like regular files. FIFOs exist until they are deleted (for example with
os.unlink()). Generally, FIFOs are used as rendezvous between “client” and “server” type processes: the
server opens the FIFO for reading, and the client opens it for writing. Note thatmkfifo() doesn’t open the
FIFO — it just creates the rendezvous point.

mkdir (path[, mode])
Create a directory namedpathwith numeric modemode. The defaultmodeis 0777 (octal). On some systems,
modeis ignored. Where it is used, the current umask value is first masked out. Availability: Macintosh, UNIX ,
Windows.

makedirs (path[, mode])
Recursive directory creation function. Likemkdir() , but makes all intermediate-level directories needed to
contain the leaf directory. Throws anerror exception if the leaf directory already exists or cannot be created.
The defaultmodeis 0777 (octal). New in version 1.5.2.

pathconf (path, name)
Return system configuration information relevant to a named file.namespecifies the configuration value to
retrieve; it may be a string which is the name of a defined system value; these names are specified in a number
of standards (POSIX.1, Unix95, Unix98, and others). Some platforms define additional names as well. The
names known to the host operating system are given in thepathconf names dictionary. For configuration
variables not included in that mapping, passing an integer fornameis also accepted. Availability: UNIX .

If nameis a string and is not known,ValueError is raised. If a specific value fornameis not supported by
the host system, even if it is included inpathconf names, anOSError is raised witherrno.EINVAL for
the error number.

pathconf names
Dictionary mapping names accepted bypathconf() and fpathconf() to the integer values defined for
those names by the host operating system. This can be used to determine the set of names known to the system.
Availability: UNIX .

readlink (path)
Return a string representing the path to which the symbolic link points. The result may be either

6.1. os — Miscellaneous OS interfaces 143

an absolute or relative pathname; if it is relative, it may be converted to an absolute pathname using
os.path.join(os.path.dirname(path), result) . Availability: UNIX .

remove (path)
Remove the filepath. If path is a directory,OSError is raised; seermdir() below to remove a directory.
This is identical to theunlink() function documented below. On Windows, attempting to remove a file that
is in use causes an exception to be raised; on UNIX , the directory entry is removed but the storage allocated to
the file is not made available until the original file is no longer in use. Availability: Macintosh, UNIX , Windows.

removedirs (path)
Recursive directory removal function. Works likermdir() except that, if the leaf directory is successfully
removed, directories corresponding to rightmost path segments will be pruned way until either the whole path
is consumed or an error is raised (which is ignored, because it generally means that a parent directory is not
empty). Throws anerror exception if the leaf directory could not be successfully removed. New in version
1.5.2.

rename (src, dst)
Rename the file or directorysrc to dst. If dst is a directory,OSError will be raised. On UNIX , if dstexists and
is a file, it will be removed silently if the user has permission. The operation may fail on some UNIX flavors if
srcanddstare on different filesystems. If successful, the renaming will be an atomic operation (this is a POSIX
requirement). On Windows, ifdst already exists,OSError will be raised even if it is a file; there may be no
way to implement an atomic rename whendstnames an existing file. Availability: Macintosh, UNIX , Windows.

renames (old, new)
Recursive directory or file renaming function. Works likerename() , except creation of any intermediate di-
rectories needed to make the new pathname good is attempted first. After the rename, directories corresponding
to rightmost path segments of the old name will be pruned away usingremovedirs() .

Note: this function can fail with the new directory structure made if you lack permissions needed to remove the
leaf directory or file. New in version 1.5.2.

rmdir (path)
Remove the directorypath. Availability: Macintosh, UNIX , Windows.

stat (path)
Perform astat() system call on the given path. The return value is a tuple of at least 10 integers giving
the most important (and portable) members of thestat structure, in the orderst mode, st ino , st dev ,
st nlink , st uid , st gid , st size , st atime , st mtime , st ctime . More items may be added
at the end by some implementations. Note that on the Macintosh, the time values are floating point values, like
all time values on the Macintosh. (On MS Windows, some items are filled with dummy values.) Availability:
Macintosh, UNIX , Windows.

Note: The standard modulestat defines functions and constants that are useful for extracting information from
astat structure.

statvfs (path)
Perform astatvfs() system call on the given path. The return value is a tuple of 10 integers giving the most
common members of thestatvfs structure, in the orderf bsize , f frsize , f blocks , f bfree ,
f bavail , f files , f ffree , f favail , f flag , f namemax. Availability: UNIX .

Note: The standard modulestatvfs defines constants that are useful for extracting information from a
statvfs structure.

symlink (src, dst)
Create a symbolic link pointing tosrcnameddst. Availability: UNIX .

tempnam([dir[, prefix]])
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in the directorydir or a common location for temporary files ifdir is omitted
or None. If given and notNone, prefix is used to provide a short prefix to the filename. Applications are
responsible for properly creating and managing files created using paths returned bytempnam() ; no automatic

144 Chapter 6. Generic Operating System Services

cleanup is provided. Availability: UNIX .

tmpnam()
Return a unique path name that is reasonable for creating a temporary file. This will be an absolute path that
names a potential directory entry in a common location for temporary files. Applications are responsible for
properly creating and managing files created using paths returned bytmpnam() ; no automatic cleanup is
provided. Availability: UNIX .

TMP MAX
The maximum number of unique names thattmpnam() will generate before reusing names. Availability:
UNIX , Windows.

unlink (path)
Remove the filepath. This is the same function asremove() ; the unlink() name is its traditional UNIX

name. Availability: Macintosh, UNIX , Windows.

utime (path, times)
Set the access and modified times of the file specified bypath. If times is None, then the file’s access and
modified times are set to the current time. Otherwise,timesmust be a 2-tuple of numbers, of the form(atime,
mtime) which is used to set the access and modified times, respectively. Changed in version 2.0: Added support
for None for times. Availability: Macintosh, UNIX , Windows.

6.1.5 Process Management

These functions may be used to create and manage processes.

The variousexec*() functions take a list of arguments for the new program loaded into the process. In each case,
the first of these arguments is passed to the new program as its own name rather than as an argument a user may have
typed on a command line. For the C programmer, this is theargv[0] passed to a program’smain() . For example,
‘os.execv(’/bin/echo’, [’foo’, ’bar’]) ’ will only print ‘ bar ’ on standard output; ‘foo ’ will seem
to be ignored.

abort ()
Generate aSIGABRTsignal to the current process. On UNIX , the default behavior is to produce a core dump;
on Windows, the process immediately returns an exit code of3. Be aware that programs which usesig-
nal.signal() to register a handler forSIGABRTwill behave differently. Availability: UNIX , Windows.

execl (path, arg0, arg1, ...)
This is equivalent to ‘execv(path, (arg0, arg1, ...)) ’. Availability: U NIX , Windows.

execle (path, arg0, arg1, ..., env)
This is equivalent to ‘execve(path, (arg0, arg1, ...), env) ’. Availability: U NIX , Windows.

execlp (path, arg0, arg1, ...)
This is equivalent to ‘execvp(path, (arg0, arg1, ...)) ’. Availability: U NIX , Windows.

execv (path, args)
Execute the executablepathwith argument listargs, replacing the current process (i.e., the Python interpreter).
The argument list may be a tuple or list of strings. Availability: UNIX , Windows.

execve (path, args, env)
Execute the executablepathwith argument listargs, and environmentenv, replacing the current process (i.e.,
the Python interpreter). The argument list may be a tuple or list of strings. The environment must be a dictionary
mapping strings to strings. Availability: UNIX , Windows.

execvp (path, args)
This is like ‘execv(path, args) ’ but duplicates the shell’s actions in searching for an executable file in a list
of directories. The directory list is obtained fromenviron[’PATH’] . Availability: UNIX , Windows.

execvpe (path, args, env)

6.1. os — Miscellaneous OS interfaces 145

This is a cross betweenexecve() andexecvp() . The directory list is obtained fromenv[’PATH’] . Avail-
ability: UNIX , Windows.

exit (n)
Exit to the system with statusn, without calling cleanup handlers, flushing stdio buffers, etc. Availability: UNIX ,
Windows.

Note: the standard way to exit issys.exit(n) . exit() should normally only be used in the child process
after afork() .

fork ()
Fork a child process. Return0 in the child, the child’s process id in the parent. Availability: UNIX .

forkpty ()
Fork a child process, using a new pseudo-terminal as the child’s controlling terminal. Return a pair of(pid,
fd) , wherepid is 0 in the child, the new child’s process id in the parent, andfd is the file descriptor of the
master end of the pseudo-terminal. For a more portable approach, use thepty module. Availability: Some
flavors of UNIX

kill (pid, sig)
Kill the processpid with signalsig. Availability: UNIX .

nice (increment)
Add incrementto the process’s “niceness”. Return the new niceness. Availability: UNIX .

plock (op)
Lock program segments into memory. The value ofop (defined in<sys/lock.h>) determines which seg-
ments are locked. Availability: UNIX .

popen (...)
popen2 (...)
popen3 (...)
popen4 (...)

Run child processes, returning opened pipes for communications. These functions are described in section 6.1.2.

spawnv (mode, path, args)
Execute the programpathin a new process, passing the arguments specified inargsas command-line parameters.
args may be a list or a tuple.modeis a magic operational constant. See the Visual C++ Runtime Library
documentation for further information; the constants are exposed to the Python programmer as listed below.
Availability: UNIX , Windows. New in version 1.6.

spawnve (mode, path, args, env)
Execute the programpathin a new process, passing the arguments specified inargsas command-line parameters
and the contents of the mappingenvas the environment.argsmay be a list or a tuple.modeis a magic operational
constant. See the Visual C++ Runtime Library documentation for further information; the constants are exposed
to the Python programmer as listed below. Availability: UNIX , Windows. New in version 1.6.

P WAIT
P NOWAIT
P NOWAITO

Possible values for themodeparameter tospawnv() andspawnve() . Availability: UNIX , Windows. New
in version 1.6.

P OVERLAY
P DETACH

Possible values for themodeparameter tospawnv() andspawnve() . These are less portable than those
listed above. Availability: Windows. New in version 1.6.

startfile (path)
Start a file with its associated application. This acts like double-clicking the file in Windows Explorer, or giving
the file name as an argument to the DOSstart command: the file is opened with whatever application (if any)

146 Chapter 6. Generic Operating System Services

its extension is associated.

startfile() returns as soon as the associated application is launched. There is no option to wait for the
application to close, and no way to retrieve the application’s exit status. Thepath parameter is relative to
the current directory. If you want to use an absolute path, make sure the first character is not a slash (‘/ ’); the
underlying Win32ShellExecute() function doesn’t work it is. Use theos.path.normpath() function
to ensure that the path is properly encoded for Win32. Availability: Windows. New in version 2.0.

system (command)
Execute the command (a string) in a subshell. This is implemented by calling the Standard C functionsys-
tem() , and has the same limitations. Changes toposix.environ , sys.stdin , etc. are not reflected in
the environment of the executed command. The return value is the exit status of the process encoded in the
format specified forwait() , except on Windows 95 and 98, where it is always0. Note that POSIX does not
specify the meaning of the return value of the Csystem() function, so the return value of the Python function
is system-dependent. Availability: UNIX , Windows.

times ()
Return a 5-tuple of floating point numbers indicating accumulated (CPU or other) times, in seconds. The items
are: user time, system time, children’s user time, children’s system time, and elapsed real time since a fixed
point in the past, in that order. See the UNIX manual pagetimes(2) or the corresponding Windows Platform API
documentation. Availability: UNIX , Windows.

wait ()
Wait for completion of a child process, and return a tuple containing its pid and exit status indication: a 16-bit
number, whose low byte is the signal number that killed the process, and whose high byte is the exit status (if
the signal number is zero); the high bit of the low byte is set if a core file was produced. Availability: UNIX .

waitpid (pid, options)
Wait for completion of a child process given by process idpid, and return a tuple containing its process id and
exit status indication (encoded as forwait()). The semantics of the call are affected by the value of the integer
options, which should be0 for normal operation. Availability: UNIX .

If pid is greater than0, waitpid() requests status information for that specific process. Ifpid is 0, the request
is for the status of any child in the process group of the current process. Ifpid is -1 , the request pertains to any
child of the current process. Ifpid is less than-1 , status is requested for any process in the process group- pid
(the absolute value ofpid).

WNOHANG
The option forwaitpid() to avoid hanging if no child process status is available immediately. Availability:
UNIX .

The following functions take a process status code as returned bysystem() , wait() , or waitpid() as a param-
eter. They may be used to determine the disposition of a process.

WIFSTOPPED(status)
Return true if the process has been stopped. Availability: UNIX .

WIFSIGNALED(status)
Return true if the process exited due to a signal. Availability: UNIX .

WIFEXITED(status)
Return true if the process exited using theexit(2) system call. Availability: UNIX .

WEXITSTATUS(status)
If WIFEXITED(status) is true, return the integer parameter to theexit(2) system call. Otherwise, the return
value is meaningless. Availability: UNIX .

WSTOPSIG(status)
Return the signal which caused the process to stop. Availability: UNIX .

WTERMSIG(status)
Return the signal which caused the process to exit. Availability: UNIX .

6.1. os — Miscellaneous OS interfaces 147

6.1.6 Miscellaneous System Information

confstr (name)
Return string-valued system configuration values.namespecifies the configuration value to retrieve; it may be a
string which is the name of a defined system value; these names are specified in a number of standards (POSIX,
Unix95, Unix98, and others). Some platforms define additional names as well. The names known to the host
operating system are given in theconfstr names dictionary. For configuration variables not included in that
mapping, passing an integer fornameis also accepted. Availability: UNIX .

If the configuration value specified bynameisn’t defined, the empty string is returned.

If nameis a string and is not known,ValueError is raised. If a specific value fornameis not supported by
the host system, even if it is included inconfstr names, anOSError is raised witherrno.EINVAL for
the error number.

confstr names
Dictionary mapping names accepted byconfstr() to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system. Availability: UNIX .

sysconf (name)
Return integer-valued system configuration values. If the configuration value specified bynameisn’t defined,
-1 is returned. The comments regarding thenameparameter forconfstr() apply here as well; the dictionary
that provides information on the known names is given bysysconf names. Availability: UNIX .

sysconf names
Dictionary mapping names accepted bysysconf() to the integer values defined for those names by the host
operating system. This can be used to determine the set of names known to the system. Availability: UNIX .

The follow data values are used to support path manipulation operations. These are defined for all platforms.

Higher-level operations on pathnames are defined in theos.path module.

curdir
The constant string used by the OS to refer to the current directory, e.g.’.’ for POSIX or ’:’ for the
Macintosh.

pardir
The constant string used by the OS to refer to the parent directory, e.g.’..’ for POSIX or ’::’ for the
Macintosh.

sep
The character used by the OS to separate pathname components, e.g. ‘/ ’ for POSIX or ‘: ’ for the Mac-
intosh. Note that knowing this is not sufficient to be able to parse or concatenate pathnames — use
os.path.split() andos.path.join() — but it is occasionally useful.

altsep
An alternative character used by the OS to separate pathname components, orNone if only one separator
character exists. This is set to ‘/ ’ on DOS and Windows systems wheresep is a backslash.

pathsep
The character conventionally used by the OS to separate search patch components (as in PATH), e.g. ‘: ’ for
POSIX or ‘; ’ for DOS and Windows.

defpath
The default search path used byexec*p*() if the environment doesn’t have a’PATH’ key.

linesep
The string used to separate (or, rather, terminate) lines on the current platform. This may be a single character,
e.g.’\n’ for POSIX or’\r’ for MacOS, or multiple characters, e.g.’\r\n’ for MS-DOS and MS Windows.

148 Chapter 6. Generic Operating System Services

6.2 os.path — Common pathname manipulations

This module implements some useful functions on pathnames.

abspath (path)
Return a normalized absolutized version of the pathnamepath. On most platforms, this is equivalent tonorm-
path(join(os.getcwd(), path)) . New in version 1.5.2.

basename (path)
Return the base name of pathnamepath. This is the second half of the pair returned bysplit(path) . Note that
the result of this function is different from the UNIX basenameprogram; wherebasenamefor ’/foo/bar/’
returns’bar’ , thebasename() function returns an empty string (’’).

commonprefix (list)
Return the longest path prefix (taken character-by-character) that is a prefix of all paths inlist. If list is empty,
return the empty string (’’). Note that this may return invalid paths because it works a character at a time.

dirname (path)
Return the directory name of pathnamepath. This is the first half of the pair returned bysplit(path) .

exists (path)
Return true ifpathrefers to an existing path.

expanduser (path)
Return the argument with an initial component of ‘˜ ’ or ‘ ˜ user’ replaced by thatuser’s home directory. An
initial ‘ ˜ ’ is replaced by the environment variable HOME; an initial ‘˜ user’ is looked up in the password
directory through the built-in modulepwd. If the expansion fails, or if the path does not begin with a tilde, the
path is returned unchanged. On the Macintosh, this always returnspathunchanged.

expandvars (path)
Return the argument with environment variables expanded. Substrings of the form ‘$name’ or ‘ ${ name} ’ are
replaced by the value of environment variablename. Malformed variable names and references to non-existing
variables are left unchanged. On the Macintosh, this always returnspathunchanged.

getatime (path)
Return the time of last access offilename. The return value is integer giving the number of seconds since the
epoch (see thetime module). Raiseos.error if the file does not exist or is inaccessible. New in version
1.5.2.

getmtime (path)
Return the time of last modification offilename. The return value is integer giving the number of seconds since
the epoch (see thetime module). Raiseos.error if the file does not exist or is inaccessible. New in version
1.5.2.

getsize (path)
Return the size, in bytes, offilename. Raiseos.error if the file does not exist or is inaccessible. New in
version 1.5.2.

isabs (path)
Return true ifpath is an absolute pathname (begins with a slash).

isfile (path)
Return true ifpath is an existing regular file. This follows symbolic links, so bothislink() andisfile()
can be true for the same path.

isdir (path)
Return true ifpath is an existing directory. This follows symbolic links, so bothislink() andisdir() can
be true for the same path.

islink (path)
Return true ifpath refers to a directory entry that is a symbolic link. Always false if symbolic links are not

6.2. os.path — Common pathname manipulations 149

supported.

ismount (path)
Return true if pathnamepath is a mount point: a point in a file system where a different file system has been
mounted. The function checks whetherpath’s parent, ‘path/..’, is on a different device thanpath, or whether
‘path/..’ and pathpoint to the same i-node on the same device — this should detect mount points for all UNIX

and POSIX variants.

join (path1[, path2[, ...]])
Joins one or more path components intelligently. If any component is an absolute path, all previous components
are thrown away, and joining continues. The return value is the concatenation ofpath1, and optionallypath2,
etc., with exactly one slash (’/’) inserted between components, unlesspath is empty.

normcase (path)
Normalize the case of a pathname. On UNIX , this returns the path unchanged; on case-insensitive filesystems,
it converts the path to lowercase. On Windows, it also converts forward slashes to backward slashes.

normpath (path)
Normalize a pathname. This collapses redundant separators and up-level references, e.g.A//B , A/./B and
A/foo/../B all becomeA/B . It does not normalize the case (usenormcase() for that). On Windows, it
converts forward slashes to backward slashes.

samefile (path1, path2)
Return true if both pathname arguments refer to the same file or directory (as indicated by device number and
i-node number). Raise an exception if aos.stat() call on either pathname fails. Availability: Macintosh,
UNIX .

sameopenfile (fp1, fp2)
Return true if the file objectsfp1 andfp2 refer to the same file. The two file objects may represent different file
descriptors. Availability: Macintosh, UNIX .

samestat (stat1, stat2)
Return true if the stat tuplesstat1andstat2 refer to the same file. These structures may have been returned
by fstat() , lstat() , or stat() . This function implements the underlying comparison used bysame-
file() andsameopenfile() . Availability: Macintosh, UNIX .

split (path)
Split the pathnamepath into a pair, (head, tail) where tail is the last pathname component andhead is
everything leading up to that. Thetail part will never contain a slash; ifpathends in a slash,tail will be empty.
If there is no slash inpath, headwill be empty. Ifpath is empty, bothheadandtail are empty. Trailing slashes
are stripped fromheadunless it is the root (one or more slashes only). In nearly all cases,join(head, tail)
equalspath(the only exception being when there were multiple slashes separatingheadfrom tail).

splitdrive (path)
Split the pathnamepath into a pair(drive, tail) wheredrive is either a drive specification or the empty string.
On systems which do not use drive specifications,drive will always be the empty string. In all cases,drive +
tail will be the same aspath. New in version 1.3.

splitext (path)
Split the pathnamepath into a pair(root, ext) such thatroot + ext == path, andext is empty or begins
with a period and contains at most one period.

walk (path, visit, arg)
Calls the functionvisit with arguments(arg, dirname, names) for each directory in the directory tree rooted
at path (including path itself, if it is a directory). The argumentdirnamespecifies the visited directory, the
argumentnameslists the files in the directory (gotten fromos.listdir(dirname)). Thevisit function may
modify namesto influence the set of directories visited belowdirname, e.g., to avoid visiting certain parts of the
tree. (The object referred to bynamesmust be modified in place, usingdel or slice assignment.)

150 Chapter 6. Generic Operating System Services

6.3 dircache — Cached directory listings

The dircache module defines a function for reading directory listing using a cache, and cache invalidation using
themtimeof the directory. Additionally, it defines a function to annotate directories by appending a slash.

Thedircache module defines the following functions:

listdir (path)
Return a directory listing ofpath, as gotten fromos.listdir() . Note that unlesspathchanges, further call
to listdir() will not re-read the directory structure.

Note that the list returned should be regarded as read-only. (Perhaps a future version should change it to return
a tuple?)

opendir (path)
Same aslistdir() . Defined for backwards compatibility.

annotate (head, list)
Assumelist is a list of paths relative tohead, and append, in place, a ‘/ ’ to each path which points to a directory.

>>> import dircache
>>> a=dircache.listdir(’/’)
>>> a=a[:] # Copy the return value so we can change ’a’
>>> a
[’bin’, ’boot’, ’cdrom’, ’dev’, ’etc’, ’floppy’, ’home’, ’initrd’, ’lib’, ’lost+
found’, ’mnt’, ’proc’, ’root’, ’sbin’, ’tmp’, ’usr’, ’var’, ’vmlinuz’]
>>> dircache.annotate(’/’, a)
>>> a
[’bin/’, ’boot/’, ’cdrom/’, ’dev/’, ’etc/’, ’floppy/’, ’home/’, ’initrd/’, ’lib/
’, ’lost+found/’, ’mnt/’, ’proc/’, ’root/’, ’sbin/’, ’tmp/’, ’usr/’, ’var/’, ’vm
linuz’]

6.4 stat — Interpreting stat() results

The stat module defines constants and functions for interpreting the results ofos.stat() , os.fstat() and
os.lstat() (if they exist). For complete details about thestat() , fstat() and lstat() calls, consult the
documentation for your system.

Thestat module defines the following functions to test for specific file types:

S ISDIR (mode)
Return non-zero if the mode is from a directory.

S ISCHR(mode)
Return non-zero if the mode is from a character special device file.

S ISBLK (mode)
Return non-zero if the mode is from a block special device file.

S ISREG(mode)
Return non-zero if the mode is from a regular file.

S ISFIFO (mode)
Return non-zero if the mode is from a FIFO (named pipe).

S ISLNK (mode)
Return non-zero if the mode is from a symbolic link.

6.3. dircache — Cached directory listings 151

S ISSOCK(mode)
Return non-zero if the mode is from a socket.

Two additional functions are defined for more general manipulation of the file’s mode:

S IMODE(mode)
Return the portion of the file’s mode that can be set byos.chmod() —that is, the file’s permission bits, plus
the sticky bit, set-group-id, and set-user-id bits (on systems that support them).

S IFMT(mode)
Return the portion of the file’s mode that describes the file type (used by theS IS*() functions above).

Normally, you would use theos.path.is*() functions for testing the type of a file; the functions here are useful
when you are doing multiple tests of the same file and wish to avoid the overhead of thestat() system call for each
test. These are also useful when checking for information about a file that isn’t handled byos.path , like the tests
for block and character devices.

All the variables below are simply symbolic indexes into the 10-tuple returned byos.stat() , os.fstat() or
os.lstat() .

ST MODE
Inode protection mode.

ST INO
Inode number.

ST DEV
Device inode resides on.

ST NLINK
Number of links to the inode.

ST UID
User id of the owner.

ST GID
Group id of the owner.

ST SIZE
Size in bytes of a plain file; amount of data waiting on some special files.

ST ATIME
Time of last access.

ST MTIME
Time of last modification.

ST CTIME
Time of last status change (see manual pages for details).

The interpretation of “file size” changes according to the file type. For plain files this is the size of the file in bytes.
For FIFOs and sockets under most Unixes (including Linux in particular), the “size” is the number of bytes waiting
to be read at the time of the call toos.stat() , os.fstat() , or os.lstat() ; this can sometimes be useful,
especially for polling one of these special files after a non-blocking open. The meaning of the size field for other
character and block devices varies more, depending on the implementation of the underlying system call.

Example:

152 Chapter 6. Generic Operating System Services

import os, sys
from stat import *

def walktree(dir, callback):
’’’recursively descend the directory rooted at dir,

calling the callback function for each regular file’’’

for f in os.listdir(dir):
pathname = ’%s/%s’ % (dir, f)
mode = os.stat(pathname)[ST_MODE]
if S_ISDIR(mode):

It’s a directory, recurse into it
walktree(pathname, callback)

elif S_ISREG(mode):
It’s a file, call the callback function
callback(pathname)

else:
Unknown file type, print a message
print ’Skipping %s’ % pathname

def visitfile(file):
print ’visiting’, file

if __name__ == ’__main__’:
walktree(sys.argv[1], visitfile)

6.5 statcache — An optimization of os.stat()

Thestatcache module provides a simple optimization toos.stat() : remembering the values of previous invo-
cations.

Thestatcache module defines the following functions:

stat (path)
This is the main module entry-point. Identical foros.stat() , except for remembering the result for future
invocations of the function.

The rest of the functions are used to clear the cache, or parts of it.

reset ()
Clear the cache: forget all results of previousstat() calls.

forget (path)
Forget the result ofstat(path) , if any.

forget prefix (prefix)
Forget all results ofstat(path) for pathstarting withprefix.

forget dir (prefix)
Forget all results ofstat(path) for patha file in the directoryprefix, includingstat(prefix) .

forget except prefix (prefix)
Similar toforget prefix() , but for allpathvaluesnotstarting withprefix.

Example:

6.5. statcache — An optimization of os.stat() 153

>>> import os, statcache
>>> statcache.stat(’.’)
(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)
>>> os.stat(’.’)
(16893, 2049, 772, 18, 1000, 1000, 2048, 929609777, 929609777, 929609777)

6.6 statvfs — Constants used with os.statvfs()

Thestatvfs module defines constants so interpreting the result ifos.statvfs() , which returns a tuple, can be
made without remembering “magic numbers.” Each of the constants defined in this module is theindexof the entry in
the tuple returned byos.statvfs() that contains the specified information.

F BSIZE
Preferred file system block size.

F FRSIZE
Fundamental file system block size.

F BLOCKS
Total number of blocks in the filesystem.

F BFREE
Total number of free blocks.

F BAVAIL
Free blocks available to non-super user.

F FILES
Total number of file nodes.

F FFREE
Total number of free file nodes.

F FAVAIL
Free nodes available to non-super user.

F FLAG
Flags. System dependent: seestatvfs() man page.

F NAMEMAX
Maximum file name length.

6.7 filecmp — File and Directory Comparisons

Thefilecmp module defines functions to compare files and directories, with various optional time/correctness trade-
offs.

Thefilecmp module defines the following function:

cmp(f1, f2[, shallow[, use statcache]])
Compare the files namedf1 andf2, returning1 if they seem equal,0 otherwise.

Unlessshallow is given and is false, files with identicalos.stat() signatures are taken to be equal. If
use statcacheis given and is true,statcache.stat() will be called rather thenos.stat() ; the default
is to useos.stat() .

154 Chapter 6. Generic Operating System Services

Files that were compared using this function will not be compared again unless theiros.stat() signature
changes. Note that usinguse statcachetrue will cause the cache invalidation mechanism to fail — the stale stat
value will be used fromstatcache ’s cache.

Note that no external programs are called from this function, giving it portability and efficiency.

cmpfiles (dir1, dir2, common[, shallow[, use statcache]])
Returns three lists of file names:match, mismatch, errors. matchcontains the list of files match in both di-
rectories,mismatchincludes the names of those that don’t, anderrros lists the names of files which could not
be compared. Files may be listed inerrors because the user may lack permission to read them or many other
reasons, but always that the comparison could not be done for some reason.

The shallow and use statcache parameters have the same meanings and default values as for
filecmp.cmp() .

Example:

>>> import filecmp
>>> filecmp.cmp(’libundoc.tex’, ’libundoc.tex’)
1
>>> filecmp.cmp(’libundoc.tex’, ’lib.tex’)
0

6.7.1 The dircmp class

classdircmp (a, b[, ignore[, hide]])
Construct a new directory comparison object, to compare the directoriesa and b. ignore is a list of names
to ignore, and defaults to[’RCS’, ’CVS’, ’tags’] . hide is a list of names to hide, and defaults to
[os.curdir, os.pardir] .

report ()
Print (tosys.stdout) a comparison betweena andb.

report partial closure ()
Print a comparison betweena andb and common immediate subdirctories.

report full closure ()
Print a comparison betweena andb and common subdirctories (recursively).

left list
Files and subdirectories ina, filtered byhideandignore.

right list
Files and subdirectories inb, filtered byhideandignore.

common
Files and subdirectories in botha andb.

left only
Files and subdirectories only ina.

right only
Files and subdirectories only inb.

common dirs
Subdirectories in botha andb.

common files
Files in botha andb

6.7. filecmp — File and Directory Comparisons 155

common funny
Names in botha andb, such that the type differs between the directories, or names for whichos.stat()
reports an error.

same files
Files which are identical in botha andb.

diff files
Files which are in botha andb, whose contents differ.

funny files
Files which are in botha andb, but could not be compared.

subdirs
A dictionary mapping names incommon dirs to dircmp objects.

Note that via getattr () hooks, all attributes are computed lazilly, so there is no speed penalty if only those
attributes which are lightweight to compute are used.

6.8 popen2 — Subprocesses with accessible I/O streams

This module allows you to spawn processes and connect to their input/output/error pipes and obtain their return codes
under UNIX and Windows.

Note that starting with Python 2.0, this functionality is available using functions from theos module which have the
same names as the factory functions here, but the order of the return values is more intuitive in theos module variants.

The primary interface offered by this module is a trio of factory functions. For each of these, ifbufsizeis specified,
it specifies the buffer size for the I/O pipes.mode, if provided, should be the string’b’ or ’t’ ; on Windows this is
needed to determine whether the file objects should be opened in binary or text mode. The default value formodeis
’t’ .

popen2 (cmd[, bufsize[, mode]])
Executescmdas a sub-process. Returns the file objects(child stdout, child stdin) .

popen3 (cmd[, bufsize[, mode]])
Executescmdas a sub-process. Returns the file objects(child stdout, child stdin, child stderr) .

popen4 (cmd[, bufsize[, mode]])
Executescmdas a sub-process. Returns the file objects(child stdout and stderr, child stdin) . New in
version 2.0.

On UNIX , a class defining the objects returned by the factory functions is also available. These are not used for the
Windows implementation, and are not available on that platform.

classPopen3 (cmd[, capturestderr[, bufsize]])
This class represents a child process. Normally,Popen3 instances are created using thepopen2() and
popen3() factory functions described above.

If not using one off the helper functions to createPopen3 objects, the parametercmd is the shell command to
execute in a sub-process. Thecapturestderrflag, if true, specifies that the object should capture standard error
output of the child process. The default is false. If thebufsizeparameter is specified, it specifies the size of the
I/O buffers to/from the child process.

classPopen4 (cmd[, bufsize])
Similar toPopen3 , but always captures standard error into the same file object as standard output. These are
typically created usingpopen4() . New in version 2.0.

156 Chapter 6. Generic Operating System Services

6.8.1 Popen3 and Popen4 Objects

Instances of thePopen3 andPopen4 classes have the following methods:

poll ()
Returns-1 if child process hasn’t completed yet, or its return code otherwise.

wait ()
Waits for and returns the status code of the child process. The status code encodes both the return code of the
process and information about whether it exited using theexit() system call or died due to a signal. Functions
to help interpret the status code are defined in theos module; see section 6.1.5 for theW* () family of functions.

The following attributes are also available:

fromchild
A file object that provides output from the child process. ForPopen4 instances, this will provide both the
standard output and standard error streams.

tochild
A file object that provides input to the child process.

childerr
Where the standard error from the child process goes iscapturestderrwas true for the constructor, orNone.
This will always beNone for Popen4 instances.

pid
The process ID of the child process.

6.9 time — Time access and conversions

This module provides various time-related functions. It is always available, but not all functions are available on all
platforms.

An explanation of some terminology and conventions is in order.

• Theepochis the point where the time starts. On January 1st of that year, at 0 hours, the “time since the epoch”
is zero. For UNIX , the epoch is 1970. To find out what the epoch is, look atgmtime(0) .

• The functions in this module do not handle dates and times before the epoch or far in the future. The cut-off
point in the future is determined by the C library; for UNIX , it is typically in 2038.

• Year 2000 (Y2K) issues: Python depends on the platform’s C library, which generally doesn’t have year 2000
issues, since all dates and times are represented internally as seconds since the epoch. Functions accepting a time
tuple (see below) generally require a 4-digit year. For backward compatibility, 2-digit years are supported if the
module variableaccept2dyear is a non-zero integer; this variable is initialized to1 unless the environment
variable PYTHONY2K is set to a non-empty string, in which case it is initialized to0. Thus, you can set
PYTHONY2K to a non-empty string in the environment to require 4-digit years for all year input. When 2-digit
years are accepted, they are converted according to the POSIX or X/Open standard: values 69-99 are mapped
to 1969-1999, and values 0–68 are mapped to 2000–2068. Values 100–1899 are always illegal. Note that this
is new as of Python 1.5.2(a2); earlier versions, up to Python 1.5.1 and 1.5.2a1, would add 1900 to year values
below 1900.

• UTC is Coordinated Universal Time (formerly known as Greenwich Mean Time, or GMT). The acronym UTC
is not a mistake but a compromise between English and French.

• DST is Daylight Saving Time, an adjustment of the timezone by (usually) one hour during part of the year. DST
rules are magic (determined by local law) and can change from year to year. The C library has a table containing

6.9. time — Time access and conversions 157

the local rules (often it is read from a system file for flexibility) and is the only source of True Wisdom in this
respect.

• The precision of the various real-time functions may be less than suggested by the units in which their value or
argument is expressed. E.g. on most UNIX systems, the clock “ticks” only 50 or 100 times a second, and on the
Mac, times are only accurate to whole seconds.

• On the other hand, the precision oftime() andsleep() is better than their UNIX equivalents: times are
expressed as floating point numbers,time() returns the most accurate time available (using UNIX get-
timeofday() where available), andsleep() will accept a time with a nonzero fraction (UNIX select()
is used to implement this, where available).

• The time tuple as returned bygmtime() , localtime() , andstrptime() , and accepted byasctime() ,
mktime() andstrftime() , is a tuple of 9 integers:

Index Field Values
0 year (e.g. 1993)
1 month range [1,12]
2 day range [1,31]
3 hour range [0,23]
4 minute range [0,59]
5 second range [0,61]; see(1) in strftime() description
6 weekday range [0,6], Monday is 0
7 Julian day range [1,366]
8 daylight savings flag 0, 1 or -1; see below

Note that unlike the C structure, the month value is a range of 1-12, not 0-11. A year value will be handled as
described under “Year 2000 (Y2K) issues” above. A-1 argument as daylight savings flag, passed tomktime()
will usually result in the correct daylight savings state to be filled in.

The module defines the following functions and data items:

accept2dyear
Boolean value indicating whether two-digit year values will be accepted. This is true by default, but will be set
to false if the environment variable PYTHONY2K has been set to a non-empty string. It may also be modified
at run time.

altzone
The offset of the local DST timezone, in seconds west of UTC, if one is defined. This is negative if the local
DST timezone is east of UTC (as in Western Europe, including the UK). Only use this ifdaylight is nonzero.

asctime ([tuple])
Convert a tuple representing a time as returned bygmtime() or localtime() to a 24-character string of the
following form: ’Sun Jun 20 23:21:05 1993’ . If tupleis not provided, the current time as returned by
localtime() is used. Note: unlike the C function of the same name, there is no trailing newline. Changed
in version 2.1: Allowedtupleto be omitted.

clock ()
On UNIX , return the current processor time as a floating point number expressed in seconds. The precision, and
in fact the very definition of the meaning of “processor time”, depends on that of the C function of the same
name, but in any case, this is the function to use for benchmarking Python or timing algorithms.

On Windows, this function returns the nearest approximation to wall-clock time since the first call to this func-
tion, based on the Win32 functionQueryPerformanceCounter() . The resolution is typically better than
one microsecond.

ctime ([secs])
Convert a time expressed in seconds since the epoch to a string representing local time. Ifsecs is

158 Chapter 6. Generic Operating System Services

not provided, the current time as returned bytime() is used. ctime(secs) is equivalent toasc-
time(localtime(secs)) . Changed in version 2.1: Allowedsecsto be omitted.

daylight
Nonzero if a DST timezone is defined.

gmtime ([secs])
Convert a time expressed in seconds since the epoch to a time tuple in UTC in which the dst flag is always zero.
If secsis not provided, the current time as returned bytime() is used. Fractions of a second are ignored. See
above for a description of the tuple lay-out. Changed in version 2.1: Allowedsecsto be omitted.

localtime ([secs])
Like gmtime() but converts to local time. The dst flag is set to1 when DST applies to the given time.
Changed in version 2.1: Allowedsecsto be omitted.

mktime (tuple)
This is the inverse function oflocaltime() . Its argument is the full 9-tuple (since the dst flag is needed;
use-1 as the dst flag if it is unknown) which expresses the time inlocal time, not UTC. It returns a float-
ing point number, for compatibility withtime() . If the input value cannot be represented as a valid time,
OverflowError is raised.

sleep (secs)
Suspend execution for the given number of seconds. The argument may be a floating point number to indicate a
more precise sleep time. The actual suspension time may be less than that requested because any caught signal
will terminate thesleep() following execution of that signal’s catching routine. Also, the suspension time
may be longer than requested by an arbitrary amount because of the scheduling of other activity in the system.

strftime (format[, tuple])
Convert a tuple representing a time as returned bygmtime() or localtime() to a string as specified by the
formatargument. Iftuple is not provided, the current time as returned bylocaltime() is used.formatmust
be a string. Changed in version 2.1: Allowedtupleto be omitted.

The following directives can be embedded in theformatstring. They are shown without the optional field width
and precision specification, and are replaced by the indicated characters in thestrftime() result:

6.9. time — Time access and conversions 159

Directive Meaning Notes
%a Locale’s abbreviated weekday name.
%A Locale’s full weekday name.
%b Locale’s abbreviated month name.
%B Locale’s full month name.
%c Locale’s appropriate date and time representation.
%d Day of the month as a decimal number [01,31].
%H Hour (24-hour clock) as a decimal number [00,23].
%I Hour (12-hour clock) as a decimal number [01,12].
%j Day of the year as a decimal number [001,366].
%m Month as a decimal number [01,12].
%M Minute as a decimal number [00,59].
%p Locale’s equivalent of either AM or PM.
%S Second as a decimal number [00,61]. (1)
%U Week number of the year (Sunday as the first day of the

week) as a decimal number [00,53]. All days in a new year
preceding the first Sunday are considered to be in week 0.

%w Weekday as a decimal number [0(Sunday),6].
%W Week number of the year (Monday as the first day of the

week) as a decimal number [00,53]. All days in a new year
preceding the first Sunday are considered to be in week 0.

%x Locale’s appropriate date representation.
%X Locale’s appropriate time representation.
%y Year without century as a decimal number [00,99].
%Y Year with century as a decimal number.
%Z Time zone name (or by no characters if no time zone exists).
%% A literal ‘%’ character.

Notes:

(1)The range really is0 to 61 ; this accounts for leap seconds and the (very rare) double leap seconds.

Here is an example, a format for dates compatible with that specified in the RFC 2822 Internet email standard.1

>>> from time import gmtime, strftime
>>> strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime())
’Thu, 28 Jun 2001 14:17:15 +0000’

Additional directives may be supported on certain platforms, but only the ones listed here have a meaning
standardized by ANSI C.

On some platforms, an optional field width and precision specification can immediately follow the initial ‘%’ of
a directive in the following order; this is also not portable. The field width is normally 2 except for%j where it
is 3.

strptime (string[, format])
Parse a string representing a time according to a format. The return value is a tuple as returned bygmtime()
or localtime() . Theformatparameter uses the same directives as those used bystrftime() ; it defaults
to "%a %b %d %H:%M:%S %Y"which matches the formatting returned byctime() . The same platform
caveats apply; see the local UNIX documentation for restrictions or additional supported directives. Ifstring
cannot be parsed according toformat, ValueError is raised. Values which are not provided as part of the
input string are filled in with default values; the specific values are platform-dependent as the XPG standard
does not provide sufficient information to constrain the result.

1The use of%Zis now deprecated, but the%zescape that expands to the preferred hour/minute offset is not supported by all ANSI C libraries.
Also, a strict reading of the original 1982 RFC 822 standard calls for a two-digit year (%y rather than %Y), but practice moved to 4-digit years long
before the year 2000. The 4-digit year has been mandated by RFC 2822, which obsoletes RFC 822.

160 Chapter 6. Generic Operating System Services

Note: This function relies entirely on the underlying platform’s C library for the date parsing, and some of
these libraries are buggy. There’s nothing to be done about this short of a new, portable implementation of
strptime() .

Availability: Most modern UNIX systems.

time ()
Return the time as a floating point number expressed in seconds since the epoch, in UTC. Note that even though
the time is always returned as a floating point number, not all systems provide time with a better precision than
1 second.

timezone
The offset of the local (non-DST) timezone, in seconds west of UTC (i.e. negative in most of Western Europe,
positive in the US, zero in the UK).

tzname
A tuple of two strings: the first is the name of the local non-DST timezone, the second is the name of the local
DST timezone. If no DST timezone is defined, the second string should not be used.

See Also:

Module locale (section 6.24):
Internationalization services. The locale settings can affect the return values for some of the functions in the
time module.

6.10 sched — Event scheduler

Thesched module defines a class which implements a general purpose event scheduler:

classscheduler (timefunc, delayfunc)
Thescheduler class defines a generic interface to scheduling events. It needs two functions to actually deal
with the “outside world” —timefuncshould be callable without arguments, and return a number (the “time”,
in any units whatsoever). Thedelayfuncfunction should be callable with one argument, compatible with the
output oftimefunc, and should delay that many time units.delayfuncwill also be called with the argument0
after each event is run to allow other threads an opportunity to run in multi-threaded applications.

Example:

>>> import sched, time
>>> s=sched.scheduler(time.time, time.sleep)
>>> def print_time(): print "From print_time", time.time()
...
>>> def print_some_times():
... print time.time()
... s.enter(5, 1, print_time, ())
... s.enter(10, 1, print_time, ())
... s.run()
... print time.time()
...
>>> print_some_times()
930343690.257
From print_time 930343695.274
From print_time 930343700.273
930343700.276

6.10. sched — Event scheduler 161

6.10.1 Scheduler Objects

scheduler instances have the following methods:

enterabs (time, priority, action, argument)
Schedule a new event. Thetime argument should be a numeric type compatible with the return value of the
timefuncfunction passed to the constructor. Events scheduled for the sametimewill be executed in the order of
theirpriority.

Executing the event means executingapply(action, argument) . argumentmust be a tuple holding the pa-
rameters foraction.

Return value is an event which may be used for later cancellation of the event (seecancel()).

enter (delay, priority, action, argument)
Schedule an event fordelaymore time units. Other then the relative time, the other arguments, the effect and
the return value are the same as those forenterabs() .

cancel (event)
Remove the event from the queue. Ifeventis not an event currently in the queue, this method will raise a
RuntimeError .

empty ()
Return true if the event queue is empty.

run ()
Run all scheduled events. This function will wait (using thedelayfunc function passed to the constructor)
for the next event, then execute it and so on until there are no more scheduled events.

Eitheractionor delayfunccan raise an exception. In either case, the scheduler will maintain a consistent state
and propagate the exception. If an exception is raised byaction, the event will not be attempted in future calls
to run() .

If a sequence of events takes longer to run than the time available before the next event, the scheduler will simply
fall behind. No events will be dropped; the calling code is responsible for canceling events which are no longer
pertinent.

6.11 mutex — Mutual exclusion support

Themutex module defines a class that allows mutual-exclusion via acquiring and releasing locks. It does not require
(or imply) threading or multi-tasking, though it could be useful for those purposes.

Themutex module defines the following class:

classmutex ()
Create a new (unlocked) mutex.

A mutex has two pieces of state — a “locked” bit and a queue. When the mutex is not locked, the queue is
empty. Otherwise, the queue contains zero or more(function, argument) pairs representing functions (or
methods) waiting to acquire the lock. When the mutex is unlocked while the queue is not empty, the first queue
entry is removed and itsfunction(argument) pair called, implying it now has the lock.

Of course, no multi-threading is implied – hence the funny interface forlock() , where a function is called
once the lock is acquired.

6.11.1 Mutex Objects

mutex objects have following methods:

162 Chapter 6. Generic Operating System Services

test ()
Check whether the mutex is locked.

testandset ()
“Atomic” test-and-set, grab the lock if it is not set, and return true, otherwise, return false.

lock (function, argument)
Executefunction(argument) , unless the mutex is locked. In the case it is locked, place the function and argu-
ment on the queue. Seeunlock for explanation of whenfunction(argument) is executed in that case.

unlock ()
Unlock the mutex if queue is empty, otherwise execute the first element in the queue.

6.12 getpass — Portable password input

Thegetpass module provides two functions:

getpass ([prompt])
Prompt the user for a password without echoing. The user is prompted using the stringprompt, which defaults
to ’Password: ’ . Availability: Macintosh, UNIX , Windows.

getuser ()
Return the “login name” of the user. Availability: UNIX , Windows.

This function checks the environment variables LOGNAME, USER, LNAME and USERNAME, in order, and
returns the value of the first one which is set to a non-empty string. If none are set, the login name from the
password database is returned on systems which support thepwd module, otherwise, an exception is raised.

6.13 curses — Terminal handling for character-cell displays

Changed in version 1.6: Added support for thencurses library and converted to a package.

Thecurses module provides an interface to the curses library, the de-facto standard for portable advanced terminal
handling.

While curses is most widely used in the UNIX environment, versions are available for DOS, OS/2, and possibly other
systems as well. This extension module is designed to match the API of ncurses, an open-source curses library hosted
on Linux and the BSD variants of UNIX .

See Also:

Modulecurses.ascii (section 6.16):
Utilities for working with ASCII characters, regardless of your locale settings.

Modulecurses.panel (section 6.17):
A panel stack extension that adds depth to curses windows.

Modulecurses.textpad (section 6.14):
Editable text widget for curses supportingEmacs-like bindings.

Modulecurses.wrapper (section 6.15):
Convenience function to ensure proper terminal setup and resetting on application entry and exit.

Curses Programming with Python
(http://www.python.org/doc/howto/curses/curses.html)

Tutorial material on using curses with Python, by Andrew Kuchling and Eric Raymond, is available on the
Python Web site.

The ‘Demo/curses/’ directory in the Python source distribution contains some example programs using the curses

6.12. getpass — Portable password input 163

bindings provided by this module.

6.13.1 Functions

The modulecurses defines the following exception:

exceptionerror
Exception raised when a curses library function returns an error.

Note: Wheneverx or y arguments to a function or a method are optional, they default to the current cursor location.
Wheneverattr is optional, it defaults toA NORMAL.

The modulecurses defines the following functions:

baudrate ()
Returns the output speed of the terminal in bits per second. On software terminal emulators it will have a fixed
high value. Included for historical reasons; in former times, it was used to write output loops for time delays
and occasionally to change interfaces depending on the line speed.

beep ()
Emit a short attention sound.

can change color ()
Returns true or false, depending on whether the programmer can change the colors displayed by the terminal.

cbreak ()
Enter cbreak mode. In cbreak mode (sometimes called “rare” mode) normal tty line buffering is turned off and
characters are available to be read one by one. However, unlike raw mode, special characters (interrupt, quit,
suspend, and flow control) retain their effects on the tty driver and calling program. Calling firstraw() then
cbreak() leaves the terminal in cbreak mode.

color content (color number)
Returns the intensity of the red, green, and blue (RGB) components in the colorcolor number, which must be
between0 andCOLORS. A 3-tuple is returned, containing the R,G,B values for the given color, which will be
between0 (no component) and1000 (maximum amount of component).

color pair (color number)
Returns the attribute value for displaying text in the specified color. This attribute value can be combined
with A STANDOUT, A REVERSE, and the otherA * attributes.pair number() is the counterpart to this
function.

curs set (visibility)
Sets the cursor state.visibility can be set to 0, 1, or 2, for invisible, normal, or very visible. If the terminal
supports the visibility requested, the previous cursor state is returned; otherwise, an exception is raised. On
many terminals, the “visible” mode is an underline cursor and the “very visible” mode is a block cursor.

def prog mode()
Saves the current terminal mode as the “program” mode, the mode when the running program is using
curses. (Its counterpart is the “shell” mode, for when the program is not in curses.) Subsequent calls tore-
set prog mode() will restore this mode.

def shell mode()
Saves the current terminal mode as the “shell” mode, the mode when the running program is not using curses.
(Its counterpart is the “program” mode, when the program is using curses capabilities.) Subsequent calls to
reset shell mode() will restore this mode.

delay output (ms)
Inserts anmsmillisecond pause in output.

doupdate ()

164 Chapter 6. Generic Operating System Services

Update the physical screen. The curses library keeps two data structures, one representing the current physical
screen contents and a virtual screen representing the desired next state. Thedoupdate() ground updates the
physical screen to match the virtual screen.

The virtual screen may be updated by anoutrefresh() call after write operations such asaddstr()
have been performed on a window. The normalrefresh() call is simplynoutrefresh() followed by
doupdate() ; if you have to update multiple windows, you can speed performance and perhaps reduce screen
flicker by issuingnoutrefresh() calls on all windows, followed by a singledoupdate() .

echo ()
Enter echo mode. In echo mode, each character input is echoed to the screen as it is entered.

endwin ()
De-initialize the library, and return terminal to normal status.

erasechar ()
Returns the user’s current erase character. Under Unix operating systems this is a property of the controlling tty
of the curses program, and is not set by the curses library itself.

filter ()
The filter() routine, if used, must be called beforeinitscr() is called. The effect is that, during those
calls, LINES is set to 1; the capabilities clear, cup, cud, cud1, cuu1, cuu, vpa are disabled; and the home string
is set to the value of cr. The effect is that the cursor is confined to the current line, and so are screen updates.
This may be used for enabling cgaracter-at-a-time line editing without touching the rest of the screen.

flash ()
Flash the screen. That is, change it to reverse-video and then change it back in a short interval. Some people
prefer such as ‘visible bell’ to the audible attention signal produced bybeep() .

flushinp ()
Flush all input buffers. This throws away any typeahead that has been typed by the user and has not yet been
processed by the program.

getmouse ()
After getch() returnsKEY MOUSEto signal a mouse event, this method should be call to retrieve the queued
mouse event, represented as a 5-tuple(id, x, y, z, bstate) . id is an ID value used to distinguish multiple
devices, andx, y, zare the event’s coordinates. (z is currently unused.).bstateis an integer value whose bits will
be set to indicate the type of event, and will be the bitwise OR of one or more of the following constants, where
n is the button number from 1 to 4:BUTTONn PRESSED, BUTTONn RELEASED, BUTTONn CLICKED,
BUTTONn DOUBLECLICKED, BUTTONn TRIPLE CLICKED, BUTTONSHIFT , BUTTONCTRL, BUT-
TON ALT.

getsyx ()
Returns the current coordinates of the virtual screen cursor in y and x. If leaveok is currently true, then -1,-1 is
returned.

getwin (file)
Reads window related data stored in the file by an earlierputwin() call. The routine then creates and initial-
izes a new window using that data, returning the new window object.

has colors ()
Returns true if the terminal can display colors; otherwise, it returns false.

has ic ()
Returns true if the terminal has insert- and delete- character capabilities. This function is included for historical
reasons only, as all modern software terminal emulators have such capabilities.

has il ()
Returns true if the terminal has insert- and delete-line capabilities, or can simulate them using scrolling re-
gions. This function is included for historical reasons only, as all modern software terminal emulators have such
capabilities.

6.13. curses — Terminal handling for character-cell displays 165

has key (ch)
Takes a key valuech, and returns true if the current terminal type recognizes a key with that value.

halfdelay (tenths)
Used for half-delay mode, which is similar to cbreak mode in that characters typed by the user are immediately
available to the program. However, after blocking fortenthstenths of seconds, an exception is raised if nothing
has been typed. The value oftenthsmust be a number between 1 and 255. Usenocbreak() to leave half-delay
mode.

init color (color number, r, g, b)
Changes the definition of a color, taking the number of the color to be changed followed by three RGB values (for
the amounts of red, green, and blue components). The value ofcolor numbermust be between0 andCOLORS.
Each ofr, g, b, must be a value between0 and1000 . Wheninit color() is used, all occurrences of that
color on the screen immediately change to the new definition. This function is a no-op on most terminals; it is
active only ifcan change color() returns1.

init pair (pair number, fg, bg)
Changes the definition of a color-pair. It takes three arguments: the number of the color-pair to be changed,
the foreground color number, and the background color number. The value ofpair numbermust be between
1 andCOLORPAIRS - 1 (the0 color pair is wired to white on black and cannot be changed). The value of
fg andbg arguments must be between0 andCOLORS. If the color-pair was previously initialized, the screen is
refreshed and all occurrences of that color-pair are changed to the new definition.

initscr ()
Initialize the library. Returns aWindowObject which represents the whole screen.

isendwin ()
Returns true ifendwin() has been called (that is, the curses library has been deinitialized).

keyname (k)
Return the name of the key numberedk. The name of a key generating printable ASCII character is the key’s
character. The name of a control-key combination is a two-character string consisting of a caret followed by the
corresponding printable ASCII character. The name of an alt-key combination (128-255) is a string consisting
of the prefix ‘M-’ followed by the name of the corresponding ASCII character.

killchar ()
Returns the user’s current line kill character. Under Unix operating systems this is a property of the controlling
tty of the curses program, and is not set by the curses library itself.

longname ()
Returns a string containing the terminfo long name field describing the current terminal. The maximum length
of a verbose description is 128 characters. It is defined only after the call toinitscr() .

meta (yes)
If yesis 1, allow 8-bit characters to be input. Ifyesis 0, allow only 7-bit chars.

mouseinterval (interval)
Sets the maximum time in milliseconds that can elapse between press and release events in order for them to be
recognized as a click, and returns the previous interval value. The default value is 200 msec, or one fifth of a
second.

mousemask(mousemask)
Sets the mouse events to be reported, and returns a tuple(availmask, oldmask) . availmaskindicates which
of the specified mouse events can be reported; on complete failure it returns 0.oldmaskis the previous value of
the given window’s mouse event mask. If this function is never called, no mouse events are ever reported.

napms(ms)
Sleep formsmilliseconds.

newpad(nlines, ncols)
Creates and returns a pointer to a new pad data structure with the given number of lines and columns. A pad is

166 Chapter 6. Generic Operating System Services

returned as a window object.

A pad is like a window, except that it is not restricted by the screen size, and is not necessarily associated with
a particular part of the screen. Pads can be used when a large window is needed, and only a part of the window
will be on the screen at one time. Automatic refreshes of pads (e.g., from scrolling or echoing of input) do not
occur. Therefresh() andnoutrefresh() methods of a pad require 6 arguments to specify the part of
the pad to be displayed and the location on the screen to be used for the display. The arguments are pminrow,
pmincol, sminrow, smincol, smaxrow, smaxcol; the p arguments refer to the upper left corner of the the pad
region to be displayed and the s arguments define a clipping box on the screen within which the pad region is to
be displayed.

newwin ([nlines, ncols,] begin y, begin x)
Return a new window, whose left-upper corner is at(begin y, begin x) , and whose height/width is
nlines/ncols.

By default, the window will extend from the specified position to the lower right corner of the screen.

nl ()
Enter newline mode. This mode translates the return key into newline on input, and translates newline into
return and line-feed on output. Newline mode is initially on.

nocbreak ()
Leave cbreak mode. Return to normal “cooked” mode with line buffering.

noecho ()
Leave echo mode. Echoing of input characters is turned off,

nonl ()
Leave newline mode. Disable translation of return into newline on input, and disable low-level translation of
newline into newline/return on output (but this does not change the behavior ofaddch(’\n’) , which always
does the equivalent of return and line feed on the virtual screen). With translation off, curses can sometimes
speed up vertical motion a little; also, it will be able to detect the return key on input.

noqiflush ()
When the noqiflush routine is used, normal flush of input and output queues associated with the INTR, QUIT
and SUSP characters will not be done. You may want to callnoqiflush() in a signal handler if you want
output to continue as though the interrupt had not occurred, after the handler exits.

noraw ()
Leave raw mode. Return to normal “cooked” mode with line buffering.

pair content (pair number)
Returns a tuple(fg,bg)containing the colors for the requested color pair. The value ofpair numbermust be
between 0 and COLORPAIRS-1.

pair number (attr)
Returns the number of the color-pair set by the attribute valueattr. color pair() is the counterpart to this
function.

putp (string)
Equivalent totputs(str, 1, putchar) ; emits the value of a specified terminfo capability for the current
terminal. Note that the output of putp always goes to standard output.

qiflush ([flag])
If flag is false, the effect is the same as callingnoqiflush() . If flag is true, or no argument is provided, the
queues will be flushed when these control characters are read.

raw ()
Enter raw mode. In raw mode, normal line buffering and processing of interrupt, quit, suspend, and flow control
keys are turned off; characters are presented to curses input functions one by one.

reset prog mode()

6.13. curses — Terminal handling for character-cell displays 167

Restores the terminal to “program” mode, as previously saved bydef prog mode() .

reset shell mode()
Restores the terminal to “shell” mode, as previously saved bydef shell mode() .

setsyx (y, x)
Sets the virtual screen cursor toy, x. If y andx are both -1, then leaveok is set.

setupterm ([termstr, fd])
Initializes the terminal.termstr is a string giving the terminal name; if omitted, the value of the TERM envi-
ronment variable will be used.fd is the file descriptor to which any initialization sequences will be sent; if not
supplied, the file descriptor forsys.stdout will be used.

start color ()
Must be called if the programmer wants to use colors, and before any other color manipulation routine is called.
It is good practice to call this routine right afterinitscr() .

start color() initializes eight basic colors (black, red, green, yellow, blue, magenta, cyan, and white), and
two global variables in thecurses module,COLORSandCOLORPAIRS, containing the maximum number
of colors and color-pairs the terminal can support. It also restores the colors on the terminal to the values they
had when the terminal was just turned on.

termattrs ()
Returns a logical OR of all video attributes supported by the terminal. This information is useful when a curses
program needs complete control over the appearance of the screen.

termname ()
Returns the value of the environment variable TERM, truncated to 14 characters.

tigetflag (capname)
Returns the value of the Boolean capability corresponding to the terminfo capability namecapname. The value-
1 is returned ifcapnameis not a Boolean capability, or0 if it is canceled or absent from the terminal description.

tigetnum (capname)
Returns the value of the numeric capability corresponding to the terminfo capability namecapname. The value
-2 is returned ifcapnameis not a numeric capability, or-1 if it is canceled or absent from the terminal
description.

tigetstr (capname)
Returns the value of the string capability corresponding to the terminfo capability namecapname. None is
returned ifcapnameis not a string capability, or is canceled or absent from the terminal description.

tparm (str[,...])
Instantiates the stringstr with the supplied parameters, wherestr should be a parameterized string obtained from
the terminfo database. E.g.tparm(tigetstr("cup"), 5, 3) could result in’\033[6;4H’ , the exact
result depending on terminal type.

typeahead (fd)
Specifies that the file descriptorfd be used for typeahead checking. Iffd is -1 , then no typeahead checking is
done.

The curses library does “line-breakout optimization” by looking for typeahead periodically while updating the
screen. If input is found, and it is coming from a tty, the current update is postponed until refresh or doupdate is
called again, allowing faster response to commands typed in advance. This function allows specifying a different
file descriptor for typeahead checking.

unctrl (ch)
Returns a string which is a printable representation of the characterch. Control characters are displayed as a
caret followed by the character, for example asˆC . Printing characters are left as they are.

ungetch (ch)
Pushchso the nextgetch() will return it. Note: only onechcan be pushed beforegetch() is called.

168 Chapter 6. Generic Operating System Services

ungetmouse (id, x, y, z, bstate)
Push aKEY MOUSEevent onto the input queue, associating the given state data with it.

use env (flag)
If used, this function should be called beforeinitscr() or newterm are called. Whenflag is false, the values
of lines and columns specified in the terminfo database will be used, even if environment variables LINES and
COLUMNS (used by default) are set, or if curses is running in a window (in which case default behavior would
be to use the window size if LINES and COLUMNS are not set).

6.13.2 Window Objects

Window objects, as returned byinitscr() andnewwin() above, have the following methods:

addch ([y, x,] ch[, attr])
Note: A charactermeans a C character (i.e., anASCII code), rather then a Python character (a string of length 1).
(This note is true whenever the documentation mentions a character.) The builtinord() is handy for conveying
strings to codes.

Paint characterch at (y, x) with attributesattr, overwriting any character previously painter at that location.
By default, the character position and attributes are the current settings for the window object.

addnstr ([y, x,] str, n[, attr])
Paint at mostn characters of the stringstr at (y, x) with attributesattr, overwriting anything previously on
the display.

addstr ([y, x,] str[, attr])
Paint the stringstr at (y, x) with attributesattr, overwriting anything previously on the display.

attroff (attr)
Remove attributeattr from the “background” set applied to all writes to the current window.

attron (attr)
Add attributeattr from the “background” set applied to all writes to the current window.

attrset (attr)
Set the “background” set of attributes toattr. This set is initially 0 (no attributes).

bkgd (ch[, attr])
Sets the background property of the window to the characterch, with attributesattr. The change is then applied
to every character position in that window:

•The attribute of every character in the window is changed to the new background attribute.

•Wherever the former background character appears, it is changed to the new background character.

bkgdset (ch[, attr])
Sets the window’s background. A window’s background consists of a character and any combination of at-
tributes. The attribute part of the background is combined (OR’ed) with all non-blank characters that are written
into the window. Both the character and attribute parts of the background are combined with the blank charac-
ters. The background becomes a property of the character and moves with the character through any scrolling
and insert/delete line/character operations.

border ([ls[, rs[, ts[, bs[, tl[, tr[, bl[, br]]]]]]]])
Draw a border around the edges of the window. Each parameter specifies the character to use for a specific
part of the border; see the table below for more details. The characters must be specified as integers; using
one-character strings will causeTypeError to be raised.

Note: A 0 value for any parameter will cause the default character to be used for that parameter. Keyword
parameters cannotbe used. The defaults are listed in this table:

6.13. curses — Terminal handling for character-cell displays 169

Parameter Description Default value
ls Left side ACS VLINE
rs Right side ACS VLINE
ts Top ACS HLINE
bs Bottom ACS HLINE
tl Upper-left corner ACS ULCORNER
tr Upper-right corner ACS URCORNER
bl Bottom-left corner ACS BLCORNER
br Bottom-right corner ACS BRCORNER

box ([vertch, horch])
Similar toborder() , but bothls andrs arevertchand bothts and bs arehorch. The default corner characters
are always used by this function.

clear ()
Like erase() , but also causes the whole window to be repainted upon next call torefresh() .

clearok (yes)
If yesis 1, the next call torefresh() will clear the window completely.

clrtobot ()
Erase from cursor to the end of the window: all lines below the cursor are deleted, and then the equivalent of
clrtoeol() is performed.

clrtoeol ()
Erase from cursor to the end of the line.

cursyncup ()
Updates the current cursor position of all the ancestors of the window to reflect the current cursor position of
the window.

delch ([x, y])
Delete any character at(y, x) .

deleteln ()
Delete the line under the cursor. All following lines are moved up by 1 line.

derwin ([nlines, ncols,] begin y, begin y)
An abbreviation for “derive window”,derwin() is the same as callingsubwin() , except thatbegin y and
begin x are relative to the origin of the window, rather than relative to the entire screen. Returns a window
object for the derived window.

echochar (ch[, attr])
Add characterchwith attributeattr, and immediately callrefresh() on the window.

enclose (y, x)
Tests whether the given pair of screen-relative character-cell coordinates are enclosed by the given window,
returning true or false. It is useful for determining what subset of the screen windows enclose the location of a
mouse event.

erase ()
Clear the window.

getbegyx ()
Return a tuple(y, x) of co-ordinates of upper-left corner.

getch ([x, y])
Get a character. Note that the integer returned doesnot have to be inASCII range: function keys, keypad keys
and so on return numbers higher than 256. In no-delay mode, an exception is raised if there is no input.

getkey ([x, y])
Get a character, returning a string instead of an integer, asgetch() does. Function keys, keypad keys and so

170 Chapter 6. Generic Operating System Services

on return a multibyte string containing the key name. In no-delay mode, an exception is raised if there is no
input.

getmaxyx ()
Return a tuple(y, x) of the height and width of the window.

getparyx ()
Returns the beginning coordinates of this window relative to its parent window into two integer variables y and
x. Returns-1,-1 if this window has no parent.

getstr ([x, y])
Read a string from the user, with primitive line editing capacity.

getyx ()
Return a tuple(y, x) of current cursor position relative to the window’s upper-left corner.

hline ([y, x,] ch, n)
Display a horizontal line starting at(y, x) with lengthn consisting of the characterch.

idcok (flag)
If flag is false, curses no longer considers using the hardware insert/delete character feature of the terminal; if
flag is true, use of character insertion and deletion is enabled. When curses is first initialized, use of character
insert/delete is enabled by default.

idlok (yes)
If called with yesequal to 1,curses will try and use hardware line editing facilities. Otherwise, line inser-
tion/deletion are disabled.

immedok (flag)
If flag is true, any change in the window image automatically causes the window to be refreshed; you no longer
have to callrefresh() yourself. However, it may degrade performance considerably, due to repeated calls to
wrefresh. This option is disabled by default.

inch ([x, y])
Return the character at the given position in the window. The bottom 8 bits are the character proper, and upper
bits are the attributes.

insch ([y, x,] ch[, attr])
Paint characterchat (y, x) with attributesattr, moving the line from positionx right by one character.

insdelln (nlines)
Insertsnlines lines into the specified window above the current line. Thenlines bottom lines are lost. For
negativenlines, deletenlineslines starting with the one under the cursor, and move the remaining lines up. The
bottomnlineslines are cleared. The current cursor position remains the same.

insertln ()
Insert a blank line under the cursor. All following lines are moved down by 1 line.

insnstr ([y, x,] str, n[, attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor, up to
n characters. Ifn is zero or negative, the entire string is inserted. All characters to the right of the cursor are
shifted right, with the the rightmost characters on the line being lost. The cursor position does not change (after
moving toy, x, if specified).

insstr ([y, x,] str [, attr])
Insert a character string (as many characters as will fit on the line) before the character under the cursor. All
characters to the right of the cursor are shifted right, with the the rightmost characters on the line being lost. The
cursor position does not change (after moving toy, x, if specified).

instr ([y, x] [, n])
Returns a string of characters, extracted from the window starting at the current cursor position, or aty, x if
specified. Attributes are stripped from the characters. Ifn is specified,instr() returns return a string at most

6.13. curses — Terminal handling for character-cell displays 171

n characters long (exclusive of the trailing NUL).

is linetouched (line)
Returns true if the specified line was modified since the last call torefresh() ; otherwise returns false. Raises
acurses.error exception ifline is not valid for the given window.

is wintouched ()
Returns true if the specified window was modified since the last call torefresh() ; otherwise returns false.

keypad (yes)
If yesis 1, escape sequences generated by some keys (keypad, function keys) will be interpreted bycurses . If
yesis 0, escape sequences will be left as is in the input stream.

leaveok (yes)
If yes is 1, cursor is left where it is on update, instead of being at “cursor position.” This reduces cursor
movement where possible. If possible the cursor will be made invisible.

If yesis 0, cursor will always be at “cursor position” after an update.

move(new y, new x)
Move cursor to(new y, new x) .

mvderwin (y, x)
Moves the window inside its parent window. The screen-relative parameters of the window are not changed.
This routine is used to display different parts of the parent window at the same physical position on the screen.

mvwin (new y, new x)
Move the window so its upper-left corner is at(new y, new x) .

nodelay (yes)
If yesis 1, getch() will be non-blocking.

notimeout (yes)
If yesis 1, escape sequences will not be timed out.

If yesis 0, after a few milliseconds, an escape sequence will not be interpreted, and will be left in the input
stream as is.

noutrefresh ()
Mark for refresh but wait. This function updates the data structure representing the desired state of the window,
but does not force an update of the physical screen. To accomplish that, calldoupdate() .

overlay (destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])
Overlay the window on top ofdestwin. The windows need not be the same size, only the overlapping region is
copied. This copy is non-destructive, which means that the current background character does not overwrite the
old contents ofdestwin.

To get fine-grained control over the copied region, the second form ofoverlay() can be used.sminrowand
smincolare the upper-left coordinates of the source window, and the other variables mark a rectangle in the
destination window.

overwrite (destwin[, sminrow, smincol, dminrow, dmincol, dmaxrow, dmaxcol])
Overwrite the window on top ofdestwin. The windows need not be the same size, in which case only the
overlapping region is copied. This copy is destructive, which means that the current background character
overwrites the old contents ofdestwin.

To get fine-grained control over the copied region, the second form ofoverwrite() can be used.sminrow
andsmincolare the upper-left coordinates of the source window, the other variables mark a rectangle in the
destination window.

putwin (file)
Writes all data associated with the window into the provided file object. This information can be later retrieved
using thegetwin() function.

172 Chapter 6. Generic Operating System Services

redrawln (beg, num)
Indicates that thenumscreen lines, starting at linebeg, are corrupted and should be completely redrawn on the
nextrefresh() call.

redrawwin ()
Touches the entire window, causing it to be completely redrawn on the nextrefresh() call.

refresh ([pminrow, pmincol, sminrow, smincol, smaxrow, smaxcol])
Update the display immediately (sync actual screen with previous drawing/deleting methods).

The 6 optional arguments can only be specified when the window is a pad created withnewpad() . The
additional parameters are needed to indicate what part of the pad and screen are involved.pminrowandpmincol
specify the upper left-hand corner of the rectangle to be displayed in the pad.sminrow, smincol, smaxrow, and
smaxcolspecify the edges of the rectangle to be displayed on the screen. The lower right-hand corner of the
rectangle to be displayed in the pad is calculated from the screen coordinates, since the rectangles must be the
same size. Both rectangles must be entirely contained within their respective structures. Negative values of
pminrow, pmincol, sminrow, or smincolare treated as if they were zero.

scroll ([lines = 1])
Scroll the screen or scrolling region upward bylines lines.

scrollok (flag)
Controls what happens when the cursor of a window is moved off the edge of the window or scrolling region,
either as a result of a newline action on the bottom line, or typing the last character of the last line. Ifflag is
false, the cursor is left on the bottom line. Ifflag is true, the window is scrolled up one line. Note that in order
to get the physical scrolling effect on the terminal, it is also necessary to callidlok() .

setscrreg (top, bottom)
Set the scrolling region from linetop to linebottom. All scrolling actions will take place in this region.

standend ()
Turn off the standout attribute. On some terminals this has the side effect of turning off all attributes.

standout ()
Turn on attributeA STANDOUT.

subpad ([nlines, ncols,] begin y, begin y)
Return a sub-window, whose upper-left corner is at(begin y, begin x) , and whose width/height is
ncols/nlines.

subwin ([nlines, ncols,] begin y, begin y)
Return a sub-window, whose upper-left corner is at(begin y, begin x) , and whose width/height is
ncols/nlines.

By default, the sub-window will extend from the specified position to the lower right corner of the window.

syncdown ()
Touches each location in the window that has been touched in any of its ancestor windows. This routine is called
by refresh() , so it should almost never be necessary to call it manually.

syncok (flag)
If called withflagset to true, thensyncup() is called automatically whenever there is a change in the window.

syncup ()
Touches all locations in ancestors of the window that have been changed in the window.

timeout (delay)
Sets blocking or non-blocking read behavior for the window. Ifdelayis negative, blocking read is used, which
will wait indefinitely for input). If delay is zero, then non-blocking read is used, and -1 will be returned by
getch() if no input is waiting. If delay is positive, thengetch() will block for delaymilliseconds, and
return -1 if there is still no input at the end of that time.

touchline (start, count)

6.13. curses — Terminal handling for character-cell displays 173

Pretendcountlines have been changed, starting with linestart.

touchwin ()
Pretend the whole window has been changed, for purposes of drawing optimizations.

untouchwin ()
Marks all lines in the window as unchanged since the last call torefresh() .

vline ([y, x,] ch, n)
Display a vertical line starting at(y, x) with lengthn consisting of the characterch.

6.13.3 Constants

Thecurses module defines the following data members:

ERR
Some curses routines that return an integer, such asgetch() , returnERRupon failure.

OK
Some curses routines that return an integer, such asnapms() , returnOKupon success.

version
A string representing the current version of the module. Also available asversion .

Several constants are available to specify character cell attributes:

Attribute Meaning
A ALTCHARSET Alternate character set mode.
A BLINK Blink mode.
A BOLD Bold mode.
A DIM Dim mode.
A NORMAL Normal attribute.
A STANDOUT Standout mode.
A UNDERLINE Underline mode.

Keys are referred to by integer constants with names starting with ‘KEY ’. The exact keycaps available are system
dependent.

Key constant Key
KEY MIN Minimum key value
KEY BREAK Break key (unreliable)
KEY DOWN Down-arrow
KEY UP Up-arrow
KEY LEFT Left-arrow
KEY RIGHT Right-arrow
KEY HOME Home key (upward+left arrow)
KEY BACKSPACE Backspace (unreliable)
KEY F0 Function keys. Up to 64 function keys are supported.
KEY Fn Value of function keyn
KEY DL Delete line
KEY IL Insert line
KEY DC Delete character
KEY IC Insert char or enter insert mode
KEY EIC Exit insert char mode
KEY CLEAR Clear screen
KEY EOS Clear to end of screen

174 Chapter 6. Generic Operating System Services

Key constant Key
KEY EOL Clear to end of line
KEY SF Scroll 1 line forward
KEY SR Scroll 1 line backward (reverse)
KEY NPAGE Next page
KEY PPAGE Previous page
KEY STAB Set tab
KEY CTAB Clear tab
KEY CATAB Clear all tabs
KEY ENTER Enter or send (unreliable)
KEY SRESET Soft (partial) reset (unreliable)
KEY RESET Reset or hard reset (unreliable)
KEY PRINT Print
KEY LL Home down or bottom (lower left)
KEY A1 Upper left of keypad
KEY A3 Upper right of keypad
KEY B2 Center of keypad
KEY C1 Lower left of keypad
KEY C3 Lower right of keypad
KEY BTAB Back tab
KEY BEG Beg (beginning)
KEY CANCEL Cancel
KEY CLOSE Close
KEY COMMAND Cmd (command)
KEY COPY Copy
KEY CREATE Create
KEY END End
KEY EXIT Exit
KEY FIND Find
KEY HELP Help
KEY MARK Mark
KEY MESSAGE Message
KEY MOVE Move
KEY NEXT Next
KEY OPEN Open
KEY OPTIONS Options
KEY PREVIOUS Prev (previous)
KEY REDO Redo
KEY REFERENCE Ref (reference)
KEY REFRESH Refresh
KEY REPLACE Replace
KEY RESTART Restart
KEY RESUME Resume
KEY SAVE Save
KEY SBEG Shifted Beg (beginning)
KEY SCANCEL Shifted Cancel
KEY SCOMMAND Shifted Command
KEY SCOPY Shifted Copy
KEY SCREATE Shifted Create
KEY SDC Shifted Delete char
KEY SDL Shifted Delete line
KEY SELECT Select
KEY SEND Shifted End
KEY SEOL Shifted Clear line

6.13. curses — Terminal handling for character-cell displays 175

Key constant Key
KEY SEXIT Shifted Dxit
KEY SFIND Shifted Find
KEY SHELP Shifted Help
KEY SHOME Shifted Home
KEY SIC Shifted Input
KEY SLEFT Shifted Left arrow
KEY SMESSAGE Shifted Message
KEY SMOVE Shifted Move
KEY SNEXT Shifted Next
KEY SOPTIONS Shifted Options
KEY SPREVIOUS Shifted Prev
KEY SPRINT Shifted Print
KEY SREDO Shifted Redo
KEY SREPLACE Shifted Replace
KEY SRIGHT Shifted Right arrow
KEY SRSUME Shifted Resume
KEY SSAVE Shifted Save
KEY SSUSPEND Shifted Suspend
KEY SUNDO Shifted Undo
KEY SUSPEND Suspend
KEY UNDO Undo
KEY MOUSE Mouse event has occurred
KEY RESIZE Terminal resize event
KEY MAX Maximum key value

On VT100s and their software emulations, such as X terminal emulators, there are normally at least four function keys
(KEY F1, KEY F2, KEY F3, KEY F4) available, and the arrow keys mapped toKEY UP, KEY DOWN, KEY LEFT
and KEY RIGHT in the obvious way. If your machine has a PC keybboard, it is safe to expect arrow keys and
twelve function keys (older PC keyboards may have only ten function keys); also, the following keypad mappings are
standard:

Keycap Constant
Insert KEY IC
Delete KEY DC
Home KEY HOME
End KEY END
Page Up KEY NPAGE
Page Down KEY PPAGE

The following table lists characters from the alternate character set. These are inherited from the VT100 terminal, and
will generally be available on software emulations such as X terminals. When there is no graphic available, curses falls
back on a crude printable ASCII approximation.Note: These are available only afterinitscr() has been called.

ACS code Meaning
ACS BBSS alternate name for upper right corner
ACS BLOCK solid square block
ACS BOARD board of squares
ACS BSBS alternate name for horizontal line
ACS BSSB alternate name for upper left corner

176 Chapter 6. Generic Operating System Services

ACS code Meaning
ACS BSSS alternate name for top tee
ACS BTEE bottom tee
ACS BULLET bullet
ACS CKBOARD checker board (stipple)
ACS DARROW arrow pointing down
ACS DEGREE degree symbol
ACS DIAMOND diamond
ACS GEQUAL greater-than-or-equal-to
ACS HLINE horizontal line
ACS LANTERN lantern symbol
ACS LARROW left arrow
ACS LEQUAL less-than-or-equal-to
ACS LLCORNER lower left-hand corner
ACS LRCORNER lower right-hand corner
ACS LTEE left tee
ACS NEQUAL not-equal sign
ACS PI letter pi
ACS PLMINUS plus-or-minus sign
ACS PLUS big plus sign
ACS RARROW right arrow
ACS RTEE right tee
ACS S1 scan line 1
ACS S3 scan line 3
ACS S7 scan line 7
ACS S9 scan line 9
ACS SBBS alternate name for lower right corner
ACS SBSB alternate name for vertical line
ACS SBSS alternate name for right tee
ACS SSBB alternate name for lower left corner
ACS SSBS alternate name for bottom tee
ACS SSSB alternate name for left tee
ACS SSSS alternate name for crossover or big plus
ACS STERLING pound sterling
ACS TTEE top tee
ACS UARROW up arrow
ACS ULCORNER upper left corner
ACS URCORNER upper right corner
ACS VLINE vertical line

The following table lists the predefined colors:

Constant Color
COLORBLACK Black
COLORBLUE Blue
COLORCYAN Cyan (light greenish blue)
COLORGREEN Green
COLORMAGENTA Magenta (purplish red)
COLORRED Red
COLORWHITE White
COLORYELLOW Yellow

6.13. curses — Terminal handling for character-cell displays 177

6.14 curses.textpad — Text input widget for curses programs

New in version 1.6.

Thecurses.textpad module provides aTextbox class that handles elementary text editing in a curses window,
supporting a set of keybindings resembling those of Emacs (thus, also of Netscape Navigator, BBedit 6.x, FrameMaker,
and many other programs). The module also provides a rectangle-drawing function useful for framing text boxes or
for other purposes.

The modulecurses.textpad defines the following function:

rectangle (win, uly, ulx, lry, lrx)
Draw a rectangle. The first argument must be a window object; the remaining arguments are coordinates relative
to that window. The second and third arguments are the y and x coordinates of the upper left hand corner of
the rectangle To be drawn; the fourth and fifth arguments are the y and x coordinates of the lower right hand
corner. The rectangle will be drawn using VT100/IBM PC forms characters on terminals that make this possible
(including xterm and most other software terminal emulators). Otherwise it will be drawn with ASCII dashes,
vertical bars, and plus signs.

6.14.1 Textbox objects

You can instantiate aTextbox object as follows:

classTextbox (win)
Return a textbox widget object. Thewin argument should be a cursesWindowObject in which the textbox is
to be contained. The edit cursor of the textbox is initially located at the upper left hand corner of the containin
window, with coordinates(0, 0) . The instance’sstripspaces flag is initially on.

Textbox objects have the following methods:

edit ([validator])
This is the entry point you will normally use. It accepts editing keystrokes until one of the termination keystrokes
is entered. Ifvalidator is supplied, it must be a function. It will be called for each keystroke entered with the
keystroke as a parameter; command dispatch is done on the result. This method returns the window contents as
a string; whether blanks in the window are included is affected by thestripspaces member.

do command(ch)
Process a single command keystroke. Here are the supported special keystrokes:

Keystroke Action
Ctrl-A Go to left edge of window.
Ctrl-B Cursor left, wrapping to previous line if appropriate.
Ctrl-D Delete character under cursor.
Ctrl-E Go to right edge (stripspaces off) or end of line (stripspaces on).
Ctrl-F Cursor right, wrapping to next line when appropriate.
Ctrl-G Terminate, returning the window contents.
Ctrl-H Delete character backward.
Ctrl-J Terminate if the window is 1 line, otherwise insert newline.
Ctrl-K If line is blank, delete it, otherwise clear to end of line.
Ctrl-L Refresh screen.
Ctrl-N Cursor down; move down one line.
Ctrl-O Insert a blank line at cursor location.
Ctrl-P Cursor up; move up one line.

Move operations do nothing if the cursor is at an edge where the movement is not possible. The following
synonyms are supported where possible:

178 Chapter 6. Generic Operating System Services

Constant Keystroke
KEY LEFT Ctrl-B
KEY RIGHT Ctrl-F
KEY UP Ctrl-P
KEY DOWN Ctrl-N
KEY BACKSPACE Ctrl-h

All other keystrokes are treated as a command to insert the given character and move right (with line wrapping).

gather ()
This method returns the window contents as a string; whether blanks in the window are included is affected by
thestripspaces member.

stripspaces
This data member is a flag which controls the interpretation of blanks in the window. When it is on, trailing
blanks on each line are ignored; any cursor motion that would land the cursor on a trailing blank goes to the end
of that line instead, and trailing blanks are stripped when the window contents is gathered.

6.15 curses.wrapper — Terminal handler for curses programs

New in version 1.6.

This module supplies one function,wrapper() , which runs another function which should be the rest of your curses-
using application. If the application raises an exception,wrapper() will restore the terminal to a sane state before
passing it further up the stack and generating a traceback.

wrapper (func, ...)
Wrapper function that initializes curses and calls another function,func, restoring normal keyboard/screen be-
havior on error. The callable objectfunc is then passed the main window ’stdscr’ as its first argument, followed
by any other arguments passed towrapper() .

Before calling the hook function,wrapper() turns on cbreak mode, turns off echo, enables the terminal keypad,
and initializes colors if the terminal has color support. On exit (whether normally or by exception) it restores cooked
mode, turns on echo, and disables the terminal keypad.

6.16 curses.ascii — Utilities for ASCII characters

New in version 1.6.

The curses.ascii module supplies name constants forASCII characters and functions to test membership in
variousASCII character classes. The constants supplied are names for control characters as follows:

6.15. curses.wrapper — Terminal handler for curses programs 179

Name Meaning
NUL
SOH Start of heading, console interrupt
STX Start of text
ETX End of text
EOT End of transmission
ENQ Enquiry, goes withACKflow control
ACK Acknowledgement
BEL Bell
BS Backspace
TAB Tab
HT Alias for TAB: “Horizontal tab”
LF Line feed
NL Alias for LF: “New line”
VT Vertical tab
FF Form feed
CR Carriage return
SO Shift-out, begin alternate character set
SI Shift-in, resume default character set
DLE Data-link escape
DC1 XON, for flow control
DC2 Device control 2, block-mode flow control
DC3 XOFF, for flow control
DC4 Device control 4
NAK Negative acknowledgement
SYN Synchronous idle
ETB End transmission block
CAN Cancel
EM End of medium
SUB Substitute
ESC Escape
FS File separator
GS Group separator
RS Record separator, block-mode terminator
US Unit separator
SP Space
DEL Delete

Note that many of these have little practical significance in modern usage. The mnemonics derive from teleprinter
conventions that predate digital computers.

The module supplies the following functions, patterned on those in the standard C library:

isalnum (c)
Checks for anASCII alphanumeric character; it is equivalent to ‘isalpha(c) or isdigit(c) ’.

isalpha (c)
Checks for anASCII alphabetic character; it is equivalent to ‘isupper(c) or islower(c) ’.

isascii (c)
Checks for a character value that fits in the 7-bitASCII set.

isblank (c)
Checks for anASCII whitespace character.

iscntrl (c)
Checks for anASCII control character (in the range 0x00 to 0x1f).

180 Chapter 6. Generic Operating System Services

isdigit (c)
Checks for anASCII decimal digit, ‘0’ through ‘9’. This is equivalent to ‘c in string.digits ’.

isgraph (c)
Checks forASCII any printable character except space.

islower (c)
Checks for anASCII lower-case character.

isprint (c)
Checks for anyASCII printable character including space.

ispunct (c)
Checks for any printableASCII character which is not a space or an alphanumeric character.

isspace (c)
Checks forASCII white-space characters; space, line feed, carriage return, form feed, horizontal tab, vertical
tab.

isupper (c)
Checks for anASCII uppercase letter.

isxdigit (c)
Checks for anASCII hexadecimal digit. This is equivalent to ‘c in string.hexdigits ’.

isctrl (c)
Checks for anASCII control character (ordinal values 0 to 31).

ismeta (c)
Checks for a non-ASCII character (ordinal values 0x80 and above).

These functions accept either integers or strings; when the argument is a string, it is first converted using the built-in
functionord() .

Note that all these functions check ordinal bit values derived from the first character of the string you pass in; they do
not actually know anything about the host machine’s character encoding. For functions that know about the character
encoding (and handle internationalization properly) see thestring module.

The following two functions take either a single-character string or integer byte value; they return a value of the same
type.

ascii (c)
Return the ASCII value corresponding to the low 7 bits ofc.

ctrl (c)
Return the control character corresponding to the given character (the character bit value is bitwise-anded with
0x1f).

alt (c)
Return the 8-bit character corresponding to the given ASCII character (the character bit value is bitwise-ored
with 0x80).

The following function takes either a single-character string or integer value; it returns a string.

unctrl (c)
Return a string representation of theASCII characterc. If c is printable, this string is the character itself. If the
character is a control character (0x00-0x1f) the string consists of a caret (‘ˆ ’) followed by the corresponding
uppercase letter. If the character is anASCII delete (0x7f) the string is’ˆ?’ . If the character has its meta bit
(0x80) set, the meta bit is stripped, the preceding rules applied, and ‘! ’ prepended to the result.

controlnames
A 33-element string array that contains theASCII mnemonics for the thirty-twoASCII control characters from 0
(NUL) to 0x1f (US), in order, plus the mnemonic ‘SP’ for the space character.

6.16. curses.ascii — Utilities for ASCII characters 181

6.17 curses.panel — A panel stack extension for curses.

Panels are windows with the added feature of depth, so they can be stacked on top of each other, and only the visible
portions of each window will be displayed. Panels can be added, moved up or down in the stack, and removed.

6.17.1 Functions

The modulecurses.panel defines the following functions:

bottom panel ()
Returns the bottom panel in the panel stack.

new panel (win)
Returns a panel object, associating it with the given windowwin.

top panel ()
Returns the top panel in the panel stack.

update panels ()
Updates the virtual screen after changes in the panel stack. This does not callcurses.doupdate() , so
you’ll have to do this yourself.

6.17.2 Panel Objects

Panel objects, as returned bynew panel() above, are windows with a stacking order. There’s always a window
associated with a panel which determines the content, while the panel methods are responsible for the window’s depth
in the panel stack.

Panel objects have the following methods:

above ()
Returns the panel above the current panel.

below ()
Returns the panel below the current panel.

bottom ()
Push the panel to the bottom of the stack.

hidden ()
Returns true if the panel is hidden (not visible), false otherwise.

hide ()
Hide the panel. This does not delete the object, it just makes the window on screen invisible.

move(y, x)
Move the panel to the screen coordinates(y, x) .

replace (win)
Change the window associated with the panel to the windowwin.

set userptr (obj)
Set the panel’s user pointer toobj. This is used to associate an arbitrary piece of data with the panel, and can be
any Python object.

show()
Display the panel (which might have been hidden).

top ()
Push panel to the top of the stack.

182 Chapter 6. Generic Operating System Services

userptr ()
Returns the user pointer for the panel. This might be any Python object.

window ()
Returns the window object associated with the panel.

6.18 getopt — Parser for command line options

This module helps scripts to parse the command line arguments insys.argv . It supports the same conventions as
the UNIX getopt() function (including the special meanings of arguments of the form ‘- ’ and ‘-- ’). Long options
similar to those supported by GNU software may be used as well via an optional third argument. This module provides
a single function and an exception:

getopt (args, options[, long options])
Parses command line options and parameter list.args is the argument list to be parsed, without the leading
reference to the running program. Typically, this means ‘sys.argv[1:] ’. options is the string of option
letters that the script wants to recognize, with options that require an argument followed by a colon (‘: ’; i.e.,
the same format that UNIX getopt() uses).

Note: Unlike GNU getopt() , after a non-option argument, all further arguments are considered also non-
options. This is similar to the way non-GNU UNIX systems work.

long options, if specified, must be a list of strings with the names of the long options which should be sup-
ported. The leading’--’ characters should not be included in the option name. Long options which require an
argument should be followed by an equal sign (‘=’). To accept only long options,optionsshould be an empty
string. Long options on the command line can be recognized so long as they provide a prefix of the option name
that matches exactly one of the accepted options. For example, itlong optionsis [’foo’, ’frob’] , the
option--fo will match as--foo, but --f will not match uniquely, soGetoptError will be raised.

The return value consists of two elements: the first is a list of(option, value) pairs; the second is the list of
program arguments left after the option list was stripped (this is a trailing slice ofargs). Each option-and-value
pair returned has the option as its first element, prefixed with a hyphen for short options (e.g.,’-x’) or two
hyphens for long options (e.g.,’--long-option’), and the option argument as its second element, or an
empty string if the option has no argument. The options occur in the list in the same order in which they were
found, thus allowing multiple occurrences. Long and short options may be mixed.

exceptionGetoptError
This is raised when an unrecognized option is found in the argument list or when an option requiring an argument
is given none. The argument to the exception is a string indicating the cause of the error. For long options, an
argument given to an option which does not require one will also cause this exception to be raised. The attributes
msg andopt give the error message and related option; if there is no specific option to which the exception
relates,opt is an empty string.

Changed in version 1.6: IntroducedGetoptError as a synonym forerror .

exceptionerror
Alias for GetoptError ; for backward compatibility.

An example using only UNIX style options:

6.18. getopt — Parser for command line options 183

>>> import getopt
>>> args = ’-a -b -cfoo -d bar a1 a2’.split()
>>> args
[’-a’, ’-b’, ’-cfoo’, ’-d’, ’bar’, ’a1’, ’a2’]
>>> optlist, args = getopt.getopt(args, ’abc:d:’)
>>> optlist
[(’-a’, ’’), (’-b’, ’’), (’-c’, ’foo’), (’-d’, ’bar’)]
>>> args
[’a1’, ’a2’]

Using long option names is equally easy:

>>> s = ’--condition=foo --testing --output-file abc.def -x a1 a2’
>>> args = s.split()
>>> args
[’--condition=foo’, ’--testing’, ’--output-file’, ’abc.def’, ’-x’, ’a1’, ’a2’]
>>> optlist, args = getopt.getopt(args, ’x’, [
... ’condition=’, ’output-file=’, ’testing’])
>>> optlist
[(’--condition’, ’foo’), (’--testing’, ’’), (’--output-file’, ’abc.def’), (’-x’,

’’)]
>>> args
[’a1’, ’a2’]

In a script, typical usage is something like this:

import getopt, sys

def main():
try:

opts, args = getopt.getopt(sys.argv[1:], "ho:", ["help", "output="])
except getopt.GetoptError:

print help information and exit:
usage()
sys.exit(2)

output = None
for o, a in opts:

if o in ("-h", "--help"):
usage()
sys.exit()

if o in ("-o", "--output"):
output = a

...

if __name__ == "__main__":
main()

184 Chapter 6. Generic Operating System Services

6.19 tempfile — Generate temporary file names

This module generates temporary file names. It is not UNIX specific, but it may require some help on non-UNIX

systems.

The module defines the following user-callable functions:

mktemp([suffix])
Return a unique temporary filename. This is an absolute pathname of a file that does not exist at the time the call
is made. No two calls will return the same filename.suffix, if provided, is used as the last part of the generated
file name. This can be used to provide a filename extension or other identifying information that may be useful
on some platforms.

TemporaryFile ([mode[, bufsize[, suffix]]])
Return a file (or file-like) object that can be used as a temporary storage area. The file is created in the most
secure manner available in the appropriate temporary directory for the host platform. Under UNIX , the directory
entry to the file is removed so that it is secure against attacks which involve creating symbolic links to the file
or replacing the file with a symbolic link to some other file. For other platforms, which don’t allow removing
the directory entry while the file is in use, the file is automatically deleted as soon as it is closed (including an
implicit close when it is garbage-collected).

The modeparameter defaults to’w+b’ so that the file created can be read and written without being closed.
Binary mode is used so that it behaves consistently on all platforms without regard for the data that is stored.
bufsizedefaults to-1 , meaning that the operating system default is used.suffixis passed tomktemp() .

The module uses two global variables that tell it how to construct a temporary name. The caller may assign values to
them; by default they are initialized at the first call tomktemp() .

tempdir
When set to a value other thanNone, this variable defines the directory in which filenames returned bymk-
temp() reside. The default is taken from the environment variable TMPDIR; if this is not set, either ‘/usr/tmp’
is used (on UNIX), or the current working directory (all other systems). No check is made to see whether its
value is valid.

gettempprefix ()
Return the filename prefix used to create temporary files. This does not contain the directory component. Using
this function is preferred over using thetemplate variable directly. New in version 1.5.2.

template
Deprecated since release 2.0.Usegettempprefix() instead.

When set to a value other thanNone, this variable defines the prefix of the final component of the filenames
returned bymktemp() . A string of decimal digits is added to generate unique filenames. The default is either
‘@pid.’ wherepid is the current process ID (on UNIX), ‘˜pid-’ on Windows NT, ‘Python-Tmp-’ on MacOS, or
‘ tmp’ (all other systems).

Older versions of this module used to require thattemplate be set toNone after a call toos.fork() ; this
has not been necessary since version 1.5.2.

6.20 errno — Standard errno system symbols

This module makes available standarderrno system symbols. The value of each symbol is the corresponding integer
value. The names and descriptions are borrowed from ‘linux/include/errno.h’, which should be pretty all-inclusive.

errorcode
Dictionary providing a mapping from the errno value to the string name in the underlying system. For instance,
errno.errorcode[errno.EPERM] maps to’EPERM’ .

To translate a numeric error code to an error message, useos.strerror() .

6.19. tempfile — Generate temporary file names 185

Of the following list, symbols that are not used on the current platform are not defined by the module. The specific list
of defined symbols is available aserrno.errorcode.keys() . Symbols available can include:

EPERM
Operation not permitted

ENOENT
No such file or directory

ESRCH
No such process

EINTR
Interrupted system call

EIO
I/O error

ENXIO
No such device or address

E2BIG
Arg list too long

ENOEXEC
Exec format error

EBADF
Bad file number

ECHILD
No child processes

EAGAIN
Try again

ENOMEM
Out of memory

EACCES
Permission denied

EFAULT
Bad address

ENOTBLK
Block device required

EBUSY
Device or resource busy

EEXIST
File exists

EXDEV
Cross-device link

ENODEV
No such device

ENOTDIR
Not a directory

EISDIR
Is a directory

186 Chapter 6. Generic Operating System Services

EINVAL
Invalid argument

ENFILE
File table overflow

EMFILE
Too many open files

ENOTTY
Not a typewriter

ETXTBSY
Text file busy

EFBIG
File too large

ENOSPC
No space left on device

ESPIPE
Illegal seek

EROFS
Read-only file system

EMLINK
Too many links

EPIPE
Broken pipe

EDOM
Math argument out of domain of func

ERANGE
Math result not representable

EDEADLK
Resource deadlock would occur

ENAMETOOLONG
File name too long

ENOLCK
No record locks available

ENOSYS
Function not implemented

ENOTEMPTY
Directory not empty

ELOOP
Too many symbolic links encountered

EWOULDBLOCK
Operation would block

ENOMSG
No message of desired type

EIDRM
Identifier removed

6.20. errno — Standard errno system symbols 187

ECHRNG
Channel number out of range

EL2NSYNC
Level 2 not synchronized

EL3HLT
Level 3 halted

EL3RST
Level 3 reset

ELNRNG
Link number out of range

EUNATCH
Protocol driver not attached

ENOCSI
No CSI structure available

EL2HLT
Level 2 halted

EBADE
Invalid exchange

EBADR
Invalid request descriptor

EXFULL
Exchange full

ENOANO
No anode

EBADRQC
Invalid request code

EBADSLT
Invalid slot

EDEADLOCK
File locking deadlock error

EBFONT
Bad font file format

ENOSTR
Device not a stream

ENODATA
No data available

ETIME
Timer expired

ENOSR
Out of streams resources

ENONET
Machine is not on the network

ENOPKG
Package not installed

188 Chapter 6. Generic Operating System Services

EREMOTE
Object is remote

ENOLINK
Link has been severed

EADV
Advertise error

ESRMNT
Srmount error

ECOMM
Communication error on send

EPROTO
Protocol error

EMULTIHOP
Multihop attempted

EDOTDOT
RFS specific error

EBADMSG
Not a data message

EOVERFLOW
Value too large for defined data type

ENOTUNIQ
Name not unique on network

EBADFD
File descriptor in bad state

EREMCHG
Remote address changed

ELIBACC
Can not access a needed shared library

ELIBBAD
Accessing a corrupted shared library

ELIBSCN
.lib section in a.out corrupted

ELIBMAX
Attempting to link in too many shared libraries

ELIBEXEC
Cannot exec a shared library directly

EILSEQ
Illegal byte sequence

ERESTART
Interrupted system call should be restarted

ESTRPIPE
Streams pipe error

EUSERS
Too many users

6.20. errno — Standard errno system symbols 189

ENOTSOCK
Socket operation on non-socket

EDESTADDRREQ
Destination address required

EMSGSIZE
Message too long

EPROTOTYPE
Protocol wrong type for socket

ENOPROTOOPT
Protocol not available

EPROTONOSUPPORT
Protocol not supported

ESOCKTNOSUPPORT
Socket type not supported

EOPNOTSUPP
Operation not supported on transport endpoint

EPFNOSUPPORT
Protocol family not supported

EAFNOSUPPORT
Address family not supported by protocol

EADDRINUSE
Address already in use

EADDRNOTAVAIL
Cannot assign requested address

ENETDOWN
Network is down

ENETUNREACH
Network is unreachable

ENETRESET
Network dropped connection because of reset

ECONNABORTED
Software caused connection abort

ECONNRESET
Connection reset by peer

ENOBUFS
No buffer space available

EISCONN
Transport endpoint is already connected

ENOTCONN
Transport endpoint is not connected

ESHUTDOWN
Cannot send after transport endpoint shutdown

ETOOMANYREFS
Too many references: cannot splice

190 Chapter 6. Generic Operating System Services

ETIMEDOUT
Connection timed out

ECONNREFUSED
Connection refused

EHOSTDOWN
Host is down

EHOSTUNREACH
No route to host

EALREADY
Operation already in progress

EINPROGRESS
Operation now in progress

ESTALE
Stale NFS file handle

EUCLEAN
Structure needs cleaning

ENOTNAM
Not a XENIX named type file

ENAVAIL
No XENIX semaphores available

EISNAM
Is a named type file

EREMOTEIO
Remote I/O error

EDQUOT
Quota exceeded

6.21 glob — UNIX style pathname pattern expansion

Theglob module finds all the pathnames matching a specified pattern according to the rules used by the UNIX shell.
No tilde expansion is done, but* , ?, and character ranges expressed with[] will be correctly matched. This is done by
using theos.listdir() andfnmatch.fnmatch() functions in concert, and not by actually invoking a subshell.
(For tilde and shell variable expansion, useos.path.expanduser() andos.path.expandvars() .)

glob (pathname)
Returns a possibly-empty list of path names that matchpathname, which must be a string containing a path spec-
ification. pathnamecan be either absolute (like ‘/usr/src/Python-1.5/Makefile’) or relative (like ‘../../Tools/*/*.gif’),
and can contain shell-style wildcards.

For example, consider a directory containing only the following files: ‘1.gif’, ‘ 2.txt’, and ‘card.gif’. glob() will
produce the following results. Notice how any leading components of the path are preserved.

6.21. glob — UNIX style pathname pattern expansion 191

>>> import glob
>>> glob.glob(’./[0-9].*’)
[’./1.gif’, ’./2.txt’]
>>> glob.glob(’*.gif’)
[’1.gif’, ’card.gif’]
>>> glob.glob(’?.gif’)
[’1.gif’]

See Also:

Modulefnmatch (section 6.22):
Shell-style filename (not path) expansion

6.22 fnmatch — UNIX filename pattern matching

This module provides support for UNIX shell-style wildcards, which arenot the same as regular expressions (which
are documented in there module). The special characters used in shell-style wildcards are:

Pattern Meaning
* matches everything
? matches any single character

[seq] matches any character inseq
[! seq] matches any character not inseq

Note that the filename separator (’/’ on UNIX) is not special to this module. See moduleglob for pathname
expansion (glob usesfnmatch() to match pathname segments). Similarly, filenames starting with a period are not
special for this module, and are matched by the* and? patterns.

fnmatch (filename, pattern)
Test whether thefilenamestring matches thepatternstring, returning true or false. If the operating system is
case-insensitive, then both parameters will be normalized to all lower- or upper-case before the comparison is
performed. If you require a case-sensitive comparison regardless of whether that’s standard for your operating
system, usefnmatchcase() instead.

fnmatchcase (filename, pattern)
Test whetherfilenamematchespattern, returning true or false; the comparison is case-sensitive.

See Also:

Moduleglob (section 6.21):
UNIX shell-style path expansion.

6.23 shutil — High-level file operations

Theshutil module offers a number of high-level operations on files and collections of files. In particular, functions
are provided which support file copying and removal.

Caveat: On MacOS, the resource fork and other metadata are not used. For file copies, this means that resources will
be lost and file type and creator codes will not be correct.

copyfile (src, dst)
Copy the contents of the file namedsrc to a file nameddst. If dstexists, it will be replaced, otherwise it will be
created.

192 Chapter 6. Generic Operating System Services

copyfileobj (fsrc, fdst[, length])
Copy the contents of the file-like objectfsrc to the file-like objectfdst. The integerlength, if given, is the buffer
size. In particular, a negativelengthvalue means to copy the data without looping over the source data in chunks;
by default the data is read in chunks to avoid uncontrolled memory consumption.

copymode (src, dst)
Copy the permission bits fromsrc to dst. The file contents, owner, and group are unaffected.

copystat (src, dst)
Copy the permission bits, last access time, and last modification time fromsrc to dst. The file contents, owner,
and group are unaffected.

copy (src, dst)
Copy the filesrc to the file or directorydst. If dst is a directory, a file with the same basename assrc is created
(or overwritten) in the directory specified. Permission bits are copied.

copy2 (src, dst)
Similar to copy() , but last access time and last modification time are copied as well. This is similar to the
UNIX commandcp -p.

copytree (src, dst[, symlinks])
Recursively copy an entire directory tree rooted atsrc. The destination directory, named bydst, must not already
exist; it will be created. Individual files are copied usingcopy2() . If symlinksis true, symbolic links in the
source tree are represented as symbolic links in the new tree; if false or omitted, the contents of the linked files
are copied to the new tree. Errors are reported to standard output.

The source code for this should be considered an example rather than a tool.

rmtree (path[, ignore errors[, onerror]])
Delete an entire directory tree. Ifignore errors is true, errors will be ignored; if false or omitted, errors are
handled by calling a handler specified byonerror or raise an exception.

If onerror is provided, it must be a callable that accepts three parameters:function, path, andexcinfo. The first
parameter,function, is the function which raised the exception; it will beos.remove() or os.rmdir() .
The second parameter,path, will be the path name passed tofunction. The third parameter,excinfo, will be the
exception information return bysys.exc info() . Exceptions raised byonerror will not be caught.

6.23.1 Example

This example is the implementation of thecopytree() function, described above, with the docstring omitted. It
demonstrates many of the other functions provided by this module.

6.23. shutil — High-level file operations 193

def copytree(src, dst, symlinks=0):
names = os.listdir(src)
os.mkdir(dst)
for name in names:

srcname = os.path.join(src, name)
dstname = os.path.join(dst, name)
try:

if symlinks and os.path.islink(srcname):
linkto = os.readlink(srcname)
os.symlink(linkto, dstname)

elif os.path.isdir(srcname):
copytree(srcname, dstname)

else:
copy2(srcname, dstname)

XXX What about devices, sockets etc.?
except (IOError, os.error), why:

print "Can’t copy %s to %s: %s" % (‘srcname‘, ‘dstname‘, str(why))

6.24 locale — Internationalization services

The locale module opens access to the POSIX locale database and functionality. The POSIX locale mechanism
allows programmers to deal with certain cultural issues in an application, without requiring the programmer to know
all the specifics of each country where the software is executed.

The locale module is implemented on top of thelocale module, which in turn uses an ANSI C locale imple-
mentation if available.

The locale module defines the following exception and functions:

exceptionError
Exception raised whensetlocale() fails.

setlocale (category[, locale])
If locale is specified, it may be a string, a tuple of the form(language code, encoding) , or None. If it is a
tuple, it is converted to a string using the locale aliasing engine. Iflocaleis given and notNone, setlocale()
modifies the locale setting for thecategory. The available categories are listed in the data description below.
The value is the name of a locale. An empty string specifies the user’s default settings. If the modification of
the locale fails, the exceptionError is raised. If successful, the new locale setting is returned.

If locale is omitted orNone, the current setting forcategoryis returned.

setlocale() is not thread safe on most systems. Applications typically start with a call of

import locale
locale.setlocale(locale.LC_ALL, ’’)

This sets the locale for all categories to the user’s default setting (typically specified in the LANG environment
variable). If the locale is not changed thereafter, using multithreading should not cause problems.

Changed in version 2.0: Added support for tuple values of thelocaleparameter.

localeconv ()
Returns the database of of the local conventions as a dictionary. This dictionary has the following strings as
keys:

194 Chapter 6. Generic Operating System Services

Key Category Meaning
LC NUMERIC ’decimal point’ Decimal point character.

’grouping’ Sequence of numbers specifying which relative posi-
tions the ’thousands sep’ is expected. If the
sequence is terminated withCHAR MAX, no further
grouping is performed. If the sequence terminates with
a0, the last group size is repeatedly used.

’thousands sep’ Character used between groups.
LC MONETARY ’int curr symbol’ International currency symbol.

’currency symbol’ Local currency symbol.
’mon decimal point’ Decimal point used for monetary values.
’mon thousands sep’ Group separator used for monetary values.
’mon grouping’ Equivalent to’grouping’ , used for monetary val-

ues.
’positive sign’ Symbol used to annotate a positive monetary value.
’negative sign’ Symbol used to annotate a nnegative monetary value.
’frac digits’ Number of fractional digits used in local formatting of

monetary values.
’int frac digits’ Number of fractional digits used in international for-

matting of monetary values.

The possible values for’p sign posn’ and’n sign posn’ are given below.

Value Explanation
0 Currency and value are surrounded by parentheses.
1 The sign should precede the value and currency symbol.
2 The sign should follow the value and currency symbol.
3 The sign should immediately precede the value.
4 The sign should immediately follow the value.

LC MAX Nothing is specified in this locale.

getdefaultlocale ([envvars])
Tries to determine the default locale settings and returns them as a tuple of the form(language code, encod-
ing) .

According to POSIX, a program which has not calledsetlocale(LC ALL, ’’) runs using the portable
’C’ locale. Callingsetlocale(LC ALL, ’’) lets it use the default locale as defined by the LANG vari-
able. Since we do not want to interfere with the current locale setting we thus emulate the behavior in the way
described above.

To maintain compatibility with other platforms, not only the LANG variable is tested, but a list of variables
given as envvars parameter. The first found to be defined will be used.envvarsdefaults to the search path
used in GNU gettext; it must always contain the variable name ‘LANG’. The GNU gettext search path contains
’LANGUAGE’, ’LC ALL’ , code’LC CTYPE’, and’LANG’ , in that order.

Except for the code’C’ , the language code corresponds to RFC 1766.language codeandencodingmay be
None if their values cannot be determined. New in version 2.0.

getlocale ([category])
Returns the current setting for the given locale category as tuple (language code, encoding).categorymay be
one of theLC * values exceptLC ALL. It defaults toLC CTYPE.

Except for the code’C’ , the language code corresponds to RFC 1766.language codeandencodingmay be
None if their values cannot be determined. New in version 2.0.

normalize (localename)
Returns a normalized locale code for the given locale name. The returned locale code is formatted for use with
setlocale() . If normalization fails, the original name is returned unchanged.

If the given encoding is not known, the function defaults to the default encoding for the locale code just like
setlocale() . New in version 2.0.

6.24. locale — Internationalization services 195

resetlocale ([category])
Sets the locale forcategoryto the default setting.

The default setting is determined by callinggetdefaultlocale() . categorydefaults toLC ALL. New in
version 2.0.

strcoll (string1, string2)
Compares two strings according to the currentLC COLLATEsetting. As any other compare function, returns a
negative, or a positive value, or0, depending on whetherstring1collates before or afterstring2or is equal to it.

strxfrm (string)
Transforms a string to one that can be used for the built-in functioncmp() , and still returns locale-aware
results. This function can be used when the same string is compared repeatedly, e.g. when collating a sequence
of strings.

format (format, val[, grouping])
Formats a numberval according to the currentLC NUMERICsetting. The format follows the conventions of
the%operator. For floating point values, the decimal point is modified if appropriate. Ifgroupingis true, also
takes the grouping into account.

str (float)
Formats a floating point number using the same format as the built-in functionstr(float) , but takes the decimal
point into account.

atof (string)
Converts a string to a floating point number, following theLC NUMERICsettings.

atoi (string)
Converts a string to an integer, following theLC NUMERICconventions.

LC CTYPE
Locale category for the character type functions. Depending on the settings of this category, the functions of
modulestring dealing with case change their behaviour.

LC COLLATE
Locale category for sorting strings. The functionsstrcoll() andstrxfrm() of the locale module are
affected.

LC TIME
Locale category for the formatting of time. The functiontime.strftime() follows these conventions.

LC MONETARY
Locale category for formatting of monetary values. The available options are available from thelocale-
conv() function.

LC MESSAGES
Locale category for message display. Python currently does not support application specific locale-aware mes-
sages. Messages displayed by the operating system, like those returned byos.strerror() might be affected
by this category.

LC NUMERIC
Locale category for formatting numbers. The functionsformat() , atoi() , atof() andstr() of the
locale module are affected by that category. All other numeric formatting operations are not affected.

LC ALL
Combination of all locale settings. If this flag is used when the locale is changed, setting the locale for all
categories is attempted. If that fails for any category, no category is changed at all. When the locale is retrieved
using this flag, a string indicating the setting for all categories is returned. This string can be later used to restore
the settings.

CHAR MAX
This is a symbolic constant used for different values returned bylocaleconv() .

196 Chapter 6. Generic Operating System Services

Example:

>>> import locale
>>> loc = locale.setlocale(locale.LC_ALL) # get current locale
>>> locale.setlocale(locale.LC_ALL, ’de’) # use German locale
>>> locale.strcoll(’f\xe4n’, ’foo’) # compare a string containing an umlaut
>>> locale.setlocale(locale.LC_ALL, ’’) # use user’s preferred locale
>>> locale.setlocale(locale.LC_ALL, ’C’) # use default (C) locale
>>> locale.setlocale(locale.LC_ALL, loc) # restore saved locale

6.24.1 Background, details, hints, tips and caveats

The C standard defines the locale as a program-wide property that may be relatively expensive to change. On top of
that, some implementation are broken in such a way that frequent locale changes may cause core dumps. This makes
the locale somewhat painful to use correctly.

Initially, when a program is started, the locale is the ‘C’ locale, no matter what the user’s preferred locale is. The
program must explicitly say that it wants the user’s preferred locale settings by callingsetlocale(LC ALL,
’’) .

It is generally a bad idea to callsetlocale() in some library routine, since as a side effect it affects the entire
program. Saving and restoring it is almost as bad: it is expensive and affects other threads that happen to run before
the settings have been restored.

If, when coding a module for general use, you need a locale independent version of an operation that is affected by the
locale (e.g.string.lower() , or certain formats used withtime.strftime())), you will have to find a way to
do it without using the standard library routine. Even better is convincing yourself that using locale settings is okay.
Only as a last resort should you document that your module is not compatible with non-‘C’ locale settings.

The case conversion functions in thestring module are affected by the locale settings. When a call to theset-
locale() function changes theLC CTYPEsettings, the variablesstring.lowercase , string.uppercase
andstring.letters are recalculated. Note that this code that uses these variable through ‘from ... import ...’,
e.g.from string import letters , is not affected by subsequentsetlocale() calls.

The only way to perform numeric operations according to the locale is to use the special functions defined by this
module:atof() , atoi() , format() , str() .

6.24.2 For extension writers and programs that embed Python

Extension modules should never callsetlocale() , except to find out what the current locale is. But since the
return value can only be used portably to restore it, that is not very useful (except perhaps to find out whether or not
the locale is ‘C’).

When Python is embedded in an application, if the application sets the locale to something specific before initializing
Python, that is generally okay, and Python will use whatever locale is set,exceptthat theLC NUMERIClocale should
always be ‘C’.

The setlocale() function in thelocale module gives the Python programmer the impression that you can
manipulate theLC NUMERIClocale setting, but this not the case at the C level: C code will always find that the
LC NUMERIClocale setting is ‘C’. This is because too much would break when the decimal point character is set to
something else than a period (e.g. the Python parser would break). Caveat: threads that run without holding Python’s
global interpreter lock may occasionally find that the numeric locale setting differs; this is because the only portable
way to implement this feature is to set the numeric locale settings to what the user requests, extract the relevant
characteristics, and then restore the ‘C’ numeric locale.

6.24. locale — Internationalization services 197

When Python code uses thelocale module to change the locale, this also affects the embedding application. If the
embedding application doesn’t want this to happen, it should remove thelocale extension module (which does
all the work) from the table of built-in modules in the ‘config.c’ file, and make sure that thelocale module is not
accessible as a shared library.

6.25 gettext — Multilingual internationalization services

Thegettext module provides internationalization (I18N) and localization (L10N) services for your Python modules
and applications. It supports both the GNUgettext message catalog API and a higher level, class-based API
that may be more appropriate for Python files. The interface described below allows you to write your module and
application messages in one natural language, and provide a catalog of translated messages for running under different
natural languages.

Some hints on localizing your Python modules and applications are also given.

6.25.1 GNU gettext API

Thegettext module defines the following API, which is very similar to the GNUgettext API. If you use this API
you will affect the translation of your entire application globally. Often this is what you want if your application is
monolingual, with the choice of language dependent on the locale of your user. If you are localizing a Python module,
or if your application needs to switch languages on the fly, you probably want to use the class-based API instead.

bindtextdomain (domain[, localedir])
Bind thedomainto the locale directorylocaledir. More concretely,gettext will look for binary ‘.mo’ files
for the given domain using the path (on UNIX): ‘ localedir/language/LC MESSAGES/domain.mo’, where
languagesis searched for in the environment variables LANGUAGE, LCALL, LC MESSAGES, and LANG
respectively.

If localedir is omitted orNone, then the current binding fordomainis returned.2

textdomain ([domain])
Change or query the current global domain. Ifdomainis None, then the current global domain is returned,
otherwise the global domain is set todomain, which is returned.

gettext (message)
Return the localized translation ofmessage, based on the current global domain, language, and locale directory.
This function is usually aliased asin the local namespace (see examples below).

dgettext (domain, message)
Like gettext() , but look the message up in the specifieddomain.

Note that GNUgettext also defines adcgettext() method, but this was deemed not useful and so it is currently
unimplemented.

Here’s an example of typical usage for this API:

import gettext
gettext.bindtextdomain(’myapplication’, ’/path/to/my/language/directory’)
gettext.textdomain(’myapplication’)
_ = gettext.gettext
...
print _(’This is a translatable string.’)

2The default locale directory is system dependent; e.g. on RedHat Linux it is ‘/usr/share/locale’, but on Solaris it is ‘/usr/lib/locale’. The
gettext module does not try to support these system dependent defaults; instead its default is ‘sys.prefix /share/locale’. For this reason,
it is always best to callbindtextdomain() with an explicit absolute path at the start of your application.

198 Chapter 6. Generic Operating System Services

6.25.2 Class-based API

The class-based API of thegettext module gives you more flexibility and greater convenience than the GNU
gettext API. It is the recommended way of localizing your Python applications and modules.gettext defines a
“translations” class which implements the parsing of GNU ‘.mo’ format files, and has methods for returning either
standard 8-bit strings or Unicode strings. Translations instances can also install themselves in the built-in namespace
as the function () .

find (domain[, localedir[, languages]])
This function implements the standard ‘.mo’ file search algorithm. It takes adomain, identical to whattextdo-
main() takes, and optionally alocaledir (as inbindtextdomain()), and a list of languages. All arguments
are strings.

If localedir is not given, then the default system locale directory is used.3 If languagesis not given, then the
following environment variables are searched: LANGUAGE, LCALL, LC MESSAGES, and LANG. The
first one returning a non-empty value is used for thelanguagesvariable. The environment variables can contain
a colon separated list of languages, which will be split.

find() then expands and normalizes the languages, and then iterates through them, searching for an existing
file built of these components:

‘ localedir/language/LC MESSAGES/domain.mo’

The first such file name that exists is returned byfind() . If no such file is found, thenNone is returned.

translation (domain[, localedir[, languages[, class]]])
Return aTranslations instance based on thedomain, localedir, andlanguages, which are first passed to
find() to get the associated ‘.mo’ file path. Instances with identical ‘.mo’ file names are cached. The actual
class instantiated is eitherclass if provided, otherwiseGNUTranslations . The class’s constructor must
take a single file object argument. If no ‘.mo’ file is found, this function raisesIOError .

install (domain[, localedir[, unicode]])
This installs the function in Python’s builtin namespace, based ondomain, and localedir which are passed
to the functiontranslation() . Theunicodeflag is passed to the resulting translation object’sinstall
method.

As seen below, you usually mark the strings in your application that are candidates for translation, by wrapping
them in a call to the function() , e.g.

print _(’This string will be translated.’)

For convenience, you want the() function to be installed in Python’s builtin namespace, so it is easily acces-
sible in all modules of your application.

The NullTranslations class

Translation classes are what actually implement the translation of original source file message strings to translated
message strings. The base class used by all translation classes isNullTranslations ; this provides the basic inter-
face you can use to write your own specialized translation classes. Here are the methods ofNullTranslations :

init ([fp])
Takes an optional file objectfp, which is ignored by the base class. Initializes “protected” instance variables
info and charsetwhich are set by derived classes. It then callsself. parse(fp) if fp is notNone.

parse (fp)
No-op’d in the base class, this method takes file objectfp, and reads the data from the file, initializing its message
catalog. If you have an unsupported message catalog file format, you should override this method to parse your
format.

3See the footnote forbindtextdomain() above.

6.25. gettext — Multilingual internationalization services 199

gettext (message)
Return the translated message. Overridden in derived classes.

ugettext (message)
Return the translated message as a Unicode string. Overridden in derived classes.

info ()
Return the “protected” info variable.

charset ()
Return the “protected” charset variable.

install ([unicode])
If the unicodeflag is false, this method installsself.gettext() into the built-in namespace, binding it to
‘ ’. If unicodeis true, it bindsself.ugettext() instead. By default,unicodeis false.

Note that this is only one way, albeit the most convenient way, to make thefunction available to your ap-
plication. Because it affects the entire application globally, and specifically the built-in namespace, localized
modules should never install. Instead, they should use this code to makeavailable to their module:

import gettext
t = gettext.translation(’mymodule’, ...)
_ = t.gettext

This puts only in the module’s global namespace and so only affects calls within this module.

The GNUTranslations class

The gettext module provides one additional class derived fromNullTranslations : GNUTranslations .
This class overridesparse() to enable reading GNUgettext format ‘.mo’ files in both big-endian and little-endian
format.

It also parses optional meta-data out of the translation catalog. It is convention with GNUgettext to include meta-
data as the translation for the empty string. This meta-data is in RFC 822-stylekey: value pairs. If the key
Content-Type is found, then thecharset property is used to initialize the “protected”charset instance
variable. The entire set of key/value pairs are placed into a dictionary and set as the “protected”info instance
variable.

If the ‘.mo’ file’s magic number is invalid, or if other problems occur while reading the file, instantiating aGNU-
Translations class can raiseIOError .

The other usefully overridden method isugettext() , which returns a Unicode string by passing both the translated
message string and the value of the “protected”charset variable to the builtinunicode() function.

Solaris message catalog support

The Solaris operating system defines its own binary ‘.mo’ file format, but since no documentation can be found on this
format, it is not supported at this time.

The Catalog constructor

GNOME uses a version of thegettext module by James Henstridge, but this version has a slightly different API.
Its documented usage was:

200 Chapter 6. Generic Operating System Services

import gettext
cat = gettext.Catalog(domain, localedir)
_ = cat.gettext
print _(’hello world’)

For compatibility with this older module, the functionCatalog() is an alias for the thetranslation() function
described above.

One difference between this module and Henstridge’s: his catalog objects supported access through a mapping API,
but this appears to be unused and so is not currently supported.

6.25.3 Internationalizing your programs and modules

Internationalization (I18N) refers to the operation by which a program is made aware of multiple languages. Localiza-
tion (L10N) refers to the adaptation of your program, once internationalized, to the local language and cultural habits.
In order to provide multilingual messages for your Python programs, you need to take the following steps:

1. prepare your program or module by specially marking translatable strings

2. run a suite of tools over your marked files to generate raw messages catalogs

3. create language specific translations of the message catalogs

4. use thegettext module so that message strings are properly translated

In order to prepare your code for I18N, you need to look at all the strings in your files. Any string that needs to be
translated should be marked by wrapping it in(’...’) – i.e. a call to the function () . For example:

filename = ’mylog.txt’
message = _(’writing a log message’)
fp = open(filename, ’w’)
fp.write(message)
fp.close()

In this example, the string’writing a log message’ is marked as a candidate for translation, while the strings
’mylog.txt’ and’w’ are not.

The Python distribution comes with two tools which help you generate the message catalogs once you’ve prepared
your source code. These may or may not be available from a binary distribution, but they can be found in a source
distribution, in the ‘Tools/i18n’ directory.

Thepygettext4 program scans all your Python source code looking for the strings you previously marked as translat-
able. It is similar to the GNUgettextprogram except that it understands all the intricacies of Python source code, but
knows nothing about C or C++ source code. You don’t need GNUgettext unless you’re also going to be translating
C code (e.g. C extension modules).

pygettextgenerates textual Uniforum-style human readable message catalog ‘.pot’ files, essentially structured human
readable files which contain every marked string in the source code, along with a placeholder for the translation strings.
pygettext is a command line script that supports a similar command line interface asxgettext; for details on its use,
run:

4François Pinard has written a program calledxpot which does a similar job. It is available as part of hispo-utils package at
http://www.iro.umontreal.ca/contrib/po-utils/HTML.

6.25. gettext — Multilingual internationalization services 201

pygettext.py --help

Copies of these ‘.pot’ files are then handed over to the individual human translators who write language-specific
versions for every supported natural language. They send you back the filled in language-specific versions as a ‘.po’
file. Using themsgfmt.py5 program (in the ‘Tools/i18n’ directory), you take the ‘.po’ files from your translators and
generate the machine-readable ‘.mo’ binary catalog files. The ‘.mo’ files are what thegettext module uses for the
actual translation processing during run-time.

How you use thegettext module in your code depends on whether you are internationalizing your entire application
or a single module.

Localizing your module

If you are localizing your module, you must take care not to make global changes, e.g. to the built-in namespace. You
should not use the GNUgettext API but instead the class-based API.

Let’s say your module is called “spam” and the module’s various natural language translation ‘.mo’ files reside in
‘ /usr/share/locale’ in GNU gettext format. Here’s what you would put at the top of your module:

import gettext
t = gettext.translation(’spam’, ’/usr/share/locale’)
_ = t.gettext

If your translators were providing you with Unicode strings in their ‘.po’ files, you’d instead do:

import gettext
t = gettext.translation(’spam’, ’/usr/share/locale’)
_ = t.ugettext

Localizing your application

If you are localizing your application, you can install the() function globally into the built-in namespace, usually
in the main driver file of your application. This will let all your application-specific files just use(’...’) without
having to explicitly install it in each file.

In the simple case then, you need only add the following bit of code to the main driver file of your application:

import gettext
gettext.install(’myapplication’)

If you need to set the locale directory or theunicodeflag, you can pass these into theinstall() function:

import gettext
gettext.install(’myapplication’, ’/usr/share/locale’, unicode=1)

5msgfmt.py is binary compatible with GNUmsgfmt except that it provides a simpler, all-Python implementation. With this andpygettext.py,
you generally won’t need to install the GNUgettextpackage to internationalize your Python applications.

202 Chapter 6. Generic Operating System Services

Changing languages on the fly

If your program needs to support many languages at the same time, you may want to create multiple translation
instances and then switch between them explicitly, like so:

import gettext

lang1 = gettext.translation(languages=[’en’])
lang2 = gettext.translation(languages=[’fr’])
lang3 = gettext.translation(languages=[’de’])

start by using language1
lang1.install()

... time goes by, user selects language 2
lang2.install()

... more time goes by, user selects language 3
lang3.install()

Deferred translations

In most coding situations, strings are translated were they are coded. Occasionally however, you need to mark strings
for translation, but defer actual translation until later. A classic example is:

animals = [’mollusk’,
’albatross’,

’rat’,
’penguin’,
’python’,
]

...
for a in animals:

print a

Here, you want to mark the strings in theanimals list as being translatable, but you don’t actually want to translate
them until they are printed.

Here is one way you can handle this situation:

6.25. gettext — Multilingual internationalization services 203

def _(message): return message

animals = [_(’mollusk’),
_(’albatross’),

_(’rat’),
_(’penguin’),
_(’python’),
]

del _

...
for a in animals:

print _(a)

This works because the dummy definition of() simply returns the string unchanged. And this dummy definition
will temporarily override any definition of () in the built-in namespace (until thedel command). Take care, though
if you have a previous definition of in the local namespace.

Note that the second use of() will not identify “a” as being translatable to thepygettext program, since it is not a
string.

Another way to handle this is with the following example:

def N_(message): return message

animals = [N_(’mollusk’),
N_(’albatross’),

N_(’rat’),
N_(’penguin’),
N_(’python’),
]

...
for a in animals:

print _(a)

In this case, you are marking translatable strings with the functionN () ,6 which won’t conflict with any definition of
() . However, you will need to teach your message extraction program to look for translatable strings marked with

N () . pygettextandxpot both support this through the use of command line switches.

6.25.4 Acknowledgements

The following people contributed code, feedback, design suggestions, previous implementations, and valuable experi-
ence to the creation of this module:

• Peter Funk

• James Henstridge

• Marc-Andŕe Lemburg

• Martin von Löwis
6The choice ofN () here is totally arbitrary; it could have just as easily beenMarkThisStringForTranslation() .

204 Chapter 6. Generic Operating System Services

• François Pinard

• Barry Warsaw

6.25. gettext — Multilingual internationalization services 205

206

CHAPTER

SEVEN

Optional Operating System Services

The modules described in this chapter provide interfaces to operating system features that are available on selected
operating systems only. The interfaces are generally modeled after the UNIX or C interfaces but they are available on
some other systems as well (e.g. Windows or NT). Here’s an overview:

signal Set handlers for asynchronous events.
socket Low-level networking interface.
select Wait for I/O completion on multiple streams.
thread Create multiple threads of control within one interpreter.
threading Higher-level threading interface.
Queue A synchronized queue class.
mmap Interface to memory-mapped files for Unix and Windows.
anydbm Generic interface to DBM-style database modules.
dumbdbm Portable implementation of the simple DBM interface.
dbhash DBM-style interface to the BSD database library.
whichdb Guess which DBM-style module created a given database.
bsddb Interface to Berkeley DB database library
zlib Low-level interface to compression and decompression routines compatible withgzip.
gzip Interfaces forgzip compression and decompression using file objects.
zipfile Read and write ZIP-format archive files.
readline GNU readline support for Python.
rlcompleter Python identifier completion for the GNU readline library.

7.1 signal — Set handlers for asynchronous events

This module provides mechanisms to use signal handlers in Python. Some general rules for working with signals and
their handlers:

• A handler for a particular signal, once set, remains installed until it is explicitly reset (i.e. Python emulates
the BSD style interface regardless of the underlying implementation), with the exception of the handler for
SIGCHLD, which follows the underlying implementation.

• There is no way to “block” signals temporarily from critical sections (since this is not supported by all UNIX

flavors).

• Although Python signal handlers are called asynchronously as far as the Python user is concerned, they can only
occur between the “atomic” instructions of the Python interpreter. This means that signals arriving during long
calculations implemented purely in C (e.g. regular expression matches on large bodies of text) may be delayed
for an arbitrary amount of time.

• When a signal arrives during an I/O operation, it is possible that the I/O operation raises an exception after

207

the signal handler returns. This is dependent on the underlying UNIX system’s semantics regarding interrupted
system calls.

• Because the C signal handler always returns, it makes little sense to catch synchronous errors likeSIGFPE or
SIGSEGV.

• Python installs a small number of signal handlers by default:SIGPIPE is ignored (so write errors on pipes and
sockets can be reported as ordinary Python exceptions) andSIGINT is translated into aKeyboardInter-
rupt exception. All of these can be overridden.

• Some care must be taken if both signals and threads are used in the same program. The fundamental thing to
remember in using signals and threads simultaneously is: always performsignal() operations in the main
thread of execution. Any thread can perform analarm() , getsignal() , orpause() ; only the main thread
can set a new signal handler, and the main thread will be the only one to receive signals (this is enforced by the
Pythonsignal module, even if the underlying thread implementation supports sending signals to individual
threads). This means that signals can’t be used as a means of inter-thread communication. Use locks instead.

The variables defined in thesignal module are:

SIG DFL
This is one of two standard signal handling options; it will simply perform the default function for the signal.
For example, on most systems the default action forSIGQUIT is to dump core and exit, while the default action
for SIGCLD is to simply ignore it.

SIG IGN
This is another standard signal handler, which will simply ignore the given signal.

SIG*
All the signal numbers are defined symbolically. For example, the hangup signal is defined assig-
nal.SIGHUP ; the variable names are identical to the names used in C programs, as found in<signal.h> .
The UNIX man page for ‘signal() ’ lists the existing signals (on some systems this issignal(2), on others the
list is in signal(7)). Note that not all systems define the same set of signal names; only those names defined by
the system are defined by this module.

NSIG
One more than the number of the highest signal number.

Thesignal module defines the following functions:

alarm (time)
If time is non-zero, this function requests that aSIGALRMsignal be sent to the process intimeseconds. Any
previously scheduled alarm is canceled (i.e. only one alarm can be scheduled at any time). The returned value
is then the number of seconds before any previously set alarm was to have been delivered. Iftime is zero, no
alarm id scheduled, and any scheduled alarm is canceled. The return value is the number of seconds remaining
before a previously scheduled alarm. If the return value is zero, no alarm is currently scheduled. (See the UNIX

man pagealarm(2).)

getsignal (signalnum)
Return the current signal handler for the signalsignalnum. The returned value may be a callable Python object,
or one of the special valuessignal.SIG IGN, signal.SIG DFL or None. Here,signal.SIG IGN
means that the signal was previously ignored,signal.SIG DFL means that the default way of handling the
signal was previously in use, andNone means that the previous signal handler was not installed from Python.

pause ()
Cause the process to sleep until a signal is received; the appropriate handler will then be called. Returns nothing.
(See the UNIX man pagesignal(2).)

signal (signalnum, handler)
Set the handler for signalsignalnumto the functionhandler. handlercan be a callable Python object taking
two arguments (see below), or one of the special valuessignal.SIG IGN or signal.SIG DFL. The

208 Chapter 7. Optional Operating System Services

previous signal handler will be returned (see the description ofgetsignal() above). (See the UNIX man
pagesignal(2).)

When threads are enabled, this function can only be called from the main thread; attempting to call it from other
threads will cause aValueError exception to be raised.

The handler is called with two arguments: the signal number and the current stack frame (None or a frame
object; see the reference manual for a description of frame objects).

7.1.1 Example

Here is a minimal example program. It uses thealarm() function to limit the time spent waiting to open a file; this
is useful if the file is for a serial device that may not be turned on, which would normally cause theos.open() to
hang indefinitely. The solution is to set a 5-second alarm before opening the file; if the operation takes too long, the
alarm signal will be sent, and the handler raises an exception.

import signal, os, FCNTL

def handler(signum, frame):
print ’Signal handler called with signal’, signum
raise IOError, "Couldn’t open device!"

Set the signal handler and a 5-second alarm
signal.signal(signal.SIGALRM, handler)
signal.alarm(5)

This open() may hang indefinitely
fd = os.open(’/dev/ttyS0’, FCNTL.O_RDWR)

signal.alarm(0) # Disable the alarm

7.2 socket — Low-level networking interface

This module provides access to the BSDsocketinterface. It is available on all modern UNIX systems, Windows,
MacOS, BeOS, OS/2, and probably additional platforms.

For an introduction to socket programming (in C), see the following papers:An Introductory 4.3BSD Interprocess
Communication Tutorial, by Stuart Sechrest andAn Advanced 4.3BSD Interprocess Communication Tutorial, by
Samuel J. Leffler et al, both in the UNIX Programmer’s Manual, Supplementary Documents 1(sections PS1:7 and
PS1:8). The platform-specific reference material for the various socket-related system calls are also a valuable source
of information on the details of socket semantics. For UNIX , refer to the manual pages; for Windows, see the WinSock
(or Winsock 2) specification.

The Python interface is a straightforward transliteration of the UNIX system call and library interface for sockets
to Python’s object-oriented style: thesocket() function returns asocket objectwhose methods implement the
various socket system calls. Parameter types are somewhat higher-level than in the C interface: as withread() and
write() operations on Python files, buffer allocation on receive operations is automatic, and buffer length is implicit
on send operations.

Socket addresses are represented as a single string for theAF UNIX address family and as a pair(host, port) for
theAF INET address family, wherehost is a string representing either a hostname in Internet domain notation like
’daring.cwi.nl’ or an IP address like’100.50.200.5’ , andport is an integral port number. Other address
families are currently not supported. The address format required by a particular socket object is automatically selected

7.2. socket — Low-level networking interface 209

based on the address family specified when the socket object was created.

For IP addresses, two special forms are accepted instead of a host address: the empty string representsINADDR ANY,
and the string’<broadcast>’ representsINADDR BROADCAST.

All errors raise exceptions. The normal exceptions for invalid argument types and out-of-memory conditions can be
raised; errors related to socket or address semantics raise the errorsocket.error .

Non-blocking mode is supported through thesetblocking() method.

The modulesocket exports the following constants and functions:

exceptionerror
This exception is raised for socket- or address-related errors. The accompanying value is either a string telling
what went wrong or a pair(errno, string) representing an error returned by a system call, similar to the value
accompanyingos.error . See the moduleerrno , which contains names for the error codes defined by the
underlying operating system.

AF UNIX
AF INET

These constants represent the address (and protocol) families, used for the first argument tosocket() . If the
AF UNIX constant is not defined then this protocol is unsupported.

SOCK STREAM
SOCK DGRAM
SOCK RAW
SOCK RDM
SOCK SEQPACKET

These constants represent the socket types, used for the second argument tosocket() . (OnlySOCK STREAM
andSOCK DGRAMappear to be generally useful.)

SO *
SOMAXCONN
MSG*
SOL *
IPPROTO *
IPPORT *
INADDR *
IP *

Many constants of these forms, documented in the UNIX documentation on sockets and/or the IP protocol,
are also defined in the socket module. They are generally used in arguments to thesetsockopt() and
getsockopt() methods of socket objects. In most cases, only those symbols that are defined in the UNIX

header files are defined; for a few symbols, default values are provided.

getfqdn ([name])
Return a fully qualified domain name forname. If nameis omitted or empty, it is interpreted as the local host.
To find the fully qualified name, the hostname returned bygethostbyaddr() is checked, then aliases for
the host, if available. The first name which includes a period is selected. In case no fully qualified domain name
is available, the hostname is returned. New in version 2.0.

gethostbyname (hostname)
Translate a host name to IP address format. The IP address is returned as a string, e.g.,’100.50.200.5’ .
If the host name is an IP address itself it is returned unchanged. Seegethostbyname ex() for a more
complete interface.

gethostbyname ex (hostname)
Translate a host name to IP address format, extended interface. Return a triple(hostname, aliaslist,
ipaddrlist) wherehostname is the primary host name responding to the givenip address, aliaslist
is a (possibly empty) list of alternative host names for the same address, andipaddrlist is a list of IP
addresses for the same interface on the same host (often but not always a single address).

210 Chapter 7. Optional Operating System Services

gethostname ()
Return a string containing the hostname of the machine where the Python interpreter is currently execut-
ing. If you want to know the current machine’s IP address, usegethostbyname(gethostname()) .
Note: gethostname() doesn’t always return the fully qualified domain name; usegethost-
byaddr(gethostname()) (see below).

gethostbyaddr (ip address)
Return a triple(hostname, aliaslist, ipaddrlist) wherehostnameis the primary host name responding to
the givenip address, aliaslist is a (possibly empty) list of alternative host names for the same address, and
ipaddrlist is a list of IP addresses for the same interface on the same host (most likely containing only a single
address). To find the fully qualified domain name, use the functiongetfqdn() .

getprotobyname (protocolname)
Translate an Internet protocol name (e.g.’icmp’) to a constant suitable for passing as the (optional) third argu-
ment to thesocket() function. This is usually only needed for sockets opened in “raw” mode (SOCK RAW);
for the normal socket modes, the correct protocol is chosen automatically if the protocol is omitted or zero.

getservbyname (servicename, protocolname)
Translate an Internet service name and protocol name to a port number for that service. The protocol name
should be’tcp’ or ’udp’ .

socket (family, type[, proto])
Create a new socket using the given address family, socket type and protocol number. The address family should
beAF INET or AF UNIX. The socket type should beSOCK STREAM, SOCK DGRAMor perhaps one of the
other ‘SOCK ’ constants. The protocol number is usually zero and may be omitted in that case.

fromfd (fd, family, type[, proto])
Build a socket object from an existing file descriptor (an integer as returned by a file object’sfileno()
method). Address family, socket type and protocol number are as for thesocket() function above. The file
descriptor should refer to a socket, but this is not checked — subsequent operations on the object may fail if the
file descriptor is invalid. This function is rarely needed, but can be used to get or set socket options on a socket
passed to a program as standard input or output (e.g. a server started by the UNIX inet daemon).

ntohl (x)
Convert 32-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

ntohs (x)
Convert 16-bit integers from network to host byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

htonl (x)
Convert 32-bit integers from host to network byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 4-byte swap operation.

htons (x)
Convert 16-bit integers from host to network byte order. On machines where the host byte order is the same as
network byte order, this is a no-op; otherwise, it performs a 2-byte swap operation.

inet aton (ip string)
Convert an IP address from dotted-quad string format (e.g. ’123.45.67.89’) to 32-bit packed binary format, as a
string four characters in length.

Useful when conversing with a program that uses the standard C library and needs objects of typestruct
in addr , which is the C type for the 32-bit packed binary this function returns.

If the IP address string passed to this function is invalid,socket.error will be raised. Note that exactly
what is valid depends on the underlying C implementation ofinet aton() .

inet ntoa (packed ip)
Convert a 32-bit packed IP address (a string four characters in length) to its standard dotted-quad string repre-

7.2. socket — Low-level networking interface 211

sentation (e.g. ’123.45.67.89’).

Useful when conversing with a program that uses the standard C library and needs objects of typestruct
in addr , which is the C type for the 32-bit packed binary this function takes as an argument.

If the string passed to this function is not exactly 4 bytes in length,socket.error will be raised.

SocketType
This is a Python type object that represents the socket object type. It is the same astype(socket(...)) .

See Also:

ModuleSocketServer (section 11.14):
Classes that simplify writing network servers.

7.2.1 Socket Objects

Socket objects have the following methods. Except formakefile() these correspond to UNIX system calls appli-
cable to sockets.

accept ()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair(conn, address) whereconnis anewsocket object usable to send and receive data on the connection,
andaddressis the address bound to the socket on the other end of the connection.

bind (address)
Bind the socket toaddress. The socket must not already be bound. (The format ofaddressdepends on the
address family — see above.)Note: This method has historically accepted a pair of parameters forAF INET
addresses instead of only a tuple. This was never intentional and is no longer be available in Python 2.0.

close ()
Close the socket. All future operations on the socket object will fail. The remote end will receive no more data
(after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

connect (address)
Connect to a remote socket ataddress. (The format ofaddressdepends on the address family — see above.)
Note: This method has historically accepted a pair of parameters forAF INET addresses instead of only a
tuple. This was never intentional and is no longer available in Python 2.0 and later.

connect ex (address)
Like connect(address) , but return an error indicator instead of raising an exception for errors returned by
the C-levelconnect() call (other problems, such as “host not found,” can still raise exceptions). The error
indicator is0 if the operation succeeded, otherwise the value of theerrno variable. This is useful, e.g.,
for asynchronous connects.Note: This method has historically accepted a pair of parameters forAF INET
addresses instead of only a tuple. This was never intentional and is no longer be available in Python 2.0 and
later.

fileno ()
Return the socket’s file descriptor (a small integer). This is useful withselect.select() .

getpeername ()
Return the remote address to which the socket is connected. This is useful to find out the port number of a
remote IP socket, for instance. (The format of the address returned depends on the address family — see above.)
On some systems this function is not supported.

getsockname ()
Return the socket’s own address. This is useful to find out the port number of an IP socket, for instance. (The
format of the address returned depends on the address family — see above.)

getsockopt (level, optname[, buflen])
Return the value of the given socket option (see the UNIX man pagegetsockopt(2)). The needed symbolic

212 Chapter 7. Optional Operating System Services

constants (SO * etc.) are defined in this module. Ifbuflenis absent, an integer option is assumed and its integer
value is returned by the function. Ifbuflenis present, it specifies the maximum length of the buffer used to
receive the option in, and this buffer is returned as a string. It is up to the caller to decode the contents of the
buffer (see the optional built-in modulestruct for a way to decode C structures encoded as strings).

listen (backlog)
Listen for connections made to the socket. Thebacklogargument specifies the maximum number of queued
connections and should be at least 1; the maximum value is system-dependent (usually 5).

makefile ([mode[, bufsize]])
Return afile objectassociated with the socket. (File objects are described in 2.1.7, “File Objects.”) The file
object references adup() ped version of the socket file descriptor, so the file object and socket object may be
closed or garbage-collected independently. The optionalmodeandbufsizearguments are interpreted the same
way as by the built-inopen() function.

recv (bufsize[, flags])
Receive data from the socket. The return value is a string representing the data received. The maximum amount
of data to be received at once is specified bybufsize. See the UNIX manual pagerecv(2) for the meaning of the
optional argumentflags; it defaults to zero.

recvfrom (bufsize[, flags])
Receive data from the socket. The return value is a pair(string, address) wherestring is a string representing
the data received andaddressis the address of the socket sending the data. The optionalflagsargument has the
same meaning as forrecv() above. (The format ofaddressdepends on the address family — see above.)

send (string[, flags])
Send data to the socket. The socket must be connected to a remote socket. The optionalflagsargument has the
same meaning as forrecv() above. Returns the number of bytes sent.

sendto (string[, flags], address)
Send data to the socket. The socket should not be connected to a remote socket, since the destination socket
is specified byaddress. The optionalflagsargument has the same meaning as forrecv() above. Return the
number of bytes sent. (The format ofaddressdepends on the address family — see above.)

setblocking (flag)
Set blocking or non-blocking mode of the socket: ifflag is 0, the socket is set to non-blocking, else to blocking
mode. Initially all sockets are in blocking mode. In non-blocking mode, if arecv() call doesn’t find any data,
or if a send() call can’t immediately dispose of the data, aerror exception is raised; in blocking mode, the
calls block until they can proceed.

setsockopt (level, optname, value)
Set the value of the given socket option (see the UNIX manual pagesetsockopt(2)). The needed symbolic
constants are defined in thesocket module (SO * etc.). The value can be an integer or a string representing
a buffer. In the latter case it is up to the caller to ensure that the string contains the proper bits (see the optional
built-in modulestruct for a way to encode C structures as strings).

shutdown (how)
Shut down one or both halves of the connection. Ifhowis 0, further receives are disallowed. Ifhowis 1, further
sends are disallowed. Ifhow is 2, further sends and receives are disallowed.

Note that there are no methodsread() or write() ; userecv() andsend() withoutflagsargument instead.

7.2.2 Example

Here are two minimal example programs using the TCP/IP protocol: a server that echoes all data that it receives back
(servicing only one client), and a client using it. Note that a server must perform the sequencesocket() , bind() ,
listen() , accept() (possibly repeating theaccept() to service more than one client), while a client only
needs the sequencesocket() , connect() . Also note that the server does notsend() /recv() on the socket it

7.2. socket — Low-level networking interface 213

is listening on but on the new socket returned byaccept() .

Echo server program
import socket

HOST = ’’ # Symbolic name meaning the local host
PORT = 50007 # Arbitrary non-privileged port
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
print ’Connected by’, addr
while 1:

data = conn.recv(1024)
if not data: break
conn.send(data)

conn.close()

Echo client program
import socket

HOST = ’daring.cwi.nl’ # The remote host
PORT = 50007 # The same port as used by the server
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((HOST, PORT))
s.send(’Hello, world’)
data = s.recv(1024)
s.close()
print ’Received’, ‘data‘

7.3 select — Waiting for I/O completion

This module provides access to theselect() andpoll() functions available in most operating systems. Note that
on Windows, it only works for sockets; on other operating systems, it also works for other file types (in particular, on
UNIX , it works on pipes). It cannot be used on regular files to determine whether a file has grown since it was last
read.

The module defines the following:

exceptionerror
The exception raised when an error occurs. The accompanying value is a pair containing the numeric error code
from errno and the corresponding string, as would be printed by the C functionperror() .

poll ()
(Not supported by all operating systems.) Returns a polling object, which supports registering and unregistering
file descriptors, and then polling them for I/O events; see section 7.3.1 below for the methods supported by
polling objects.

select (iwtd, owtd, ewtd[, timeout])
This is a straightforward interface to the UNIX select() system call. The first three arguments are lists of
‘waitable objects’: either integers representing file descriptors or objects with a parameterless method named
fileno() returning such an integer. The three lists of waitable objects are for input, output and ‘exceptional
conditions’, respectively. Empty lists are allowed, but acceptance of three empty lists is platform-dependent.
(It is known to work on UNIX but not on Windows.) The optionaltimeoutargument specifies a time-out as a

214 Chapter 7. Optional Operating System Services

floating point number in seconds. When thetimeoutargument is omitted the function blocks until at least one
file descriptor is ready. A time-out value of zero specifies a poll and never blocks.

The return value is a triple of lists of objects that are ready: subsets of the first three arguments. When the
time-out is reached without a file descriptor becoming ready, three empty lists are returned.

Amongst the acceptable object types in the lists are Python file objects (e.g.sys.stdin , or objects returned
by open() or os.popen()), socket objects returned bysocket.socket() , . You may also define a
wrapperclass yourself, as long as it has an appropriatefileno() method (that really returns a file descriptor,
not just a random integer).Note: File objects on Windows are not acceptable, but sockets are. On Windows,
the underlyingselect() function is provided by the WinSock library, and does not handle file desciptors that
don’t originate from WinSock.

7.3.1 Polling Objects

Thepoll() system call, supported on most Unix systems, provides better scalability for network servers that service
many, many clients at the same time.poll() scales better because the system call only requires listing the file
descriptors of interest, whileselect() builds a bitmap, turns on bits for the fds of interest, and then afterward the
whole bitmap has to be linearly scanned again.select() is O(highest file descriptor), whilepoll() is O(number
of file descriptors).

register (fd[, eventmask])
Register a file descriptor with the polling object. Future calls to thepoll() method will then check whether
the file descriptor has any pending I/O events.fd can be either an integer, or an object with afileno() method
that returns an integer. File objects implementfileno() , so they can also be used as the argument.

eventmaskis an optional bitmask describing the type of events you want to check for, and can be a combination
of the constantsPOLLIN, POLLPRI, andPOLLOUT, described in the table below. If not specified, the default
value used will check for all 3 types of events.

Constant Meaning
POLLIN There is data to read
POLLPRI There is urgent data to read
POLLOUT Ready for output: writing will not block
POLLERR Error condition of some sort
POLLHUP Hung up
POLLNVAL Invalid request: descriptor not open

Registering a file descriptor that’s already registered is not an error, and has the same effect as registering the
descriptor exactly once.

unregister (fd)
Remove a file descriptor being tracked by a polling object. Just like theregister() method,fd can be an
integer or an object with afileno() method that returns an integer.

Attempting to remove a file descriptor that was never registered causes aKeyError exception to be raised.

poll ([timeout])
Polls the set of registered file descriptors, and returns a possibly-empty list containing(fd, event) 2-tuples for
the descriptors that have events or errors to report.fd is the file descriptor, andeventis a bitmask with bits set for
the reported events for that descriptor —POLLIN for waiting input,POLLOUTto indicate that the descriptor
can be written to, and so forth. An empty list indicates that the call timed out and no file descriptors had any
events to report. Iftimeoutis given, it specifies the length of time in milliseconds which the system will wait for
events before returning. Iftimeoutis omitted, negative, orNone, the call will block until there is an event for
this poll object.

7.4 thread — Multiple threads of control

7.4. thread — Multiple threads of control 215

This module provides low-level primitives for working with multiple threads (a.k.a.light-weight processesor tasks)
— multiple threads of control sharing their global data space. For synchronization, simple locks (a.k.a.mutexesor
binary semaphores) are provided.

The module is optional. It is supported on Windows NT and ’95, SGI IRIX, Solaris 2.x, as well as on systems that
have a POSIX thread (a.k.a. “pthread”) implementation.

It defines the following constant and functions:

exceptionerror
Raised on thread-specific errors.

LockType
This is the type of lock objects.

start new thread (function, args[, kwargs])
Start a new thread. The thread executes the functionfunctionwith the argument listargs (which must be a
tuple). The optionalkwargsargument specifies a dictionary of keyword arguments. When the function returns,
the thread silently exits. When the function terminates with an unhandled exception, a stack trace is printed and
then the thread exits (but other threads continue to run).

exit ()
Raise theSystemExit exception. When not caught, this will cause the thread to exit silently.

exit thread ()
Deprecated since release 1.5.2.Useexit() .

This is an obsolete synonym forexit() .

allocate lock ()
Return a new lock object. Methods of locks are described below. The lock is initially unlocked.

get ident ()
Return the ‘thread identifier’ of the current thread. This is a nonzero integer. Its value has no direct meaning;
it is intended as a magic cookie to be used e.g. to index a dictionary of thread-specific data. Thread identifiers
may be recycled when a thread exits and another thread is created.

Lock objects have the following methods:

acquire ([waitflag])
Without the optional argument, this method acquires the lock unconditionally, if necessary waiting until it is
released by another thread (only one thread at a time can acquire a lock — that’s their reason for existence), and
returnsNone. If the integerwaitflagargument is present, the action depends on its value: if it is zero, the lock
is only acquired if it can be acquired immediately without waiting, while if it is nonzero, the lock is acquired
unconditionally as before. If an argument is present, the return value is1 if the lock is acquired successfully,0
if not.

release ()
Releases the lock. The lock must have been acquired earlier, but not necessarily by the same thread.

locked ()
Return the status of the lock:1 if it has been acquired by some thread,0 if not.

Caveats:

• Threads interact strangely with interrupts: theKeyboardInterrupt exception will be received by an arbi-
trary thread. (When thesignal module is available, interrupts always go to the main thread.)

• Callingsys.exit() or raising theSystemExit exception is equivalent to callingexit() .

• Not all built-in functions that may block waiting for I/O allow other threads to run. (The most popular ones
(time.sleep() , file.read() , select.select()) work as expected.)

216 Chapter 7. Optional Operating System Services

• It is not possible to interrupt theacquire() method on a lock — theKeyboardInterrupt exception will
happen after the lock has been acquired.

• When the main thread exits, it is system defined whether the other threads survive. On SGI IRIX using the
native thread implementation, they survive. On most other systems, they are killed without executingtry ...
finally clauses or executing object destructors.

• When the main thread exits, it does not do any of its usual cleanup (except thattry ... finally clauses are
honored), and the standard I/O files are not flushed.

7.5 threading — Higher-level threading interface

This module constructs higher-level threading interfaces on top of the lower levelthread module.

This module is safe for use with ‘from threading import * ’. It defines the following functions and objects:

activeCount ()
Return the number of currently activeThread objects. The returned count is equal to the length of the list
returned byenumerate() . A function that returns the number of currently active threads.

Condition ()
A factory function that returns a new condition variable object. A condition variable allows one or more threads
to wait until they are notified by another thread.

currentThread ()
Return the currentThread object, corresponding to the caller’s thread of control. If the caller’s thread of
control was not created through thethreading module, a dummy thread object with limited functionality is
returned.

enumerate ()
Return a list of all currently activeThread objects. The list includes daemonic threads, dummy thread objects
created bycurrentThread() , and the main thread. It excludes terminated threads and threads that have not
yet been started.

Event ()
A factory function that returns a new event object. An event manages a flag that can be set to true with the
set() method and reset to false with theclear() method. Thewait() method blocks until the flag is true.

Lock ()
A factory function that returns a new primitive lock object. Once a thread has acquired it, subsequent attempts
to acquire it block, until it is released; any thread may release it.

RLock ()
A factory function that returns a new reentrant lock object. A reentrant lock must be released by the thread that
acquired it. Once a thread has acquired a reentrant lock, the same thread may acquire it again without blocking;
the thread must release it once for each time it has acquired it.

Semaphore ()
A factory function that returns a new semaphore object. A semaphore manages a counter representing the
number ofrelease() calls minus the number ofacquire() calls, plus an initial value. Theacquire()
method blocks if necessary until it can return without making the counter negative.

classThread
A class that represents a thread of control. This class can be safely subclassed in a limited fashion.

Detailed interfaces for the objects are documented below.

The design of this module is loosely based on Java’s threading model. However, where Java makes locks and condition
variables basic behavior of every object, they are separate objects in Python. Python’sThread class supports a subset

7.5. threading — Higher-level threading interface 217

of the behavior of Java’s Thread class; currently, there are no priorities, no thread groups, and threads cannot be
destroyed, stopped, suspended, resumed, or interrupted. The static methods of Java’s Thread class, when implemented,
are mapped to module-level functions.

All of the methods described below are executed atomically.

7.5.1 Lock Objects

A primitive lock is a synchronization primitive that is not owned by a particular thread when locked. In Python, it is
currently the lowest level synchronization primitive available, implemented directly by thethread extension module.

A primitive lock is in one of two states, “locked” or “unlocked”. It is created in the unlocked state. It has two basic
methods,acquire() andrelease() . When the state is unlocked,acquire() changes the state to locked and
returns immediately. When the state is locked,acquire() blocks until a call torelease() in another thread
changes it to unlocked, then theacquire() call resets it to locked and returns. Therelease() method should
only be called in the locked state; it changes the state to unlocked and returns immediately. When more than one thread
is blocked inacquire() waiting for the state to turn to unlocked, only one thread proceeds when arelease()
call resets the state to unlocked; which one of the waiting threads proceeds is not defined, and may vary across
implementations.

All methods are executed atomically.

acquire ([blocking = 1])
Acquire a lock, blocking or non-blocking.

When invoked without arguments, block until the lock is unlocked, then set it to locked, and return. There is no
return value in this case.

When invoked with theblockingargument set to true, do the same thing as when called without arguments, and
return true.

When invoked with theblockingargument set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and return true.

release ()
Release a lock.

When the lock is locked, reset it to unlocked, and return. If any other threads are blocked waiting for the lock to
become unlocked, allow exactly one of them to proceed.

Do not call this method when the lock is unlocked.

There is no return value.

7.5.2 RLock Objects

A reentrant lock is a synchronization primitive that may be acquired multiple times by the same thread. Internally, it
uses the concepts of “owning thread” and “recursion level” in addition to the locked/unlocked state used by primitive
locks. In the locked state, some thread owns the lock; in the unlocked state, no thread owns it.

To lock the lock, a thread calls itsacquire() method; this returns once the thread owns the lock. To unlock the
lock, a thread calls itsrelease() method. acquire() /release() call pairs may be nested; only the final
release() (i.e. therelease() of the outermost pair) resets the lock to unlocked and allows another thread
blocked inacquire() to proceed.

acquire ([blocking = 1])
Acquire a lock, blocking or non-blocking.

When invoked without arguments: if this thread already owns the lock, increment the recursion level by one, and
return immediately. Otherwise, if another thread owns the lock, block until the lock is unlocked. Once the lock
is unlocked (not owned by any thread), then grab ownership, set the recursion level to one, and return. If more

218 Chapter 7. Optional Operating System Services

than one thread is blocked waiting until the lock is unlocked, only one at a time will be able to grab ownership
of the lock. There is no return value in this case.

When invoked with theblockingargument set to true, do the same thing as when called without arguments, and
return true.

When invoked with theblockingargument set to false, do not block. If a call without an argument would block,
return false immediately; otherwise, do the same thing as when called without arguments, and return true.

release ()
Release a lock, decrementing the recursion level. If after the decrement it is zero, reset the lock to unlocked
(not owned by any thread), and if any other threads are blocked waiting for the lock to become unlocked, allow
exactly one of them to proceed. If after the decrement the recursion level is still nonzero, the lock remains
locked and owned by the calling thread.

Only call this method when the calling thread owns the lock. Do not call this method when the lock is unlocked.

There is no return value.

7.5.3 Condition Objects

A condition variable is always associated with some kind of lock; this can be passed in or one will be created by
default. (Passing one in is useful when several condition variables must share the same lock.)

A condition variable hasacquire() andrelease() methods that call the corresponding methods of the associated
lock. It also has await() method, andnotify() andnotifyAll() methods. These three must only be called
when the calling thread has acquired the lock.

The wait() method releases the lock, and then blocks until it is awakened by anotify() or notifyAll()
call for the same condition variable in another thread. Once awakened, it re-acquires the lock and returns. It is also
possible to specify a timeout.

The notify() method wakes up one of the threads waiting for the condition variable, if any are waiting. The
notifyAll() method wakes up all threads waiting for the condition variable.

Note: thenotify() and notifyAll() methods don’t release the lock; this means that the thread or threads
awakened will not return from theirwait() call immediately, but only when the thread that callednotify() or
notifyAll() finally relinquishes ownership of the lock.

Tip: the typical programming style using condition variables uses the lock to synchronize access to some shared state;
threads that are interested in a particular change of state callwait() repeatedly until they see the desired state, while
threads that modify the state callnotify() or notifyAll() when they change the state in such a way that it could
possibly be a desired state for one of the waiters. For example, the following code is a generic producer-consumer
situation with unlimited buffer capacity:

Consume one item
cv.acquire()
while not an_item_is_available():

cv.wait()
get_an_available_item()
cv.release()

Produce one item
cv.acquire()
make_an_item_available()
cv.notify()
cv.release()

To choose betweennotify() andnotifyAll() , consider whether one state change can be interesting for only

7.5. threading — Higher-level threading interface 219

one or several waiting threads. E.g. in a typical producer-consumer situation, adding one item to the buffer only needs
to wake up one consumer thread.

classCondition ([lock])
If the lockargument is given and notNone, it must be aLock or RLock object, and it is used as the underlying
lock. Otherwise, a newRLock object is created and used as the underlying lock.

acquire (*args)
Acquire the underlying lock. This method calls the corresponding method on the underlying lock; the return
value is whatever that method returns.

release ()
Release the underlying lock. This method calls the corresponding method on the underlying lock; there is no
return value.

wait ([timeout])
Wait until notified or until a timeout occurs. This must only be called when the calling thread has acquired the
lock.

This method releases the underlying lock, and then blocks until it is awakened by anotify() or noti-
fyAll() call for the same condition variable in another thread, or until the optional timeout occurs. Once
awakened or timed out, it re-acquires the lock and returns.

When thetimeoutargument is present and notNone, it should be a floating point number specifying a timeout
for the operation in seconds (or fractions thereof).

When the underlying lock is anRLock , it is not released using itsrelease() method, since this may not
actually unlock the lock when it was acquired multiple times recursively. Instead, an internal interface of the
RLock class is used, which really unlocks it even when it has been recursively acquired several times. Another
internal interface is then used to restore the recursion level when the lock is reacquired.

notify ()
Wake up a thread waiting on this condition, if any. This must only be called when the calling thread has acquired
the lock.

This method wakes up one of the threads waiting for the condition variable, if any are waiting; it is a no-op if
no threads are waiting.

The current implementation wakes up exactly one thread, if any are waiting. However, it’s not safe to rely on
this behavior. A future, optimized implementation may occasionally wake up more than one thread.

Note: the awakened thread does not actually return from itswait() call until it can reacquire the lock. Since
notify() does not release the lock, its caller should.

notifyAll ()
Wake up all threads waiting on this condition. This method acts likenotify() , but wakes up all waiting
threads instead of one.

7.5.4 Semaphore Objects

This is one of the oldest synchronization primitives in the history of computer science, invented by the early Dutch
computer scientist Edsger W. Dijkstra (he usedP() andV() instead ofacquire() andrelease()).

A semaphore manages an internal counter which is decremented by eachacquire() call and incremented by each
release() call. The counter can never go below zero; whenacquire() finds that it is zero, it blocks, waiting
until some other thread callsrelease() .

classSemaphore ([value])
The optional argument gives the initial value for the internal counter; it defaults to1.

acquire ([blocking])
Acquire a semaphore.

220 Chapter 7. Optional Operating System Services

When invoked without arguments: if the internal counter is larger than zero on entry, decrement it by one
and return immediately. If it is zero on entry, block, waiting until some other thread has calledrelease() to
make it larger than zero. This is done with proper interlocking so that if multipleacquire() calls are blocked,
release() will wake exactly one of them up. The implementation may pick one at random, so the order in
which blocked threads are awakened should not be relied on. There is no return value in this case.

When invoked withblockingset to true, do the same thing as when called without arguments, and return true.

When invoked withblockingset to false, do not block. If a call without an argument would block, return false
immediately; otherwise, do the same thing as when called without arguments, and return true.

release ()
Release a semaphore, incrementing the internal counter by one. When it was zero on entry and another thread
is waiting for it to become larger than zero again, wake up that thread.

7.5.5 Event Objects

This is one of the simplest mechanisms for communication between threads: one thread signals an event and one or
more other threads are waiting for it.

An event object manages an internal flag that can be set to true with theset() method and reset to false with the
clear() method. Thewait() method blocks until the flag is true.

classEvent ()
The internal flag is initially false.

isSet ()
Return true if and only if the internal flag is true.

set ()
Set the internal flag to true. All threads waiting for it to become true are awakened. Threads that callwait()
once the flag is true will not block at all.

clear ()
Reset the internal flag to false. Subsequently, threads callingwait() will block until set() is called to set
the internal flag to true again.

wait ([timeout])
Block until the internal flag is true. If the internal flag is true on entry, return immediately. Otherwise, block
until another thread callsset() to set the flag to true, or until the optional timeout occurs.

When the timeout argument is present and notNone, it should be a floating point number specifying a timeout
for the operation in seconds (or fractions thereof).

7.5.6 Thread Objects

This class represents an activity that is run in a separate thread of control. There are two ways to specify the activity:
by passing a callable object to the constructor, or by overriding therun() method in a subclass. No other methods
(except for the constructor) should be overridden in a subclass. In other words,only override the init () and
run() methods of this class.

Once a thread object is created, its activity must be started by calling the thread’sstart() method. This invokes the
run() method in a separate thread of control.

Once the thread’s activity is started, the thread is considered ’alive’ and ’active’ (these concepts are almost, but not
quite exactly, the same; their definition is intentionally somewhat vague). It stops being alive and active when its
run() method terminates – either normally, or by raising an unhandled exception. TheisAlive() method tests
whether the thread is alive.

7.5. threading — Higher-level threading interface 221

Other threads can call a thread’sjoin() method. This blocks the calling thread until the thread whosejoin()
method is called is terminated.

A thread has a name. The name can be passed to the constructor, set with thesetName() method, and retrieved with
thegetName() method.

A thread can be flagged as a “daemon thread”. The significance of this flag is that the entire Python program exits
when only daemon threads are left. The initial value is inherited from the creating thread. The flag can be set with the
setDaemon() method and retrieved with theisDaemon() method.

There is a “main thread” object; this corresponds to the initial thread of control in the Python program. It is not a
daemon thread.

There is the possibility that “dummy thread objects” are created. These are thread objects corresponding to “alien
threads”. These are threads of control started outside the threading module, e.g. directly from C code. Dummy thread
objects have limited functionality; they are always considered alive, active, and daemonic, and cannot bejoin() ed.
They are never deleted, since it is impossible to detect the termination of alien threads.

classThread (group=None, target=None, name=None, args=(), kwargs=–˝)
This constructor should always be called with keyword arguments. Arguments are:

groupshould beNone; reserved for future extension when aThreadGroup class is implemented.

target is the callable object to be invoked by therun() method. Defaults toNone, meaning nothing is called.

nameis the thread name. By default, a unique name is constructed of the form “Thread-N” whereN is a small
decimal number.

args is the argument tuple for the target invocation. Defaults to() .

kwargsis a dictionary of keyword arguments for the target invocation. Defaults to{} .

If the subclass overrides the constructor, it must make sure to invoke the base class constructor
(Thread. init ()) before doing anything else to the thread.

start ()
Start the thread’s activity.

This must be called at most once per thread object. It arranges for the object’srun() method to be invoked in
a separate thread of control.

run ()
Method representing the thread’s activity.

You may override this method in a subclass. The standardrun() method invokes the callable object passed to
the object’s constructor as thetarget argument, if any, with sequential and keyword arguments taken from the
argsandkwargsarguments, respectively.

join ([timeout])
Wait until the thread terminates. This blocks the calling thread until the thread whosejoin() method is called
terminates – either normally or through an unhandled exception – or until the optional timeout occurs.

When thetimeoutargument is present and notNone, it should be a floating point number specifying a timeout
for the operation in seconds (or fractions thereof).

A thread can bejoin() ed many times.

A thread cannot join itself because this would cause a deadlock.

It is an error to attempt tojoin() a thread before it has been started.

getName ()
Return the thread’s name.

setName (name)
Set the thread’s name.

The name is a string used for identification purposes only. It has no semantics. Multiple threads may be given
the same name. The initial name is set by the constructor.

222 Chapter 7. Optional Operating System Services

isAlive ()
Return whether the thread is alive.

Roughly, a thread is alive from the moment thestart() method returns until itsrun() method terminates.

isDaemon ()
Return the thread’s daemon flag.

setDaemon (daemonic)
Set the thread’s daemon flag to the Boolean valuedaemonic. This must be called beforestart() is called.

The initial value is inherited from the creating thread.

The entire Python program exits when no active non-daemon threads are left.

7.6 Queue — A synchronized queue class

The Queue module implements a multi-producer, multi-consumer FIFO queue. It is especially useful in threads
programming when information must be exchanged safely between multiple threads. TheQueue class in this module
implements all the required locking semantics. It depends on the availability of thread support in Python.

TheQueue module defines the following class and exception:

classQueue(maxsize)
Constructor for the class.maxsizeis an integer that sets the upperbound limit on the number of items that can
be placed in the queue. Insertion will block once this size has been reached, until queue items are consumed. If
maxsizeis less than or equal to zero, the queue size is infinite.

exceptionEmpty
Exception raised when non-blockingget() (or get nowait()) is called on aQueue object which is empty
or locked.

exceptionFull
Exception raised when non-blockingput() (or put nowait()) is called on aQueue object which is full
or locked.

7.6.1 Queue Objects

ClassQueue implements queue objects and has the methods described below. This class can be derived from in order
to implement other queue organizations (e.g. stack) but the inheritable interface is not described here. See the source
code for details. The public methods are:

qsize ()
Return the approximate size of the queue. Because of multithreading semantics, this number is not reliable.

empty ()
Return1 if the queue is empty,0 otherwise. Because of multithreading semantics, this is not reliable.

full ()
Return1 if the queue is full,0 otherwise. Because of multithreading semantics, this is not reliable.

put (item[, block])
Put item into the queue. If optional argumentblock is 1 (the default), block if necessary until a free slot is
available. Otherwise (block is 0), put item on the queue if a free slot is immediately available, else raise the
Full exception.

put nowait (item)
Equivalent toput(item, 0) .

7.6. Queue — A synchronized queue class 223

get ([block])
Remove and return an item from the queue. If optional argumentblock is 1 (the default), block if necessary until
an item is available. Otherwise (block is 0), return an item if one is immediately available, else raise theEmpty
exception.

get nowait ()
Equivalent toget(0) .

7.7 mmap— Memory-mapped file support

Memory-mapped file objects behave like both mutable strings and like file objects. You can use mmap objects in most
places where strings are expected; for example, you can use there module to search through a memory-mapped file.
Since they’re mutable, you can change a single character by doingobj[index] = ’a’ , or change a substring by
assigning to a slice:obj[i1: i2] = ’...’ . You can also read and write data starting at the current file position,
andseek() through the file to different positions.

A memory-mapped file is created by the following function, which is different on Unix and on Windows.

mmap(fileno, length[, tagname])
(Windows version) Maps lengthbytes from the file specified by the file handlefileno, and returns a mmap
object. If lengthis 0, the maximum length of the map will be the current size of the file whenmmap() is called.
If you wish to map an existing Python file object, use itsfileno() method to obtain the correct value for the
filenoparameter. The file must be opened for update.

tagname, if specified and notNone, is a string giving a tag name for the mapping. Windows allows you to have
many different mappings against the same file. If you specify the name of an existing tag, that tag is opened,
otherwise a new tag of this name is created. If this parameter is omitted orNone, the mapping is created
without a name. Avoiding the use of the tag parameter will assist in keeping your code portable between UNIX

and Windows.

mmap(fileno, size[, flags, prot])
(UNIX version) Mapslengthbytes from the file specified by the file handlefileno, and returns a mmap object.
If you wish to map an existing Python file object, use itsfileno() method to obtain the correct value for the
filenoparameter. The file must be opened for update.

flagsspecifies the nature of the mapping.MAP PRIVATE creates a private copy-on-write mapping, so changes
to the contents of the mmap object will be private to this process, andMAP SHAREDcreates a mapping that’s
shared with all other processes mapping the same areas of the file. The default value isMAP SHARED.

prot, if specified, gives the desired memory protection; the two most useful values arePROT READ
and PROT WRITE, to specify that the pages may be read or written.prot defaults toPROT READ |
PROT WRITE.

Memory-mapped file objects support the following methods:

close ()
Close the file. Subsequent calls to other methods of the object will result in an exception being raised.

find (string[, start])
Returns the lowest index in the object where the substringstring is found. Returns-1 on failure. start is the
index at which the search begins, and defaults to zero.

flush ([offset, size])
Flushes changes made to the in-memory copy of a file back to disk. Without use of this call there is no guarantee
that changes are written back before the object is destroyed. Ifoffsetandsizeare specified, only changes to the
given range of bytes will be flushed to disk; otherwise, the whole extent of the mapping is flushed.

move(dest, src, count)
Copy thecountbytes starting at offsetsrc to the destination indexdest.

224 Chapter 7. Optional Operating System Services

read (num)
Return a string containing up tonumbytes starting from the current file position; the file position is updated to
point after the bytes that were returned.

read byte ()
Returns a string of length 1 containing the character at the current file position, and advances the file position
by 1.

readline ()
Returns a single line, starting at the current file position and up to the next newline.

resize (newsize)

seek (pos[, whence])
Set the file’s current position.whenceargument is optional and defaults to0 (absolute file positioning); other
values are1 (seek relative to the current position) and2 (seek relative to the file’s end).

size ()
Return the length of the file, which can be larger than the size of the memory-mapped area.

tell ()
Returns the current position of the file pointer.

write (string)
Write the bytes instring into memory at the current position of the file pointer; the file position is updated to
point after the bytes that were written.

write byte (byte)
Write the single-character stringbyteinto memory at the current position of the file pointer; the file position is
advanced by1.

7.8 anydbm — Generic access to DBM-style databases

anydbm is a generic interface to variants of the DBM database —dbhash (requiresbsddb), gdbm, ordbm. If none
of these modules is installed, the slow-but-simple implementation in moduledumbdbmwill be used.

open (filename[, flag[, mode]])
Open the database filefilenameand return a corresponding object.

If the database file already exists, thewhichdb module is used to determine its type and the appropriate module
is used; if it does not exist, the first module listed above that can be imported is used.

The optionalflag argument can be’r’ to open an existing database for reading only,’w’ to open an existing
database for reading and writing,’c’ to create the database if it doesn’t exist, or’n’ , which will always create
a new empty database. If not specified, the default value is’r’ .

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created. It
defaults to octal0666 (and will be modified by the prevailing umask).

exceptionerror
A tuple containing the exceptions that can be raised by each of the supported modules, with a unique exception
anydbm.error as the first item — the latter is used whenanydbm.error is raised.

The object returned byopen() supports most of the same functionality as dictionaries; keys and their corresponding
values can be stored, retrieved, and deleted, and thehas key() andkeys() methods are available. Keys and
values must always be strings.

See Also:

Moduleanydbm (section 7.8):
Generic interface todbm-style databases.

7.8. anydbm — Generic access to DBM-style databases 225

Moduledbhash (section 7.10):
BSDdb database interface.

Moduledbm (section 8.6):
Standard UNIX database interface.

Moduledumbdbm(section 7.9):
Portable implementation of thedbm interface.

Modulegdbm (section 8.7):
GNU database interface, based on thedbm interface.

Moduleshelve (section 3.17):
General object persistence built on top of the Pythondbm interface.

Modulewhichdb (section 7.11):
Utility module used to determine the type of an existing database.

7.9 dumbdbm— Portable DBM implementation

A simple and slow database implemented entirely in Python. This should only be used when no other DBM-style
database is available.

open (filename[, flag[, mode]])
Open the database filefilenameand return a corresponding object. The optionalflag argument can be’r’ to
open an existing database for reading only,’w’ to open an existing database for reading and writing,’c’ to
create the database if it doesn’t exist, or’n’ , which will always create a new empty database. If not specified,
the default value is’r’ .

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created. It
defaults to octal0666 (and will be modified by the prevailing umask).

exceptionerror
Raised for errors not reported asKeyError errors.

See Also:

Moduleanydbm (section 7.8):
Generic interface todbm-style databases.

Modulewhichdb (section 7.11):
Utility module used to determine the type of an existing database.

7.10 dbhash — DBM-style interface to the BSD database library

The dbhash module provides a function to open databases using the BSDdb library. This module mirrors the
interface of the other Python database modules that provide access to DBM-style databases. Thebsddb module is
required to usedbhash .

This module provides an exception and a function:

exceptionerror
Exception raised on database errors other thanKeyError . It is a synonym forbsddb.error .

open (path[, flag[, mode]])
Open adb database and return the database object. Thepathargument is the name of the database file.

Theflag argument can be’r’ (the default),’w’ , ’c’ (which creates the database if it doesn’t exist), or’n’
(which always creates a new empty database). For platforms on which the BSDdb library supports locking, an

226 Chapter 7. Optional Operating System Services

‘ l ’ can be appended to indicate that locking should be used.

The optionalmodeparameter is used to indicate the UNIX permission bits that should be set if a new database
must be created; this will be masked by the current umask value for the process.

See Also:

Moduleanydbm (section 7.8):
Generic interface todbm-style databases.

Modulebsddb (section 7.12):
Lower-level interface to the BSDdb library.

Modulewhichdb (section 7.11):
Utility module used to determine the type of an existing database.

7.10.1 Database Objects

The database objects returned byopen() provide the methods common to all the DBM-style databases. The follow-
ing methods are available in addition to the standard methods.

first ()
It’s possible to loop over every key in the database using this method and thenext() method. The traversal is
ordered by the databases internal hash values, and won’t be sorted by the key values. This method returns the
starting key.

last ()
Return the last key in a database traversal. This may be used to begin a reverse-order traversal; seeprevi-
ous() .

next (key)
Returns the key that followskeyin the traversal. The following code prints every key in the databasedb , without
having to create a list in memory that contains them all:

k = db.first()
while k != None:

print k
k = db.next(k)

previous (key)
Return the key that comes beforekeyin a forward-traversal of the database. In conjunction withlast() , this
may be used to implement a reverse-order traversal.

sync ()
This method forces any unwritten data to be written to the disk.

7.11 whichdb — Guess which DBM module created a database

The single function in this module attempts to guess which of the several simple database modules available–dbm,
gdbm, or dbhash –should be used to open a given file.

whichdb (filename)
Returns one of the following values:None if the file can’t be opened because it’s unreadable or doesn’t exist;
the empty string (’’) if the file’s format can’t be guessed; or a string containing the required module name, such
as’dbm’ or ’gdbm’ .

7.11. whichdb — Guess which DBM module created a database 227

7.12 bsddb — Interface to Berkeley DB library

The bsddb module provides an interface to the Berkeley DB library. Users can create hash, btree or record based
library files using the appropriate open call. Bsddb objects behave generally like dictionaries. Keys and values must
be strings, however, so to use other objects as keys or to store other kinds of objects the user must serialize them
somehow, typically using marshal.dumps or pickle.dumps.

There are two incompatible versions of the underlying library. Version 1.85 is widely available, but has some known
bugs. Version 2 is not quite as widely used, but does offer some improvements. Thebsddb module uses the 1.85
interface. Starting with Python 2.0, theconfigurescript can usually determine the version of the library which is avail-
able and build it correctly. If you have difficulty gettingconfigure to do the right thing, run it with the--help option to
get information about additional options that can help. On Windows, you will need to define theHAVE DB 185 H
macro if you are building Python from source and using version 2 of the DB library.

The bsddb module defines the following functions that create objects that access the appropriate type of Berkeley
DB file. The first two arguments of each function are the same. For ease of portability, only the first two arguments
should be used in most instances.

hashopen (filename[, flag[, mode[, bsize[, ffactor[, nelem[, cachesize[, hash[, lorder]]]]]]]])
Open the hash format file namedfilename. The optionalflag identifies the mode used to open the file. It may
be ‘r ’ (read only), ‘w’ (read-write), ‘c ’ (read-write - create if necessary) or ‘n’ (read-write - truncate to zero
length). The other arguments are rarely used and are just passed to the low-leveldbopen() function. Consult
the Berkeley DB documentation for their use and interpretation.

btopen (filename[, flag[, mode[, btflags[, cachesize[, maxkeypage[, minkeypage[, psize[, lorder]]]]]]]])
Open the btree format file namedfilename. The optionalflag identifies the mode used to open the file. It may
be ‘r ’ (read only), ‘w’ (read-write), ‘c ’ (read-write - create if necessary) or ‘n’ (read-write - truncate to zero
length). The other arguments are rarely used and are just passed to the low-level dbopen function. Consult the
Berkeley DB documentation for their use and interpretation.

rnopen (filename[, flag[, mode[, rnflags[, cachesize[, psize[, lorder[, reclen[, bval[, bfname]]]]]]]]])
Open a DB record format file namedfilename. The optionalflag identifies the mode used to open the file. It
may be ‘r ’ (read only), ‘w’ (read-write), ‘c ’ (read-write - create if necessary) or ‘n’ (read-write - truncate to
zero length). The other arguments are rarely used and are just passed to the low-level dbopen function. Consult
the Berkeley DB documentation for their use and interpretation.

See Also:

Moduledbhash (section 7.10):
DBM-style interface to thebsddb

7.12.1 Hash, BTree and Record Objects

Once instantiated, hash, btree and record objects support the following methods:

close ()
Close the underlying file. The object can no longer be accessed. Since there is no openopen method for these
objects, to open the file again a newbsddb module open function must be called.

keys ()
Return the list of keys contained in the DB file. The order of the list is unspecified and should not be relied on.
In particular, the order of the list returned is different for different file formats.

has key (key)
Return1 if the DB file contains the argument as a key.

set location (key)
Set the cursor to the item indicated bykeyand return a tuple containing the key and its value. For binary tree

228 Chapter 7. Optional Operating System Services

databases (opened usingbtopen()), if keydoes not actually exist in the database, the cursor will point to the
next item in sorted order and return that key and value. For other databases,KeyError will be raised ifkeyis
not found in the database.

first ()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases.

next ()
Set the cursor to the next item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases.

previous ()
Set the cursor to the first item in the DB file and return it. The order of keys in the file is unspecified, except in
the case of B-Tree databases. This is not supported on hashtable databases (those opened withhashopen()).

last ()
Set the cursor to the last item in the DB file and return it. The order of keys in the file is unspecified. This is not
supported on hashtable databases (those opened withhashopen()).

sync ()
Synchronize the database on disk.

Example:

>>> import bsddb
>>> db = bsddb.btopen(’/tmp/spam.db’, ’c’)
>>> for i in range(10): db[’%d’%i] = ’%d’% (i*i)
...
>>> db[’3’]
’9’
>>> db.keys()
[’0’, ’1’, ’2’, ’3’, ’4’, ’5’, ’6’, ’7’, ’8’, ’9’]
>>> db.first()
(’0’, ’0’)
>>> db.next()
(’1’, ’1’)
>>> db.last()
(’9’, ’81’)
>>> db.set_location(’2’)
(’2’, ’4’)
>>> db.previous()
(’1’, ’1’)
>>> db.sync()
0

7.13 zlib — Compression compatible with gzip

For applications that require data compression, the functions in this module allow compression and decompression,
using the zlib library. The zlib library has its own home page athttp://www.gzip.org/zlib/. Version 1.1.3 is the most
recent version as of September 2000; use a later version if one is available. There are known incompatibilities between
the Python module and earlier versions of the zlib library.

The available exception and functions in this module are:

exceptionerror

7.13. zlib — Compression compatible with gzip 229

Exception raised on compression and decompression errors.

adler32 (string[, value])
Computes a Adler-32 checksum ofstring. (An Adler-32 checksum is almost as reliable as a CRC32 but can be
computed much more quickly.) Ifvalueis present, it is used as the starting value of the checksum; otherwise,
a fixed default value is used. This allows computing a running checksum over the concatenation of several
input strings. The algorithm is not cryptographically strong, and should not be used for authentication or digital
signatures.

compress (string[, level])
Compresses the data instring, returning a string contained compressed data.level is an integer from1 to 9
controlling the level of compression;1 is fastest and produces the least compression,9 is slowest and produces
the most. The default value is6. Raises theerror exception if any error occurs.

compressobj ([level])
Returns a compression object, to be used for compressing data streams that won’t fit into memory at once.level
is an integer from1 to 9 controlling the level of compression;1 is fastest and produces the least compression,
9 is slowest and produces the most. The default value is6.

crc32 (string[, value])
Computes a CRC (Cyclic Redundancy Check) checksum ofstring. If valueis present, it is used as the starting
value of the checksum; otherwise, a fixed default value is used. This allows computing a running checksum over
the concatenation of several input strings. The algorithm is not cryptographically strong, and should not be used
for authentication or digital signatures.

decompress (string[, wbits[, bufsize]])
Decompresses the data instring, returning a string containing the uncompressed data. Thewbits parameter
controls the size of the window buffer. Ifbufsizeis given, it is used as the initial size of the output buffer. Raises
theerror exception if any error occurs.

The absolute value ofwbits is the base two logarithm of the size of the history buffer (the “window size”) used
when compressing data. Its absolute value should be between 8 and 15 for the most recent versions of the zlib
library, larger values resulting in better compression at the expense of greater memory usage. The default value
is 15. Whenwbits is negative, the standardgzip header is suppressed; this is an undocumented feature of the
zlib library, used for compatibility withunzip’s compression file format.

bufsizeis the initial size of the buffer used to hold decompressed data. If more space is required, the buffer size
will be increased as needed, so you don’t have to get this value exactly right; tuning it will only save a few calls
to malloc() . The default size is 16384.

decompressobj ([wbits])
Returns a decompression object, to be used for decompressing data streams that won’t fit into memory at once.
Thewbitsparameter controls the size of the window buffer.

Compression objects support the following methods:

compress (string)
Compressstring, returning a string containing compressed data for at least part of the data instring. This data
should be concatenated to the output produced by any preceding calls to thecompress() method. Some input
may be kept in internal buffers for later processing.

flush ([mode])
All pending input is processed, and a string containing the remaining compressed output is returned.modecan
be selected from the constantsZ SYNC FLUSH, Z FULL FLUSH, or Z FINISH , defaulting toZ FINISH .
Z SYNC FLUSHandZ FULL FLUSHallow compressing further strings of data and are used to allow partial
error recovery on decompression, whileZ FINISH finishes the compressed stream and prevents compressing
any more data. After callingflush() with modeset toZ FINISH , the compress() method cannot be
called again; the only realistic action is to delete the object.

Decompression objects support the following methods, and a single attribute:

230 Chapter 7. Optional Operating System Services

unused data
A string which contains any unused data from the last string fed to this decompression object. If the whole string
turned out to contain compressed data, this is"" , the empty string.

The only way to determine where a string of compressed data ends is by actually decompressing it. This means
that when compressed data is contained part of a larger file, you can only find the end of it by reading data and
feeding it into a decompression object’sdecompress method until theunused data attribute is no longer
the empty string.

decompress (string)
Decompressstring, returning a string containing the uncompressed data corresponding to at least part of the
data instring. This data should be concatenated to the output produced by any preceding calls to thedecom-
press() method. Some of the input data may be preserved in internal buffers for later processing.

flush ()
All pending input is processed, and a string containing the remaining uncompressed output is returned. After
calling flush() , thedecompress() method cannot be called again; the only realistic action is to delete the
object.

See Also:

Modulegzip (section 7.14):
Reading and writinggzip-format files.

http://www.gzip.org/zlib/
The zlib library home page.

7.14 gzip — Support for gzip files

The data compression provided by thezlib module is compatible with that used by the GNU compression program
gzip. Accordingly, thegzip module provides theGzipFile class to read and writegzip-format files, automatically
compressing or decompressing the data so it looks like an ordinary file object. Note that additional file formats which
can be decompressed by thegzip and gunzip programs, such as those produced bycompressand pack, are not
supported by this module.

The module defines the following items:

classGzipFile ([filename[, mode[, compresslevel[, fileobj]]]])
Constructor for theGzipFile class, which simulates most of the methods of a file object, with the exception
of theseek() andtell() methods. At least one offileobjandfilenamemust be given a non-trivial value.

The new class instance is based onfileobj, which can be a regular file, aStringIO object, or any other object
which simulates a file. It defaults toNone, in which casefilenameis opened to provide a file object.

Whenfileobj is not None, the filenameargument is only used to be included in thegzip file header, which
may includes the original filename of the uncompressed file. It defaults to the filename offileobj, if discernible;
otherwise, it defaults to the empty string, and in this case the original filename is not included in the header.

Themodeargument can be any of’r’ , ’rb’ , ’a’ , ’ab’ , ’w’ , or ’wb’ , depending on whether the file will
be read or written. The default is the mode offileobj if discernible; otherwise, the default is’rb’ . Be aware
that only the’rb’ , ’ab’ , and’wb’ values should be used for cross-platform portability.

The compresslevelargument is an integer from1 to 9 controlling the level of compression;1 is fastest and
produces the least compression, and9 is slowest and produces the most compression. The default is9.

Calling aGzipFile object’sclose() method does not closefileobj, since you might wish to append more
material after the compressed data. This also allows you to pass aStringIO object opened for writing as
fileobj, and retrieve the resulting memory buffer using theStringIO object’sgetvalue() method.

open (filename[, mode[, compresslevel]])
This is a shorthand forGzipFile(filename, mode, compresslevel) . The filenameargument is required;

7.14. gzip — Support for gzip files 231

modedefaults to’rb’ andcompressleveldefaults to9.

See Also:

Modulezlib (section 7.13):
The basic data compression module needed to support thegzip file format.

7.15 zipfile — Work with ZIP archives

New in version 1.6.

The ZIP file format is a common archive and compression standard. This module provides tools to create, read, write,
append, and list a ZIP file. Any advanced use of this module will require an understanding of the format, as defined in
PKZIP Application Note.

This module does not currently handle ZIP files which have appended comments, or multi-disk ZIP files.

The available attributes of this module are:

exceptionerror
The error raised for bad ZIP files.

classZipFile (...)
The class for reading and writing ZIP files. See “ZipFile Objects” (section 7.15.1) for constructor details.

classPyZipFile (...)
Class for creating ZIP archives containing Python libraries.

classZipInfo ([filename[, date time]])
Class used the represent infomation about a member of an archive. Instances of this class are returned by the
getinfo() andinfolist() methods ofZipFile objects. Most users of thezipfile module will not
need to create these, but only use those created by this module.filenameshould be the full name of the archive
member, anddate timeshould be a tuple containing six fields which describe the time of the last modification
to the file; the fields are described in section 7.15.3, “ZipInfo Objects.”

is zipfile (filename)
Returns true iffilenameis a valid ZIP file based on its magic number, otherwise returns false. This module does
not currently handle ZIP files which have appended comments.

ZIP STORED
The numeric constant for an uncompressed archive member.

ZIP DEFLATED
The numeric constant for the usual ZIP compression method. This requires the zlib module. No other compres-
sion methods are currently supported.

See Also:

PKZIP Application Note
(http://www.pkware.com/appnote.html)

Documentation on the ZIP file format by Phil Katz, the creator of the format and algorithms used.

Info-ZIP Home Page
(http://www.info-zip.org/pub/infozip/)

Information about the Info-ZIP project’s ZIP archive programs and development libraries.

7.15.1 ZipFile Objects

classZipFile (file[, mode[, compression]])
Open a ZIP file, wherefile can be either a path to a file (i.e. a string) or a file-like object. Themodeparameter

232 Chapter 7. Optional Operating System Services

should be’r’ to read an existing file,’w’ to truncate and write a new file, or’a’ to append to an existing file.
For modeis ’a’ andfile refers to an existing ZIP file, then additional files are added to it. Iffile does not refer
to a ZIP file, then a new ZIP archive is appended to the file. This is meant for adding a ZIP archive to another
file, such as ‘python.exe’. Using

cat myzip.zip >> python.exe

also works, and at leastWinZip can read such files.compressionis the ZIP compression method to use when
writing the archive, and should beZIP STOREDor ZIP DEFLATED; unrecognized values will causeRun-
timeError to be raised. IfZIP DEFLATEDis specified but thezlib module is not avaialble,RuntimeEr-
ror is also raised. The default isZIP STORED.

close ()
Close the archive file. You must callclose() before exiting your program or essential records will not be
written.

getinfo (name)
Return aZipInfo object with information about the archive membername.

infolist ()
Return a list containing aZipInfo object for each member of the archive. The objects are in the same order
as their entries in the actual ZIP file on disk if an existing archive was opened.

namelist ()
Return a list of archive members by name.

printdir ()
Print a table of contents for the archive tosys.stdout .

read (name)
Return the bytes of the file in the archive. The archive must be open for read or append.

testzip ()
Read all the files in the archive and check their CRC’s. Return the name of the first bad file, or else returnNone.

write (filename[, arcname[, compresstype]])
Write the file namedfilenameto the archive, giving it the archive namearcname(by default, this will be the same
asfilename). If given,compresstypeoverrides the value given for thecompressionparameter to the constructor
for the new entry. The archive must be open with mode’w’ or ’a’ .

writestr (zinfo, bytes)
Write the stringbytesto the archive; meta-information is given as theZipInfo instancezinfo. At least the
filename, date, and time must be given byzinfo. The archive must be opened with mode’w’ or ’a’ .

The following data attribute is also available:

debug
The level of debug output to use. This may be set from0 (the default, no output) to3 (the most output).
Debugging information is written tosys.stdout .

7.15.2 PyZipFile Objects

ThePyZipFile constructor takes the same parameters as theZipFile constructor. Instances have one method in
addition to those ofZipFile objects.

writepy (pathname[, basename])
Search for files ‘*.py’ and add the corresponding file to the archive. The corresponding file is a ‘*.pyo’ file if
available, else a ‘*.pyc’ file, compiling if necessary. If the pathname is a file, the filename must end with ‘.py’,
and just the (corresponding ‘*.py[co]’) file is added at the top level (no path information). If it is a directory, and

7.15. zipfile — Work with ZIP archives 233

the directory is not a package directory, then all the files ‘*.py[co]’ are added at the top level. If the directory is a
package directory, then all ‘*.py[oc]’ are added under the package name as a file path, and if any subdirectories
are package directories, all of these are added recursively.basenameis intended for internal use only. The
writepy() method makes archives with file names like this:

string.pyc # Top level name
test/__init__.pyc # Package directory
test/testall.pyc # Module test.testall
test/bogus/__init__.pyc # Subpackage directory
test/bogus/myfile.pyc # Submodule test.bogus.myfile

7.15.3 ZipInfo Objects

Instances of theZipInfo class are returned by thegetinfo() andinfolist() methods ofZipFile objects.
Each object stores information about a single member of the ZIP archive.

Instances have the following attributes:

filename
Name of the file in the archive.

date time
The time and date of the last modification to to the archive member. This is a tuple of six values:

Index Value
0 Year
1 Month (one-based)
2 Day of month (one-based)
3 Hours (zero-based)
4 Minutes (zero-based)
5 Seconds (zero-based)

compress type
Type of compression for the archive member.

comment
Comment for the individual archive member.

extra
Expansion field data. ThePKZIP Application Notecontains some comments on the internal structure of the data
contained in this string.

create system
System which created ZIP archive.

create version
PKZIP version which created ZIP archive.

extract version
PKZIP version needed to extract archive.

reserved
Must be zero.

flag bits
ZIP flag bits.

volume
Volume number of file header.

234 Chapter 7. Optional Operating System Services

internal attr
Internal attributes.

external attr
External file attributes.

header offset
Byte offset to the file header.

file offset
Byte offset to the start of the file data.

CRC
CRC-32 of the uncompressed file.

compress size
Size of the compressed data.

file size
Size of the uncompressed file.

7.16 readline — GNU readline interface

The readline module defines a number of functions used either directly or from therlcompleter module to
facilitate completion and history file read and write from the Python interpreter.

Thereadline module defines the following functions:

parse and bind (string)
Parse and execute single line of a readline init file.

get line buffer ()
Return the current contents of the line buffer.

insert text (string)
Insert text into the command line.

read init file ([filename])
Parse a readline initialization file. The default filename is the last filename used.

read history file ([filename])
Load a readline history file. The default filename is ‘˜/.history’.

write history file ([filename])
Save a readline history file. The default filename is ‘˜/.history’.

get history length ()
Return the desired length of the history file. Negative values imply unlimited history file size.

set history length (length)
Set the number of lines to save in the history file.write history file() uses this value to truncate the
history file when saving. Negative values imply unlimited history file size.

set completer ([function])
Set or remove the completer function. The completer function is called asfunction(text, state) , for i in
[0, 1, 2, ...] until it returns a non-string. It should return the next possible completion starting with
text.

get begidx ()
Get the beginning index of the readline tab-completion scope.

get endidx ()

7.16. readline — GNU readline interface 235

Get the ending index of the readline tab-completion scope.

set completer delims (string)
Set the readline word delimiters for tab-completion.

get completer delims ()
Get the readline word delimiters for tab-completion.

See Also:

Modulerlcompleter (section 7.17):
Completion of Python identifiers at the interactive prompt.

7.16.1 Example

The following example demonstrates how to use thereadline module’s history reading and writing functions to
automatically load and save a history file named ‘.pyhist’ from the user’s home directory. The code below would
normally be executed automatically during interactive sessions from the user’s PYTHONSTARTUP file.

import os
histfile = os.path.join(os.environ["HOME"], ".pyhist")
try:

readline.read_history_file(histfile)
except IOError:

pass
import atexit
atexit.register(readline.write_history_file, histfile)
del os, histfile

7.17 rlcompleter — Completion function for GNU readline

The rlcompleter module defines a completion function for thereadline module by completing valid Python
identifiers and keywords.

This module is UNIX -specific due to it’s dependence on thereadline module.

Therlcompleter module defines theCompleter class.

Example:

>>> import rlcompleter
>>> import readline
>>> readline.parse_and_bind("tab: complete")
>>> readline. <TAB PRESSED>
readline.__doc__ readline.get_line_buffer readline.read_init_file
readline.__file__ readline.insert_text readline.set_completer
readline.__name__ readline.parse_and_bind
>>> readline.

The rlcompleter module is designed for use with Python’s interactive mode. A user can add the following lines
to his or her initialization file (identified by the PYTHONSTARTUP environment variable) to get automaticTab
completion:

236 Chapter 7. Optional Operating System Services

try:
import readline

except ImportError:
print "Module readline not available."

else:
import rlcompleter
readline.parse_and_bind("tab: complete")

7.17.1 Completer Objects

Completer objects have the following method:

complete (text, state)
Return thestateth completion fortext.

If called for text that doesn’t include a period character (‘. ’), it will complete from names currently defined in
main , builtin and keywords (as defined by thekeyword module).

If called for a dotted name, it will try to evaluate anything without obvious side-effects (i.e., functions will not
be evaluated, but it can generate calls togetattr ()) upto the last part, and find matches for the rest via
thedir() function.

7.17. rlcompleter — Completion function for GNU readline 237

238

CHAPTER

EIGHT

Unix Specific Services

The modules described in this chapter provide interfaces to features that are unique to the UNIX operating system, or
in some cases to some or many variants of it. Here’s an overview:

posix The most common POSIX system calls (normally used via moduleos).
pwd The password database (getpwnam() and friends).
grp The group database (getgrnam() and friends).
crypt Thecrypt() function used to check UNIX passwords.
dl Call C functions in shared objects.
dbm The standard “database” interface, based on ndbm.
gdbm GNU’s reinterpretation of dbm.
termios POSIX style tty control.
TERMIOS Symbolic constants required to use thetermios module.
tty Utility functions that perform common terminal control operations.
pty Pseudo-Terminal Handling for SGI and Linux.
fcntl Thefcntl() andioctl() system calls.
pipes A Python interface to UNIX shell pipelines.
posixfile A file-like object with support for locking.
resource An interface to provide resource usage information on the current process.
nis Interface to Sun’s NIS (a.k.a. Yellow Pages) library.
syslog An interface to the UNIX syslog library routines.
commands Utility functions for running external commands.

8.1 posix — The most common POSIX system calls

This module provides access to operating system functionality that is standardized by the C Standard and the POSIX
standard (a thinly disguised UNIX interface).

Do not import this module directly. Instead, import the moduleos , which provides aportable version of this
interface. On UNIX , theos module provides a superset of theposix interface. On non-UNIX operating systems the
posix module is not available, but a subset is always available through theos interface. Onceos is imported, there
is no performance penalty in using it instead ofposix . In addition,os provides some additional functionality, such
as automatically callingputenv() when an entry inos.environ is changed.

The descriptions below are very terse; refer to the corresponding UNIX manual (or POSIX documentation) entry for
more information. Arguments calledpathrefer to a pathname given as a string.

Errors are reported as exceptions; the usual exceptions are given for type errors, while errors reported by the system
calls raiseerror (a synonym for the standard exceptionOSError), described below.

239

8.1.1 Large File Support

Several operating systems (including AIX, HPUX, Irix and Solaris) provide support for files that are larger than 2 Gb
from a C programming model whereint andlong are 32-bit values. This is typically accomplished by defining the
relevant size and offset types as 64-bit values. Such files are sometimes referred to aslarge files.

Large file support is enabled in Python when the size of anoff t is larger than along and thelong long type
is available and is at least as large as anoff t . Python longs are then used to represent file sizes, offsets and other
values that can exceed the range of a Python int. It may be necessary to configure and compile Python with certain
compiler flags to enable this mode. For example, it is enabled by default with recent versions of Irix, but with Solaris
2.6 and 2.7 you need to do something like:

CFLAGS="‘getconf LFS_CFLAGS‘" OPT="-g -O2 $CFLAGS" \
./configure

On large-file-capable Linux systems, this might work:

CFLAGS=’-D_LARGEFILE64_SOURCE -D_FILE_OFFSET_BITS=64’ OPT="-g -O2 $CFLAGS" \
./configure

8.1.2 Module Contents

Moduleposix defines the following data item:

environ
A dictionary representing the string environment at the time the interpreter was started. For example,envi-
ron[’HOME’] is the pathname of your home directory, equivalent togetenv("HOME") in C.

Modifying this dictionary does not affect the string environment passed on byexecv() , popen() or sys-
tem() ; if you need to change the environment, passenviron to execve() or add variable assignments and
export statements to the command string forsystem() or popen() .

Note: The os module provides an alternate implementation ofenviron which updates the environment on
modification. Note also that updatingos.environ will render this dictionary obsolete. Use of theos for this
is recommended over direct access to theposix module.

Additional contents of this module should only be accessed via theos module; refer to the documentation for that
module for further information.

8.2 pwd — The password database

This module provides access to the UNIX user account and password database. It is available on all UNIX versions.

Password database entries are reported as 7-tuples containing the following items from the password database (see
<pwd.h>), in order:

Index Field Meaning
0 pw name Login name
1 pw passwd Optional encrypted password
2 pw uid Numerical user ID
3 pw gid Numerical group ID
4 pw gecos User name or comment field
5 pw dir User home directory
6 pw shell User command interpreter

240 Chapter 8. Unix Specific Services

The uid and gid items are integers, all others are strings.KeyError is raised if the entry asked for cannot be found.

Note: In traditional UNIX the fieldpw passwd usually contains a password encrypted with a DES derived algorithm
(see modulecrypt). However most modern unices use a so-calledshadow passwordsystem. On those unices the
field pw passwd only contains a asterisk (’*’) or the letter ‘x ’ where the encrypted password is stored in a file
‘ /etc/shadow’ which is not world readable.

It defines the following items:

getpwuid (uid)
Return the password database entry for the given numeric user ID.

getpwnam (name)
Return the password database entry for the given user name.

getpwall ()
Return a list of all available password database entries, in arbitrary order.

See Also:

Modulegrp (section 8.3):
An interface to the group database, similar to this.

8.3 grp — The group database

This module provides access to the UNIX group database. It is available on all UNIX versions.

Group database entries are reported as 4-tuples containing the following items from the group database (see
<grp.h>), in order:

Index Field Meaning
0 gr name the name of the group
1 gr passwd the (encrypted) group password; often empty
2 gr gid the numerical group ID
3 gr mem all the group member’s user names

The gid is an integer, name and password are strings, and the member list is a list of strings. (Note that most users are
not explicitly listed as members of the group they are in according to the password database. Check both databases to
get complete membership information.)

It defines the following items:

getgrgid (gid)
Return the group database entry for the given numeric group ID.KeyError is raised if the entry asked for
cannot be found.

getgrnam (name)
Return the group database entry for the given group name.KeyError is raised if the entry asked for cannot be
found.

getgrall ()
Return a list of all available group entries, in arbitrary order.

See Also:

Modulepwd (section 8.2):
An interface to the user database, similar to this.

8.3. grp — The group database 241

8.4 crypt — Function to check UNIX passwords

This module implements an interface to thecrypt(3) routine, which is a one-way hash function based upon a modified
DES algorithm; see the UNIX man page for further details. Possible uses include allowing Python scripts to accept
typed passwords from the user, or attempting to crack UNIX passwords with a dictionary.

crypt (word, salt)
word will usually be a user’s password as typed at a prompt or in a graphical interface.salt is usually a random
two-character string which will be used to perturb the DES algorithm in one of 4096 ways. The characters in
salt must be in the setd[./a-zA-Z0-9] c. Returns the hashed password as a string, which will be composed
of characters from the same alphabet as the salt (the first two characters represent the salt itself).

A simple example illustrating typical use:

import crypt, getpass, pwd

def login():
username = raw_input(’Python login:’)
cryptedpasswd = pwd.getpwnam(username)[1]
if cryptedpasswd:

if cryptedpasswd == ’x’ or cryptedpasswd == ’*’:
raise "Sorry, currently no support for shadow passwords"

cleartext = getpass.getpass()
return crypt.crypt(cleartext, cryptedpasswd[:2]) == cryptedpasswd

else:
return 1

8.5 dl — Call C functions in shared objects

Thedl module defines an interface to thedlopen() function, which is the most common interface on UNIX plat-
forms for handling dynamically linked libraries. It allows the program to call arbitrary functions in such a library.

Note: This module will not work unless

sizeof(int) == sizeof(long) == sizeof(char *)

If this is not the case,SystemError will be raised on import.

Thedl module defines the following function:

open (name[, mode = RTLD LAZY])
Open a shared object file, and return a handle. Mode signifies late binding (RTLD LAZY) or immediate binding
(RTLD NOW). Default isRTLD LAZY. Note that some systems do not supportRTLD NOW.

Return value is a dlobject.

Thedl module defines the following constants:

RTLD LAZY
Useful as an argument toopen() .

RTLD NOW
Useful as an argument toopen() . Note that on systems which do not support immediate binding, this constant
will not appear in the module. For maximum portability, usehasattr() to determine if the system supports
immediate binding.

242 Chapter 8. Unix Specific Services

Thedl module defines the following exception:

exceptionerror
Exception raised when an error has occurred inside the dynamic loading and linking routines.

Example:

>>> import dl, time
>>> a=dl.open(’/lib/libc.so.6’)
>>> a.call(’time’), time.time()
(929723914, 929723914.498)

This example was tried on a Debian GNU/Linux system, and is a good example of the fact that using this module is
usually a bad alternative.

8.5.1 Dl Objects

Dl objects, as returned byopen() above, have the following methods:

close ()
Free all resources, except the memory.

sym(name)
Return the pointer for the function namedname, as a number, if it exists in the referenced shared object, other-
wiseNone. This is useful in code like:

>>> if a.sym(’time’):
... a.call(’time’)
... else:
... time.time()

(Note that this function will return a non-zero number, as zero is theNULLpointer)

call (name[, arg1[, arg2. . .]])
Call the function namednamein the referenced shared object. The arguments must be either Python integers,
which will be passed as is, Python strings, to which a pointer will be passed, orNone, which will be passed as
NULL. Note that strings should only be passed to functions asconst char* , as Python will not like its string
mutated.

There must be at most 10 arguments, and arguments not given will be treated asNone. The function’s return
value must be a Clong , which is a Python integer.

8.6 dbm— Simple “database” interface

Thedbmmodule provides an interface to the UNIX (n)dbm library. Dbm objects behave like mappings (dictionaries),
except that keys and values are always strings. Printing a dbm object doesn’t print the keys and values, and the
items() andvalues() methods are not supported.

This module can be used with the “classic” ndbm interface, the BSD DB compatibility interface, or the GNU GDBM
compatibility interface. On UNIX , theconfigure script will attempt to locate the appropriate header file to simplify
building this module.

The module defines the following:

exceptionerror
Raised on dbm-specific errors, such as I/O errors.KeyError is raised for general mapping errors like specify-
ing an incorrect key.

8.6. dbm— Simple “database” interface 243

library
Name of thendbm implementation library used.

open (filename[, flag[, mode]])
Open a dbm database and return a dbm object. Thefilenameargument is the name of the database file (without
the ‘.dir’ or ‘ .pag’ extensions; note that the BSD DB implementation of the interface will append the extension
‘ .db’ and only create one file).

The optionalflagargument must be one of these values:

Value Meaning
’r’ Open existing database for reading only (default)
’w’ Open existing database for reading and writing
’c’ Open database for reading and writing, creating it if it doesn’t exist
’n’ Always create a new, empty database, open for reading and writing

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created. It
defaults to octal0666 .

See Also:

Moduleanydbm (section 7.8):
Generic interface todbm-style databases.

Modulegdbm (section 8.7):
Similar interface to the GNU GDBM library.

Modulewhichdb (section 7.11):
Utility module used to determine the type of an existing database.

8.7 gdbm — GNU’s reinterpretation of dbm

This module is quite similar to thedbm module, but usesgdbm instead to provide some additional functionality.
Please note that the file formats created bygdbm anddbmare incompatible.

Thegdbmmodule provides an interface to the GNU DBM library.gdbmobjects behave like mappings (dictionaries),
except that keys and values are always strings. Printing agdbm object doesn’t print the keys and values, and the
items() andvalues() methods are not supported.

The module defines the following constant and functions:

exceptionerror
Raised ongdbm-specific errors, such as I/O errors.KeyError is raised for general mapping errors like speci-
fying an incorrect key.

open (filename,[flag,[mode]])
Open agdbm database and return agdbm object. Thefilenameargument is the name of the database file.

The optionalflagargument can be’r’ (to open an existing database for reading only — default),’w’ (to open
an existing database for reading and writing),’c’ (which creates the database if it doesn’t exist), or’n’ (which
always creates a new empty database).

The following additional characters may be appended to the flag to control how the database is opened:

•’f’ — Open the database in fast mode. Writes to the database will not be syncronized.

•’s’ — Synchronized mode. This will cause changes to the database will be immediately written to the
file.

•’u’ — Do not lock database.

244 Chapter 8. Unix Specific Services

Not all flags are valid for all versions ofgdbm. The module constantopen flags is a string of supported flag
characters. The exceptionerror is raised if an invalid flag is specified.

The optionalmodeargument is the UNIX mode of the file, used only when the database has to be created. It
defaults to octal0666 .

In addition to the dictionary-like methods,gdbm objects have the following methods:

firstkey ()
It’s possible to loop over every key in the database using this method and thenextkey() method. The
traversal is ordered bygdbm’s internal hash values, and won’t be sorted by the key values. This method returns
the starting key.

nextkey (key)
Returns the key that followskeyin the traversal. The following code prints every key in the databasedb , without
having to create a list in memory that contains them all:

k = db.firstkey()
while k != None:

print k
k = db.nextkey(k)

reorganize ()
If you have carried out a lot of deletions and would like to shrink the space used by thegdbmfile, this routine will
reorganize the database.gdbm will not shorten the length of a database file except by using this reorganization;
otherwise, deleted file space will be kept and reused as new (key, value) pairs are added.

sync ()
When the database has been opened in fast mode, this method forces any unwritten data to be written to the
disk.

See Also:

Moduleanydbm (section 7.8):
Generic interface todbm-style databases.

Modulewhichdb (section 7.11):
Utility module used to determine the type of an existing database.

8.8 termios — POSIX style tty control

This module provides an interface to the POSIX calls for tty I/O control. For a complete description of these calls, see
the POSIX or UNIX manual pages. It is only available for those UNIX versions that support POSIXtermiosstyle tty
I/O control (and then only if configured at installation time).

All functions in this module take a file descriptorfd as their first argument. This must be an integer file descriptor,
such as returned bysys.stdin.fileno() .

This module also defines all the constants needed to work with the functions provided here; these have the same name
as their counterparts in C. Please refer to your system documentation for more information on using these terminal
control interfaces.

The module defines the following functions:

tcgetattr (fd)
Return a list containing the tty attributes for file descriptorfd, as follows: [iflag, oflag, cflag, lflag, ispeed,
ospeed, cc] wherecc is a list of the tty special characters (each a string of length 1, except the items with
indicesVMIN andVTIME, which are integers when these fields are defined). The interpretation of the flags
and the speeds as well as the indexing in thecc array must be done using the symbolic constants defined in the
termios module.

8.8. termios — POSIX style tty control 245

tcsetattr (fd, when, attributes)
Set the tty attributes for file descriptorfd from theattributes, which is a list like the one returned bytcge-
tattr() . Thewhenargument determines when the attributes are changed:TCSANOWto change immediately,
TCSADRAINto change after transmitting all queued output, orTCSAFLUSHto change after transmitting all
queued output and discarding all queued input.

tcsendbreak (fd, duration)
Send a break on file descriptorfd. A zerodurationsends a break for 0.25–0.5 seconds; a nonzerodurationhas
a system dependent meaning.

tcdrain (fd)
Wait until all output written to file descriptorfd has been transmitted.

tcflush (fd, queue)
Discard queued data on file descriptorfd. Thequeueselector specifies which queue:TCIFLUSH for the input
queue,TCOFLUSHfor the output queue, orTCIOFLUSHfor both queues.

tcflow (fd, action)
Suspend or resume input or output on file descriptorfd. Theactionargument can beTCOOFFto suspend output,
TCOONto restart output,TCIOFF to suspend input, orTCION to restart input.

See Also:

Moduletty (section 8.10):
Convenience functions for common terminal control operations.

8.8.1 Example

Here’s a function that prompts for a password with echoing turned off. Note the technique using a separatetcge-
tattr() call and atry ... finally statement to ensure that the old tty attributes are restored exactly no matter
what happens:

def getpass(prompt = "Password: "):
import termios, sys
fd = sys.stdin.fileno()
old = termios.tcgetattr(fd)
new = termios.tcgetattr(fd)
new[3] = new[3] & ˜termios.ECHO # lflags
try:

termios.tcsetattr(fd, termios.TCSADRAIN, new)
passwd = raw_input(prompt)

finally:
termios.tcsetattr(fd, termios.TCSADRAIN, old)

return passwd

8.9 TERMIOS— Constants used with the termios module

Deprecated since release 2.1.Import needed constants fromtermios instead.

This module defines the symbolic constants required to use thetermios module (see the previous section). See the
POSIX or UNIX manual pages for a list of those constants.

246 Chapter 8. Unix Specific Services

8.10 tty — Terminal control functions

Thetty module defines functions for putting the tty into cbreak and raw modes.

Because it requires thetermios module, it will work only on UNIX .

Thetty module defines the following functions:

setraw (fd[, when])
Change the mode of the file descriptorfd to raw. If whenis omitted, it defaults toTERMIOS.TCAFLUSH, and
is passed totermios.tcsetattr() .

setcbreak (fd[, when])
Change the mode of file descriptorfd to cbreak. Ifwhenis omitted, it defaults toTERMIOS.TCAFLUSH, and
is passed totermios.tcsetattr() .

See Also:

Moduletermios (section 8.8):
Low-level terminal control interface.

ModuleTERMIOS(section 8.9):
Constants useful for terminal control operations.

8.11 pty — Pseudo-terminal utilities

Thepty module defines operations for handling the pseudo-terminal concept: starting another process and being able
to write to and read from its controlling terminal programmatically.

Because pseudo-terminal handling is highly platform dependant, there is code to do it only for SGI and Linux. (The
Linux code is supposed to work on other platforms, but hasn’t been tested yet.)

Thepty module defines the following functions:

fork ()
Fork. Connect the child’s controlling terminal to a pseudo-terminal. Return value is(pid, fd) . Note that the
child getspid 0, and thefd is invalid. The parent’s return value is thepid of the child, andfd is a file descriptor
connected to the child’s controlling terminal (and also to the child’s standard input and output.

openpty ()
Open a new pseudo-terminal pair, usingos.openpty() if possible, or emulation code for SGI and generic
UNIX systems. Return a pair of file descriptors(master, slave) , for the master and the slave end, respectively.

spawn (argv[, master read[, stdin read]])
Spawn a process, and connect its controlling terminal with the current process’s standard io. This is often used
to baffle programs which insist on reading from the controlling terminal.

The functionsmaster readandstdin readshould be functions which read from a file-descriptor. The defaults
try to read 1024 bytes each time they are called.

8.12 fcntl — The fcntl() and ioctl() system calls

This module performs file control and I/O control on file descriptors. It is an interface to thefcntl() andioctl()
UNIX routines. File descriptors can be obtained with thefileno() method of a file or socket object.

The module defines the following functions:

fcntl (fd, op[, arg])
Perform the requested operation on file descriptorfd. The operation is defined byop and is operating system

8.10. tty — Terminal control functions 247

dependent. Typically these codes can be retrieved from the library moduleFCNTL. The argumentarg is optional,
and defaults to the integer value0. When present, it can either be an integer value, or a string. With the argument
missing or an integer value, the return value of this function is the integer return value of the Cfcntl() call.
When the argument is a string it represents a binary structure, e.g. created bystruct.pack() . The binary
data is copied to a buffer whose address is passed to the Cfcntl() call. The return value after a successful
call is the contents of the buffer, converted to a string object. The length of the returned string will be the same
as the length of thearg argument. This is limited to 1024 bytes. If the information returned in the buffer by
the operating system is larger than 1024 bytes, this is most likely to result in a segmentation violation or a more
subtle data corruption.

If the fcntl() fails, anIOError is raised.

ioctl (fd, op, arg)
This function is identical to thefcntl() function, except that the operations are typically defined in the library
moduleIOCTL.

flock (fd, op)
Perform the lock operationopon file descriptorfd. See the UNIX manualflock(3) for details. (On some systems,
this function is emulated usingfcntl() .)

lockf (fd, operation,[len,[start,[whence]]])
This is essentially a wrapper around thefcntl() locking calls. fd is the file descriptor of the file to lock or
unlock, andoperationis one of the following values:

•LOCK UN– unlock

•LOCK SH– acquire a shared lock

•LOCK EX– acquire an exclusive lock

Whenoperation is LOCK SH or LOCK EX, it can also be bit-wise OR’d withLOCK NB to avoid blocking
on lock acquisition. IfLOCK NB is used and the lock cannot be acquired, anIOError will be raised and
the exception will have anerrno attribute set toEACCESor EAGAIN (depending on the operating system; for
portability, check for both values).

length is the number of bytes to lock,start is the byte offset at which the lock starts, relative towhence, and
whenceis as withfileobj.seek() , specifically:

•0 – relative to the start of the file (SEEK SET)

•1 – relative to the current buffer position (SEEK CUR)

•2 – relative to the end of the file (SEEK END)

The default forstart is 0, which means to start at the beginning of the file. The default forlength is 0 which
means to lock to the end of the file. The default forwhenceis also 0.

If the library modulesFCNTL or IOCTL are missing, you can find the opcodes in the C include files
<sys/fcntl.h> and <sys/ioctl.h> . You can create the modules yourself with theh2py script, found in
the ‘Tools/scripts/’ directory.

Examples (all on a SVR4 compliant system):

import struct, fcntl, FCNTL

file = open(...)
rv = fcntl(file.fileno(), FCNTL.F_SETFL, FCNTL.O_NDELAY)

lockdata = struct.pack(’hhllhh’, FCNTL.F_WRLCK, 0, 0, 0, 0, 0)
rv = fcntl.fcntl(file.fileno(), FCNTL.F_SETLKW, lockdata)

248 Chapter 8. Unix Specific Services

Note that in the first example the return value variablerv will hold an integer value; in the second example it will hold
a string value. The structure lay-out for thelockdatavariable is system dependent — therefore using theflock()
call may be better.

8.13 pipes — Interface to shell pipelines

Thepipes module defines a class to abstract the concept of apipeline— a sequence of convertors from one file to
another.

Because the module uses/bin/sh command lines, a POSIX or compatible shell foros.system() andos.popen()
is required.

Thepipes module defines the following class:

classTemplate ()
An abstraction of a pipeline.

Example:

>>> import pipes
>>> t=pipes.Template()
>>> t.append(’tr a-z A-Z’, ’--’)
>>> f=t.open(’/tmp/1’, ’w’)
>>> f.write(’hello world’)
>>> f.close()
>>> open(’/tmp/1’).read()
’HELLO WORLD’

8.13.1 Template Objects

Template objects following methods:

reset ()
Restore a pipeline template to its initial state.

clone ()
Return a new, equivalent, pipeline template.

debug (flag)
If flag is true, turn debugging on. Otherwise, turn debugging off. When debugging is on, commands to be
executed are printed, and the shell is givenset -x command to be more verbose.

append (cmd, kind)
Append a new action at the end. Thecmdvariable must be a valid bourne shell command. Thekind variable
consists of two letters.

The first letter can be either of’-’ (which means the command reads its standard input),’f’ (which means
the commands reads a given file on the command line) or’.’ (which means the commands reads no input, and
hence must be first.)

Similarly, the second letter can be either of’-’ (which means the command writes to standard output),’f’
(which means the command writes a file on the command line) or’.’ (which means the command does not
write anything, and hence must be last.)

prepend (cmd, kind)
Add a new action at the beginning. Seeappend() for explanations of the arguments.

8.13. pipes — Interface to shell pipelines 249

open (file, mode)
Return a file-like object, open tofile, but read from or written to by the pipeline. Note that only one of’r’ ,
’w’ may be given.

copy (infile, outfile)
Copy infile to outfilethrough the pipe.

8.14 posixfile — File-like objects with locking support

Note: This module will become obsolete in a future release. The locking operation that it provides is done better and
more portably by thefcntl.lockf() call.

This module implements some additional functionality over the built-in file objects. In particular, it implements file
locking, control over the file flags, and an easy interface to duplicate the file object. The module defines a new file
object, the posixfile object. It has all the standard file object methods and adds the methods described below. This
module only works for certain flavors of UNIX , since it usesfcntl.fcntl() for file locking.

To instantiate a posixfile object, use theopen() function in theposixfile module. The resulting object looks and
feels roughly the same as a standard file object.

Theposixfile module defines the following constants:

SEEK SET
Offset is calculated from the start of the file.

SEEK CUR
Offset is calculated from the current position in the file.

SEEK END
Offset is calculated from the end of the file.

Theposixfile module defines the following functions:

open (filename[, mode[, bufsize]])
Create a new posixfile object with the given filename and mode. Thefilename, modeandbufsizearguments are
interpreted the same way as by the built-inopen() function.

fileopen (fileobject)
Create a new posixfile object with the given standard file object. The resulting object has the same filename and
mode as the original file object.

The posixfile object defines the following additional methods:

lock (fmt,[len[, start[, whence]]])
Lock the specified section of the file that the file object is referring to. The format is explained below in a table.
The len argument specifies the length of the section that should be locked. The default is0. start specifies the
starting offset of the section, where the default is0. Thewhenceargument specifies where the offset is relative
to. It accepts one of the constantsSEEK SET, SEEK CURor SEEK END. The default isSEEK SET. For
more information about the arguments refer to thefcntl(2) manual page on your system.

flags ([flags])
Set the specified flags for the file that the file object is referring to. The new flags are ORed with the old
flags, unless specified otherwise. The format is explained below in a table. Without theflagsargument a string
indicating the current flags is returned (this is the same as the ‘?’ modifier). For more information about the
flags refer to thefcntl(2) manual page on your system.

dup ()
Duplicate the file object and the underlying file pointer and file descriptor. The resulting object behaves as if it
were newly opened.

250 Chapter 8. Unix Specific Services

dup2 (fd)
Duplicate the file object and the underlying file pointer and file descriptor. The new object will have the given
file descriptor. Otherwise the resulting object behaves as if it were newly opened.

file ()
Return the standard file object that the posixfile object is based on. This is sometimes necessary for functions
that insist on a standard file object.

All methods raiseIOError when the request fails.

Format characters for thelock() method have the following meaning:

Format Meaning
‘u’ unlock the specified region
‘ r ’ request a read lock for the specified section
‘w’ request a write lock for the specified section

In addition the following modifiers can be added to the format:

Modifier Meaning Notes
‘ | ’ wait until the lock has been granted
‘?’ return the first lock conflicting with the requested lock, orNone if there is no conflict. (1)

Note:

(1) The lock returned is in the format(mode, len, start, whence, pid) wheremodeis a character representing
the type of lock (’r’ or ’w’). This modifier prevents a request from being granted; it is for query purposes only.

Format characters for theflags() method have the following meanings:

Format Meaning
‘a’ append only flag
‘c ’ close on exec flag
‘n’ no delay flag (also called non-blocking flag)
‘s ’ synchronization flag

In addition the following modifiers can be added to the format:

Modifier Meaning Notes
‘ ! ’ turn the specified flags ’off’, instead of the default ’on’ (1)
‘=’ replace the flags, instead of the default ’OR’ operation (1)
‘?’ return a string in which the characters represent the flags that are set.(2)

Notes:

(1) The ‘! ’ and ‘=’ modifiers are mutually exclusive.

(2) This string represents the flags after they may have been altered by the same call.

Examples:

8.14. posixfile — File-like objects with locking support 251

import posixfile

file = posixfile.open(’/tmp/test’, ’w’)
file.lock(’w|’)
...
file.lock(’u’)
file.close()

8.15 resource — Resource usage information

This module provides basic mechanisms for measuring and controlling system resources utilized by a program.

Symbolic constants are used to specify particular system resources and to request usage information about either the
current process or its children.

A single exception is defined for errors:

exceptionerror
The functions described below may raise this error if the underlying system call failures unexpectedly.

8.15.1 Resource Limits

Resources usage can be limited using thesetrlimit() function described below. Each resource is controlled by
a pair of limits: a soft limit and a hard limit. The soft limit is the current limit, and may be lowered or raised by a
process over time. The soft limit can never exceed the hard limit. The hard limit can be lowered to any value greater
than the soft limit, but not raised. (Only processes with the effective UID of the super-user can raise a hard limit.)

The specific resources that can be limited are system dependent. They are described in thegetrlimit(2) man page. The
resources listed below are supported when the underlying operating system supports them; resources which cannot be
checked or controlled by the operating system are not defined in this module for those platforms.

getrlimit (resource)
Returns a tuple(soft, hard) with the current soft and hard limits ofresource. RaisesValueError if an
invalid resource is specified, orerror if the underyling system call fails unexpectedly.

setrlimit (resource, limits)
Sets new limits of consumption ofresource. Thelimits argument must be a tuple(soft, hard) of two integers
describing the new limits. A value of-1 can be used to specify the maximum possible upper limit.

RaisesValueError if an invalid resource is specified, if the new soft limit exceeds the hard limit, or if a
process tries to raise its hard limit (unless the process has an effective UID of super-user). Can also raiseerror
if the underyling system call fails.

These symbols define resources whose consumption can be controlled using thesetrlimit() andgetrlimit()
functions described below. The values of these symbols are exactly the constants used by C programs.

The UNIX man page forgetrlimit(2) lists the available resources. Note that not all systems use the same symbol or
same value to denote the same resource.

RLIMIT CORE
The maximum size (in bytes) of a core file that the current process can create. This may result in the creation of
a partial core file if a larger core would be required to contain the entire process image.

RLIMIT CPU
The maximum amount of CPU time (in seconds) that a process can use. If this limit is exceeded, aSIGXCPU

252 Chapter 8. Unix Specific Services

signal is sent to the process. (See thesignal module documentation for information about how to catch this
signal and do something useful, e.g. flush open files to disk.)

RLIMIT FSIZE
The maximum size of a file which the process may create. This only affects the stack of the main thread in a
multi-threaded process.

RLIMIT DATA
The maximum size (in bytes) of the process’s heap.

RLIMIT STACK
The maximum size (in bytes) of the call stack for the current process.

RLIMIT RSS
The maximum resident set size that should be made available to the process.

RLIMIT NPROC
The maximum number of processes the current process may create.

RLIMIT NOFILE
The maximum number of open file descriptors for the current process.

RLIMIT OFILE
The BSD name forRLIMIT NOFILE.

RLIMIT MEMLOC
The maximm address space which may be locked in memory.

RLIMIT VMEM
The largest area of mapped memory which the process may occupy.

RLIMIT AS
The maximum area (in bytes) of address space which may be taken by the process.

8.15.2 Resource Usage

These functiona are used to retrieve resource usage information:

getrusage (who)
This function returns a large tuple that describes the resources consumed by either the current process or its
children, as specified by thewhoparameter. Thewhoparameter should be specified using one of theRUSAGE*
constants described below.

The elements of the return value each describe how a particular system resource has been used, e.g. amount of
time spent running is user mode or number of times the process was swapped out of main memory. Some values
are dependent on the clock tick internal, e.g. the amount of memory the process is using.

The first two elements of the return value are floating point values representing the amount of time spent execut-
ing in user mode and the amount of time spent executing in system mode, respectively. The remaining values
are integers. Consult thegetrusage(2) man page for detailed information about these values. A brief summary
is presented here:

8.15. resource — Resource usage information 253

Offset Resource
0 time in user mode (float)
1 time in system mode (float)
2 maximum resident set size
3 shared memory size
4 unshared memory size
5 unshared stack size
6 page faults not requiring I/O
7 page faults requiring I/O
8 number of swap outs
9 block input operations

10 block output operations
11 messages sent
12 messages received
13 signals received
14 voluntary context switches
15 involuntary context switches

This function will raise aValueError if an invalid who parameter is specified. It may also raiseerror
exception in unusual circumstances.

getpagesize ()
Returns the number of bytes in a system page. (This need not be the same as the hardware page size.) This
function is useful for determining the number of bytes of memory a process is using. The third element of the
tuple returned bygetrusage() describes memory usage in pages; multiplying by page size produces number
of bytes.

The followingRUSAGE* symbols are passed to thegetrusage() function to specify which processes information
should be provided for.

RUSAGESELF
RUSAGESELF should be used to request information pertaining only to the process itself.

RUSAGECHILDREN
Pass togetrusage() to request resource information for child processes of the calling process.

RUSAGEBOTH
Pass togetrusage() to request resources consumed by both the current process and child processes. May
not be available on all systems.

8.16 nis — Interface to Sun’s NIS (Yellow Pages)

Thenis module gives a thin wrapper around the NIS library, useful for central administration of several hosts.

Because NIS exists only on UNIX systems, this module is only available for UNIX .

Thenis module defines the following functions:

match (key, mapname)
Return the match forkey in mapmapname, or raise an error (nis.error) if there is none. Both should be
strings,keyis 8-bit clean. Return value is an arbitrary array of bytes (i.e., may containNULLand other joys).

Note thatmapnameis first checked if it is an alias to another name.

cat (mapname)
Return a dictionary mappingkeyto valuesuch thatmatch(key, mapname)== value. Note that both keys and
values of the dictionary are arbitrary arrays of bytes.

Note thatmapnameis first checked if it is an alias to another name.

254 Chapter 8. Unix Specific Services

maps()
Return a list of all valid maps.

Thenis module defines the following exception:

exceptionerror
An error raised when a NIS function returns an error code.

8.17 syslog — UNIX syslog library routines

This module provides an interface to the UNIX syslog library routines. Refer to the UNIX manual pages for a
detailed description of thesyslog facility.

The module defines the following functions:

syslog ([priority,] message)
Send the stringmessageto the system logger. A trailing newline is added if necessary. Each message is tagged
with a priority composed of afacility and alevel. The optionalpriority argument, which defaults toLOG INFO,
determines the message priority. If the facility is not encoded inpriority using logical-or (LOG INFO |
LOG USER), the value given in theopenlog() call is used.

openlog (ident[, logopt[, facility]])
Logging options other than the defaults can be set by explicitly opening the log file withopenlog() prior
to callingsyslog() . The defaults are (usually)ident = ’syslog’ , logopt = 0, facility = LOG USER. The
ident argument is a string which is prepended to every message. The optionallogopt argument is a bit field -
see below for possible values to combine. The optionalfacility argument sets the default facility for messages
which do not have a facility explicitly encoded.

closelog ()
Close the log file.

setlogmask (maskpri)
Set the priority mask tomaskpriand return the previous mask value. Calls tosyslog() with a priority level
not set inmaskpriare ignored. The default is to log all priorities. The functionLOG MASK(pri) calculates the
mask for the individual prioritypri. The functionLOG UPTO(pri) calculates the mask for all priorities up to
and includingpri.

The module defines the following constants:

Priority levels (high to low): LOG EMERG, LOG ALERT, LOG CRIT, LOG ERR, LOG WARNING,
LOG NOTICE, LOG INFO, LOG DEBUG.

Facilities: LOG KERN, LOG USER, LOG MAIL, LOG DAEMON, LOG AUTH, LOG LPR, LOG NEWS,
LOG UUCP, LOG CRONandLOG LOCAL0to LOG LOCAL7.

Log options: LOG PID , LOG CONS, LOG NDELAY, LOG NOWAITand LOG PERRORif defined in <sys-
log.h> .

8.18 commands — Utilities for running commands

Thecommands module contains wrapper functions foros.popen() which take a system command as a string and
return any output generated by the command and, optionally, the exit status.

Thecommands module defines the following functions:

8.17. syslog — UNIX syslog library routines 255

getstatusoutput (cmd)
Execute the stringcmd in a shell withos.popen() and return a 2-tuple(status, output) . cmd is actually
run as{ cmd ; }2>&1 , so that the returned output will contain output or error messages. A trailing newline
is stripped from the output. The exit status for the command can be interpreted according to the rules for the C
functionwait() .

getoutput (cmd)
Like getstatusoutput() , except the exit status is ignored and the return value is a string containing the
command’s output.

getstatus (file)
Return the output of ‘ls -ld file’ as a string. This function uses thegetoutput() function, and properly
escapes backslashes and dollar signs in the argument.

Example:

>>> import commands
>>> commands.getstatusoutput(’ls /bin/ls’)
(0, ’/bin/ls’)
>>> commands.getstatusoutput(’cat /bin/junk’)
(256, ’cat: /bin/junk: No such file or directory’)
>>> commands.getstatusoutput(’/bin/junk’)
(256, ’sh: /bin/junk: not found’)
>>> commands.getoutput(’ls /bin/ls’)
’/bin/ls’
>>> commands.getstatus(’/bin/ls’)
’-rwxr-xr-x 1 root 13352 Oct 14 1994 /bin/ls’

256 Chapter 8. Unix Specific Services

CHAPTER

NINE

The Python Debugger

The modulepdb defines an interactive source code debugger for Python programs. It supports setting (conditional)
breakpoints and single stepping at the source line level, inspection of stack frames, source code listing, and evaluation
of arbitrary Python code in the context of any stack frame. It also supports post-mortem debugging and can be called
under program control.

The debugger is extensible — it is actually defined as the classPdb. This is currently undocumented but easily
understood by reading the source. The extension interface uses the modulesbdb (undocumented) andcmd.

The debugger’s prompt is ‘(Pdb) ’. Typical usage to run a program under control of the debugger is:

>>> import pdb
>>> import mymodule
>>> pdb.run(’mymodule.test()’)
> <string>(0)?()
(Pdb) continue
> <string>(1)?()
(Pdb) continue
NameError: ’spam’
> <string>(1)?()
(Pdb)

‘pdb.py’ can also be invoked as a script to debug other scripts. For example:

python /usr/local/lib/python1.5/pdb.py myscript.py

Typical usage to inspect a crashed program is:

257

>>> import pdb
>>> import mymodule
>>> mymodule.test()
Traceback (most recent call last):

File "<stdin>", line 1, in ?
File "./mymodule.py", line 4, in test

test2()
File "./mymodule.py", line 3, in test2

print spam
NameError: spam
>>> pdb.pm()
> ./mymodule.py(3)test2()
-> print spam
(Pdb)

The module defines the following functions; each enters the debugger in a slightly different way:

run (statement[, globals[, locals]])
Execute thestatement(given as a string) under debugger control. The debugger prompt appears before any code
is executed; you can set breakpoints and type ‘continue ’, or you can step through the statement using ‘step ’
or ‘next ’ (all these commands are explained below). The optionalglobalsand locals arguments specify the
environment in which the code is executed; by default the dictionary of the modulemain is used. (See
the explanation of theexec statement or theeval() built-in function.)

runeval (expression[, globals[, locals]])
Evaluate theexpression(given as a a string) under debugger control. Whenruneval() returns, it returns the
value of the expression. Otherwise this function is similar torun() .

runcall (function[, argument, ...])
Call the function (a function or method object, not a string) with the given arguments. Whenruncall()
returns, it returns whatever the function call returned. The debugger prompt appears as soon as the function is
entered.

set trace ()
Enter the debugger at the calling stack frame. This is useful to hard-code a breakpoint at a given point in a
program, even if the code is not otherwise being debugged (e.g. when an assertion fails).

post mortem (traceback)
Enter post-mortem debugging of the giventracebackobject.

pm()
Enter post-mortem debugging of the traceback found insys.last traceback .

9.1 Debugger Commands

The debugger recognizes the following commands. Most commands can be abbreviated to one or two letters; e.g.
‘h(elp) ’ means that either ‘h’ or ‘ help ’ can be used to enter the help command (but not ‘he ’ or ‘ hel ’, nor ‘H’ or
‘Help ’ or ‘ HELP’). Arguments to commands must be separated by whitespace (spaces or tabs). Optional arguments
are enclosed in square brackets (‘[] ’) in the command syntax; the square brackets must not be typed. Alternatives in
the command syntax are separated by a vertical bar (‘| ’).

Entering a blank line repeats the last command entered. Exception: if the last command was a ‘list ’ command, the
next 11 lines are listed.

Commands that the debugger doesn’t recognize are assumed to be Python statements and are executed in the context
of the program being debugged. Python statements can also be prefixed with an exclamation point (‘! ’). This is a

258 Chapter 9. The Python Debugger

powerful way to inspect the program being debugged; it is even possible to change a variable or call a function. When
an exception occurs in such a statement, the exception name is printed but the debugger’s state is not changed.

Multiple commands may be entered on a single line, separated by ‘;; ’. (A single ‘; ’ is not used as it is the separator
for multiple commands in a line that is passed to the Python parser.) No intelligence is applied to separating the
commands; the input is split at the first ‘;; ’ pair, even if it is in the middle of a quoted string.

The debugger supports aliases. Aliases can have parameters which allows one a certain level of adaptability to the
context under examination.

If a file ‘ .pdbrc’ exists in the user’s home directory or in the current directory, it is read in and executed as if it had
been typed at the debugger prompt. This is particularly useful for aliases. If both files exist, the one in the home
directory is read first and aliases defined there can be overridden by the local file.

h(elp) [command] Without argument, print the list of available commands. With acommandas argument, print help
about that command. ‘help pdb ’ displays the full documentation file; if the environment variable PAGER is
defined, the file is piped through that command instead. Since thecommandargument must be an identifier,
‘help exec ’ must be entered to get help on the ‘! ’ command.

w(here) Print a stack trace, with the most recent frame at the bottom. An arrow indicates the current frame, which
determines the context of most commands.

d(own) Move the current frame one level down in the stack trace (to an newer frame).

u(p) Move the current frame one level up in the stack trace (to a older frame).

b(reak) [[filename:] lineno| function[, condition]] With a lineno argument, set a break there in the current file.
With a functionargument, set a break at the first executable statement within that function. The line number
may be prefixed with a filename and a colon, to specify a breakpoint in another file (probably one that hasn’t
been loaded yet). The file is searched onsys.path . Note that each breakpoint is assigned a number to which
all the other breakpoint commands refer.

If a second argument is present, it is an expression which must evaluate to true before the breakpoint is honored.

Without argument, list all breaks, including for each breakpoint, the number of times that breakpoint has been
hit, the current ignore count, and the associated condition if any.

tbreak [[filename:] lineno| function[, condition]] Temporary breakpoint, which is removed automatically when
it is first hit. The arguments are the same as break.

cl(ear) [bpnumber[bpnumber ...]] With a space separated list of breakpoint numbers, clear those breakpoints.
Without argument, clear all breaks (but first ask confirmation).

disable[bpnumber[bpnumber ...]] Disables the breakpoints given as a space separated list of breakpoint numbers.
Disabling a breakpoint means it cannot cause the program to stop execution, but unlike clearing a breakpoint, it
remains in the list of breakpoints and can be (re-)enabled.

enable[bpnumber[bpnumber ...]] Enables the breakpoints specified.

ignore bpnumber[count] Sets the ignore count for the given breakpoint number. If count is omitted, the ignore count
is set to 0. A breakpoint becomes active when the ignore count is zero. When non-zero, the count is decremented
each time the breakpoint is reached and the breakpoint is not disabled and any associated condition evaluates to
true.

condition bpnumber[condition] Condition is an expression which must evaluate to true before the breakpoint is
honored. If condition is absent, any existing condition is removed; i.e., the breakpoint is made unconditional.

s(tep) Execute the current line, stop at the first possible occasion (either in a function that is called or on the next line
in the current function).

9.1. Debugger Commands 259

n(ext) Continue execution until the next line in the current function is reached or it returns. (The difference between
‘next ’ and ‘step ’ is that ‘step ’ stops inside a called function, while ‘next ’ executes called functions at
(nearly) full speed, only stopping at the next line in the current function.)

r(eturn) Continue execution until the current function returns.

c(ont(inue)) Continue execution, only stop when a breakpoint is encountered.

l(ist) [first[, last]] List source code for the current file. Without arguments, list 11 lines around the current line or
continue the previous listing. With one argument, list 11 lines around at that line. With two arguments, list the
given range; if the second argument is less than the first, it is interpreted as a count.

a(rgs) Print the argument list of the current function.

p expressionEvaluate theexpressionin the current context and print its value. (Note: ‘print ’ can also be used, but
is not a debugger command — this executes the Pythonprint statement.)

alias [name[command]] Creates an alias callednamethat executescommand. The command mustnotbe enclosed
in quotes. Replaceable parameters can be indicated by ‘%1’, ‘ %2’, and so on, while ‘%*’ is replaced by all the
parameters. If no command is given, the current alias fornameis shown. If no arguments are given, all aliases
are listed.

Aliases may be nested and can contain anything that can be legally typed at the pdb prompt. Note that internal
pdb commandscanbe overridden by aliases. Such a command is then hidden until the alias is removed. Aliasing
is recursively applied to the first word of the command line; all other words in the line are left alone.

As an example, here are two useful aliases (especially when placed in the ‘.pdbrc’ file):

#Print instance variables (usage "pi classInst")
alias pi for k in %1.__dict__.keys(): print "%1.",k,"=",%1.__dict__[k]
#Print instance variables in self
alias ps pi self

unaliasname Deletes the specified alias.

[!]statementExecute the (one-line)statementin the context of the current stack frame. The exclamation point can
be omitted unless the first word of the statement resembles a debugger command. To set a global variable, you
can prefix the assignment command with a ‘global ’ command on the same line, e.g.:

(Pdb) global list_options; list_options = [’-l’]
(Pdb)

q(uit) Quit from the debugger. The program being executed is aborted.

9.2 How It Works

Some changes were made to the interpreter:

• sys.settrace(func) sets the global trace function

• there can also a local trace function (see later)

260 Chapter 9. The Python Debugger

Trace functions have three arguments:frame, event, andarg. frame is the current stack frame.eventis a string:
’call’ , ’line’ , ’return’ or ’exception’ . arg depends on the event type.

The global trace function is invoked (witheventset to’call’) whenever a new local scope is entered; it should
return a reference to the local trace function to be used that scope, orNone if the scope shouldn’t be traced.

The local trace function should return a reference to itself (or to another function for further tracing in that scope), or
None to turn off tracing in that scope.

Instance methods are accepted (and very useful!) as trace functions.

The events have the following meaning:

’call’ A function is called (or some other code block entered). The global trace function is called; arg is the
argument list to the function; the return value specifies the local trace function.

’line’ The interpreter is about to execute a new line of code (sometimes multiple line events on one line exist).
The local trace function is called; arg in None; the return value specifies the new local trace function.

’return’ A function (or other code block) is about to return. The local trace function is called; arg is the value that
will be returned. The trace function’s return value is ignored.

’exception’ An exception has occurred. The local trace function is called; arg is a triple (exception, value,
traceback); the return value specifies the new local trace function

Note that as an exception is propagated down the chain of callers, an’exception’ event is generated at each level.

For more information on code and frame objects, refer to thePython Reference Manual.

9.2. How It Works 261

262

CHAPTER

TEN

The Python Profiler

Copyright c© 1994, by InfoSeek Corporation, all rights reserved.

Written by James Roskind.1

Permission to use, copy, modify, and distribute this Python software and its associated documentation for any purpose
(subject to the restriction in the following sentence) without fee is hereby granted, provided that the above copyright
notice appears in all copies, and that both that copyright notice and this permission notice appear in supporting doc-
umentation, and that the name of InfoSeek not be used in advertising or publicity pertaining to distribution of the
software without specific, written prior permission. This permission is explicitly restricted to the copying and modifi-
cation of the software to remain in Python, compiled Python, or other languages (such as C) wherein the modified or
derived code is exclusively imported into a Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE, IN-
CLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL
INFOSEEK CORPORATION BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES
OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER
IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

The profiler was written after only programming in Python for 3 weeks. As a result, it is probably clumsy code, but I
don’t know for sure yet ’cause I’m a beginner :-). I did work hard to make the code run fast, so that profiling would
be a reasonable thing to do. I tried not to repeat code fragments, but I’m sure I did some stuff in really awkward ways
at times. Please send suggestions for improvements to:jar@netscape.com. I won’t promiseany support. ...but I’d
appreciate the feedback.

10.1 Introduction to the profiler

A profiler is a program that describes the run time performance of a program, providing a variety of statistics. This
documentation describes the profiler functionality provided in the modulesprofile andpstats . This profiler
providesdeterministic profilingof any Python programs. It also provides a series of report generation tools to allow
users to rapidly examine the results of a profile operation.

10.2 How Is This Profiler Different From The Old Profiler?

(This section is of historical importance only; the old profiler discussed here was last seen in Python 1.1.)

The big changes from old profiling module are that you get more information, and you pay less CPU time. It’s not a
trade-off, it’s a trade-up.

1Updated and converted to LATEX by Guido van Rossum. The references to the old profiler are left in the text, although it no longer exists.

263

To be specific:

Bugs removed: Local stack frame is no longer molested, execution time is now charged to correct functions.

Accuracy increased: Profiler execution time is no longer charged to user’s code, calibration for platform is supported,
file reads are not donebyprofilerduringprofiling (and charged to user’s code!).

Speed increased:Overhead CPU cost was reduced by more than a factor of two (perhaps a factor of five), lightweight
profiler module is all that must be loaded, and the report generating module (pstats) is not needed during
profiling.

Recursive functions support: Cumulative times in recursive functions are correctly calculated; recursive entries are
counted.

Large growth in report generating UI: Distinct profiles runs can be added together forming a comprehensive re-
port; functions that import statistics take arbitrary lists of files; sorting criteria is now based on keywords (in-
stead of 4 integer options); reports shows what functions were profiled as well as what profile file was referenced;
output format has been improved.

10.3 Instant Users Manual

This section is provided for users that “don’t want to read the manual.” It provides a very brief overview, and allows a
user to rapidly perform profiling on an existing application.

To profile an application with a main entry point of ‘foo() ’, you would add the following to your module:

import profile
profile.run(’foo()’)

The above action would cause ‘foo() ’ to be run, and a series of informative lines (the profile) to be printed. The
above approach is most useful when working with the interpreter. If you would like to save the results of a profile into
a file for later examination, you can supply a file name as the second argument to therun() function:

import profile
profile.run(’foo()’, ’fooprof’)

The file ‘profile.py’ can also be invoked as a script to profile another script. For example:

python /usr/local/lib/python1.5/profile.py myscript.py

When you wish to review the profile, you should use the methods in thepstats module. Typically you would load
the statistics data as follows:

import pstats
p = pstats.Stats(’fooprof’)

The classStats (the above code just created an instance of this class) has a variety of methods for manipulating and
printing the data that was just read into ‘p’. When you ranprofile.run() above, what was printed was the result
of three method calls:

264 Chapter 10. The Python Profiler

p.strip_dirs().sort_stats(-1).print_stats()

The first method removed the extraneous path from all the module names. The second method sorted all the entries
according to the standard module/line/name string that is printed (this is to comply with the semantics of the old
profiler). The third method printed out all the statistics. You might try the following sort calls:

p.sort_stats(’name’)
p.print_stats()

The first call will actually sort the list by function name, and the second call will print out the statistics. The following
are some interesting calls to experiment with:

p.sort_stats(’cumulative’).print_stats(10)

This sorts the profile by cumulative time in a function, and then only prints the ten most significant lines. If you want
to understand what algorithms are taking time, the above line is what you would use.

If you were looking to see what functions were looping a lot, and taking a lot of time, you would do:

p.sort_stats(’time’).print_stats(10)

to sort according to time spent within each function, and then print the statistics for the top ten functions.

You might also try:

p.sort_stats(’file’).print_stats(’__init__’)

This will sort all the statistics by file name, and then print out statistics for only the class init methods (’cause they are
spelled with ‘ init ’ in them). As one final example, you could try:

p.sort_stats(’time’, ’cum’).print_stats(.5, ’init’)

This line sorts statistics with a primary key of time, and a secondary key of cumulative time, and then prints out some
of the statistics. To be specific, the list is first culled down to 50% (re: ‘.5 ’) of its original size, then only lines
containinginit are maintained, and that sub-sub-list is printed.

If you wondered what functions called the above functions, you could now (‘p’ is still sorted according to the last
criteria) do:

p.print_callers(.5, ’init’)

and you would get a list of callers for each of the listed functions.

If you want more functionality, you’re going to have to read the manual, or guess what the following functions do:

10.3. Instant Users Manual 265

p.print_callees()
p.add(’fooprof’)

Invoked as a script, thepstats module is a statistics browser for reading and examining profile dumps. It has a
simple line-oriented interface (implemented usingcmd) and interactive help.

10.4 What Is Deterministic Profiling?

Deterministic profilingis meant to reflect the fact that allfunction call, function return, andexceptionevents are
monitored, and precise timings are made for the intervals between these events (during which time the user’s code
is executing). In contrast,statistical profiling(which is not done by this module) randomly samples the effective
instruction pointer, and deduces where time is being spent. The latter technique traditionally involves less overhead
(as the code does not need to be instrumented), but provides only relative indications of where time is being spent.

In Python, since there is an interpreter active during execution, the presence of instrumented code is not required to
do deterministic profiling. Python automatically provides ahook(optional callback) for each event. In addition, the
interpreted nature of Python tends to add so much overhead to execution, that deterministic profiling tends to only add
small processing overhead in typical applications. The result is that deterministic profiling is not that expensive, yet
provides extensive run time statistics about the execution of a Python program.

Call count statistics can be used to identify bugs in code (surprising counts), and to identify possible inline-expansion
points (high call counts). Internal time statistics can be used to identify “hot loops” that should be carefully optimized.
Cumulative time statistics should be used to identify high level errors in the selection of algorithms. Note that the
unusual handling of cumulative times in this profiler allows statistics for recursive implementations of algorithms to
be directly compared to iterative implementations.

10.5 Reference Manual

The primary entry point for the profiler is the global functionprofile.run() . It is typically used to create any
profile information. The reports are formatted and printed using methods of the classpstats.Stats . The following
is a description of all of these standard entry points and functions. For a more in-depth view of some of the code,
consider reading the later section on Profiler Extensions, which includes discussion of how to derive “better” profilers
from the classes presented, or reading the source code for these modules.

run (string[, filename[, ...]])
This function takes a single argument that has can be passed to theexec statement, and an optional file name.
In all cases this routine attempts toexec its first argument, and gather profiling statistics from the execution. If
no file name is present, then this function automatically prints a simple profiling report, sorted by the standard
name string (file/line/function-name) that is presented in each line. The following is a typical output from such
a call:

main()
2706 function calls (2004 primitive calls) in 4.504 CPU seconds

Ordered by: standard name

ncalls tottime percall cumtime percall filename:lineno(function)
2 0.006 0.003 0.953 0.477 pobject.py:75(save_objects)

43/3 0.533 0.012 0.749 0.250 pobject.py:99(evaluate)
...

266 Chapter 10. The Python Profiler

The first line indicates that this profile was generated by the call:
profile.run(’main()’) , and hence the exec’ed string is’main()’ . The second line indicates that
2706 calls were monitored. Of those calls, 2004 wereprimitive. We defineprimitive to mean that the call was
not induced via recursion. The next line:Ordered by: standard name , indicates that the text string in
the far right column was used to sort the output. The column headings include:

ncalls for the number of calls,

tottime for the total time spent in the given function (and excluding time made in calls to sub-functions),

percall is the quotient oftottime divided byncalls

cumtime is the total time spent in this and all subfunctions (i.e., from invocation till exit). This figure is accurate
evenfor recursive functions.

percall is the quotient ofcumtime divided by primitive calls

filename:lineno(function)provides the respective data of each function

When there are two numbers in the first column (e.g.: ‘43/3 ’), then the latter is the number of primitive calls,
and the former is the actual number of calls. Note that when the function does not recurse, these two values are
the same, and only the single figure is printed.

Analysis of the profiler data is done using this class from thepstats module:

classStats (filename[, ...])
This class constructor creates an instance of a “statistics object” from afilename(or set of filenames).Stats
objects are manipulated by methods, in order to print useful reports.

The file selected by the above constructor must have been created by the corresponding version ofprofile .
To be specific, there isno file compatibility guaranteed with future versions of this profiler, and there is no
compatibility with files produced by other profilers (e.g., the old system profiler).

If several files are provided, all the statistics for identical functions will be coalesced, so that an overall view of
several processes can be considered in a single report. If additional files need to be combined with data in an
existingStats object, theadd() method can be used.

10.5.1 The Stats Class

Stats objects have the following methods:

strip dirs ()
This method for theStats class removes all leading path information from file names. It is very useful in
reducing the size of the printout to fit within (close to) 80 columns. This method modifies the object, and the
stripped information is lost. After performing a strip operation, the object is considered to have its entries in a
“random” order, as it was just after object initialization and loading. Ifstrip dirs() causes two function
names to be indistinguishable (i.e., they are on the same line of the same filename, and have the same function
name), then the statistics for these two entries are accumulated into a single entry.

add (filename[, ...])
This method of theStats class accumulates additional profiling information into the current profiling object.
Its arguments should refer to filenames created by the corresponding version ofprofile.run() . Statistics
for identically named (re: file, line, name) functions are automatically accumulated into single function statistics.

sort stats (key[, ...])
This method modifies theStats object by sorting it according to the supplied criteria. The argument is typically
a string identifying the basis of a sort (example:’time’ or ’name’).

When more than one key is provided, then additional keys are used as secondary criteria when the there is
equality in all keys selected before them. For example, ‘sort stats(’name’, ’file’) ’ will sort all the
entries according to their function name, and resolve all ties (identical function names) by sorting by file name.

10.5. Reference Manual 267

Abbreviations can be used for any key names, as long as the abbreviation is unambiguous. The following are
the keys currently defined:

Valid Arg Meaning
’calls’ call count
’cumulative’ cumulative time
’file’ file name
’module’ file name
’pcalls’ primitive call count
’line’ line number
’name’ function name
’nfl’ name/file/line
’stdname’ standard name
’time’ internal time

Note that all sorts on statistics are in descending order (placing most time consuming items first), where as name,
file, and line number searches are in ascending order (i.e., alphabetical). The subtle distinction between’nfl’
and’stdname’ is that the standard name is a sort of the name as printed, which means that the embedded line
numbers get compared in an odd way. For example, lines 3, 20, and 40 would (if the file names were the same)
appear in the string order 20, 3 and 40. In contrast,’nfl’ does a numeric compare of the line numbers. In fact,
sort stats(’nfl’) is the same assort stats(’name’, ’file’, ’line’) .

For compatibility with the old profiler, the numeric arguments-1 , 0, 1, and2 are permitted. They are interpreted
as’stdname’ , ’calls’ , ’time’ , and’cumulative’ respectively. If this old style format (numeric) is
used, only one sort key (the numeric key) will be used, and additional arguments will be silently ignored.

reverse order ()
This method for theStats class reverses the ordering of the basic list within the object. This method is
provided primarily for compatibility with the old profiler. Its utility is questionable now that ascending vs
descending order is properly selected based on the sort key of choice.

print stats ([restriction, ...])
This method for theStats class prints out a report as described in theprofile.run() definition.

The order of the printing is based on the lastsort stats() operation done on the object (subject to caveats
in add() andstrip dirs() .

The arguments provided (if any) can be used to limit the list down to the significant entries. Initially, the list is
taken to be the complete set of profiled functions. Each restriction is either an integer (to select a count of lines),
or a decimal fraction between 0.0 and 1.0 inclusive (to select a percentage of lines), or a regular expression (to
pattern match the standard name that is printed; as of Python 1.5b1, this uses the Perl-style regular expression
syntax defined by there module). If several restrictions are provided, then they are applied sequentially. For
example:

print_stats(.1, ’foo:’)

would first limit the printing to first 10% of list, and then only print functions that were part of filename
‘ .*foo: ’. In contrast, the command:

print_stats(’foo:’, .1)

would limit the list to all functions having file names ‘.*foo: ’, and then proceed to only print the first 10% of
them.

print callers ([restriction, ...])
This method for theStats class prints a list of all functions that called each function in the profiled database.
The ordering is identical to that provided byprint stats() , and the definition of the restricting argument
is also identical. For convenience, a number is shown in parentheses after each caller to show how many times

268 Chapter 10. The Python Profiler

this specific call was made. A second non-parenthesized number is the cumulative time spent in the function at
the right.

print callees ([restriction, ...])
This method for theStats class prints a list of all function that were called by the indicated function. Aside
from this reversal of direction of calls (re: called vs was called by), the arguments and ordering are identical to
theprint callers() method.

ignore ()
Deprecated since release 1.5.1.This is not needed in modern versions of Python.2

10.6 Limitations

There are two fundamental limitations on this profiler. The first is that it relies on the Python interpreter to dispatch
call, return, andexceptionevents. Compiled C code does not get interpreted, and hence is “invisible” to the profiler.
All time spent in C code (including built-in functions) will be charged to the Python function that invoked the C code.
If the C code calls out to some native Python code, then those calls will be profiled properly.

The second limitation has to do with accuracy of timing information. There is a fundamental problem with determin-
istic profilers involving accuracy. The most obvious restriction is that the underlying “clock” is only ticking at a rate
(typically) of about .001 seconds. Hence no measurements will be more accurate that that underlying clock. If enough
measurements are taken, then the “error” will tend to average out. Unfortunately, removing this first error induces a
second source of error...

The second problem is that it “takes a while” from when an event is dispatched until the profiler’s call to get the time
actuallygetsthe state of the clock. Similarly, there is a certain lag when exiting the profiler event handler from the
time that the clock’s value was obtained (and then squirreled away), until the user’s code is once again executing. As
a result, functions that are called many times, or call many functions, will typically accumulate this error. The error
that accumulates in this fashion is typically less than the accuracy of the clock (i.e., less than one clock tick), but it
canaccumulate and become very significant. This profiler provides a means of calibrating itself for a given platform
so that this error can be probabilistically (i.e., on the average) removed. After the profiler is calibrated, it will be more
accurate (in a least square sense), but it will sometimes produce negative numbers (when call counts are exceptionally
low, and the gods of probability work against you :-).) Donot be alarmed by negative numbers in the profile. They
shouldonlyappear if you have calibrated your profiler, and the results are actually better than without calibration.

10.7 Calibration

The profiler class has a hard coded constant that is added to each event handling time to compensate for the overhead
of calling the time function, and socking away the results. The following procedure can be used to obtain this constant
for a given platform (see discussion in section Limitations above).

import profile
pr = profile.Profile()
print pr.calibrate(100)
print pr.calibrate(100)
print pr.calibrate(100)

The argument tocalibrate() is the number of times to try to do the sample calls to get the CPU times. If your
computer isveryfast, you might have to do:

2This was once necessary, when Python would print any unused expression result that was notNone. The method is still defined for backward
compatibility.

10.6. Limitations 269

pr.calibrate(1000)

or even:

pr.calibrate(10000)

The object of this exercise is to get a fairly consistent result. When you have a consistent answer, you are ready to use
that number in the source code. For a Sun Sparcstation 1000 running Solaris 2.3, the magical number is about .00053.
If you have a choice, you are better off with a smaller constant, and your results will “less often” show up as negative
in profile statistics.

The following shows how the tracedispatch() method in the Profile class should be modified to install the calibration
constant on a Sun Sparcstation 1000:

def trace_dispatch(self, frame, event, arg):
t = self.timer()
t = t[0] + t[1] - self.t - .00053 # Calibration constant

if self.dispatch[event](frame,t):
t = self.timer()
self.t = t[0] + t[1]

else:
r = self.timer()
self.t = r[0] + r[1] - t # put back unrecorded delta

return

Note that if there is no calibration constant, then the line containing the callibration constant should simply say:

t = t[0] + t[1] - self.t # no calibration constant

You can also achieve the same results using a derived class (and the profiler will actually run equally fast!!), but the
above method is the simplest to use. I could have made the profiler “self calibrating,” but it would have made the
initialization of the profiler class slower, and would have required someveryfancy coding, or else the use of a variable
where the constant ‘.00053 ’ was placed in the code shown. This is aVERY critical performance section, and there
is no reason to use a variable lookup at this point, when a constant can be used.

10.8 Extensions — Deriving Better Profilers

TheProfile class of moduleprofile was written so that derived classes could be developed to extend the profiler.
Rather than describing all the details of such an effort, I’ll just present the following two examples of derived classes
that can be used to do profiling. If the reader is an avid Python programmer, then it should be possible to use these as
a model and create similar (and perchance better) profile classes.

If all you want to do is change how the timer is called, or which timer function is used, then the basic class has an
option for that in the constructor for the class. Consider passing the name of a function to call into the constructor:

pr = profile.Profile(your_time_func)

270 Chapter 10. The Python Profiler

The resulting profiler will callyour time func() instead ofos.times() . The function should return either a
single number or a list of numbers (like whatos.times() returns). If the function returns a single time number, or
the list of returned numbers has length 2, then you will get an especially fast version of the dispatch routine.

Be warned that youshouldcalibrate the profiler class for the timer function that you choose. For most machines, a timer
that returns a lone integer value will provide the best results in terms of low overhead during profiling. (os.times()
is prettybad, ’cause it returns a tuple of floating point values, so all arithmetic is floating point in the profiler!). If you
want to substitute a better timer in the cleanest fashion, you should derive a class, and simply put in the replacement
dispatch method that better handles your timer call, along with the appropriate calibration constant :-).

10.8.1 OldProfile Class

The following derived profiler simulates the old style profiler, providing errant results on recursive functions. The
reason for the usefulness of this profiler is that it runs faster (i.e., less overhead) than the old profiler. It still creates all
the caller stats, and is quite useful when there isno recursion in the user’s code. It is also a lot more accurate than the
old profiler, as it does not charge all its overhead time to the user’s code.

10.8. Extensions — Deriving Better Profilers 271

class OldProfile(Profile):

def trace_dispatch_exception(self, frame, t):
rt, rtt, rct, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:

return self.trace_dispatch_return(rframe, t)
return 0

def trace_dispatch_call(self, frame, t):
fn = ‘frame.f_code‘

self.cur = (t, 0, 0, fn, frame, self.cur)
if self.timings.has_key(fn):

tt, ct, callers = self.timings[fn]
self.timings[fn] = tt, ct, callers

else:
self.timings[fn] = 0, 0, {}

return 1

def trace_dispatch_return(self, frame, t):
rt, rtt, rct, rfn, frame, rcur = self.cur
rtt = rtt + t
sft = rtt + rct

pt, ptt, pct, pfn, pframe, pcur = rcur
self.cur = pt, ptt+rt, pct+sft, pfn, pframe, pcur

tt, ct, callers = self.timings[rfn]
if callers.has_key(pfn):

callers[pfn] = callers[pfn] + 1
else:

callers[pfn] = 1
self.timings[rfn] = tt+rtt, ct + sft, callers

return 1

def snapshot_stats(self):
self.stats = {}
for func in self.timings.keys():

tt, ct, callers = self.timings[func]
nor_func = self.func_normalize(func)
nor_callers = {}
nc = 0
for func_caller in callers.keys():

nor_callers[self.func_normalize(func_caller)] = \
callers[func_caller]

nc = nc + callers[func_caller]
self.stats[nor_func] = nc, nc, tt, ct, nor_callers

10.8.2 HotProfile Class

This profiler is the fastest derived profile example. It does not calculate caller-callee relationships, and does not
calculate cumulative time under a function. It only calculates time spent in a function, so it runs very quickly (re: very
low overhead). In truth, the basic profiler is so fast, that is probably not worth the savings to give up the data, but this

272 Chapter 10. The Python Profiler

class still provides a nice example.

class HotProfile(Profile):

def trace_dispatch_exception(self, frame, t):
rt, rtt, rfn, rframe, rcur = self.cur
if rcur and not rframe is frame:

return self.trace_dispatch_return(rframe, t)
return 0

def trace_dispatch_call(self, frame, t):
self.cur = (t, 0, frame, self.cur)
return 1

def trace_dispatch_return(self, frame, t):
rt, rtt, frame, rcur = self.cur

rfn = ‘frame.f_code‘

pt, ptt, pframe, pcur = rcur
self.cur = pt, ptt+rt, pframe, pcur

if self.timings.has_key(rfn):
nc, tt = self.timings[rfn]
self.timings[rfn] = nc + 1, rt + rtt + tt

else:
self.timings[rfn] = 1, rt + rtt

return 1

def snapshot_stats(self):
self.stats = {}
for func in self.timings.keys():

nc, tt = self.timings[func]
nor_func = self.func_normalize(func)
self.stats[nor_func] = nc, nc, tt, 0, {}

10.8. Extensions — Deriving Better Profilers 273

274

CHAPTER

ELEVEN

Internet Protocols and Support

The modules described in this chapter implement Internet protocols and support for related technology. They are all
implemented in Python. Most of these modules require the presence of the system-dependent modulesocket , which
is currently supported on most popular platforms. Here is an overview:

webbrowser Easy-to-use controller for Web browsers.
cgi Common Gateway Interface support, used to interpret forms in server-side scripts.
urllib Open an arbitrary network resource by URL (requires sockets).
urllib2 An extensible library for opening URLs using a variety of protocols
httplib HTTP protocol client (requires sockets).
ftplib FTP protocol client (requires sockets).
gopherlib Gopher protocol client (requires sockets).
poplib POP3 protocol client (requires sockets).
imaplib IMAP4 protocol client (requires sockets).
nntplib NNTP protocol client (requires sockets).
smtplib SMTP protocol client (requires sockets).
telnetlib Telnet client class.
urlparse Parse URLs into components.
SocketServer A framework for network servers.
BaseHTTPServer Basic HTTP server (base class forSimpleHTTPServer andCGIHTTPServer).
SimpleHTTPServer This module provides a basic request handler for HTTP servers.
CGIHTTPServer This module provides a request handler for HTTP servers which can run CGI scripts.
Cookie Support for HTTP state management (cookies).
asyncore A base class for developing asynchronous socket handling services.

11.1 webbrowser — Convenient Web-browser controller

The webbrowser module provides a very high-level interface to allow displaying Web-based documents to users.
The controller objects are easy to use and are platform-independent. Under most circumstances, simply calling the
open() function from this module will do the right thing.

Under UNIX , graphical browsers are preferred under X11, but text-mode browsers will be used if graphical browsers
are not available or an X11 display isn’t available. If text-mode browsers are used, the calling process will block until
the user exits the browser.

Under UNIX , if the environment variable BROWSER exists, it is interpreted to override the platform default list of
browsers, as a colon-separated list of browsers to try in order. When the value of a list part contains the string%s, then
it is interpreted as a literal browser command line to be used with the argument URL substituted for the%s; if the part
does not contain%s, it is simply interpreted as the name of the browser to launch.

For non-UNIX platforms, or when X11 browsers are available on UNIX , the controlling process will not wait for the

275

user to finish with the browser, but allow the browser to maintain its own window on the display.

The following exception is defined:

exceptionError
Exception raised when a browser control error occurs.

The following functions are defined:

open (url[, new=0][, autoraise=1])
Displayurl using the default browser. Ifnewis true, a new browser window is opened if possible. Ifautoraise
is true, the window is raised if possible (note that under many window managers this will occur regardless of
the setting of this variable).

open new(url)
Openurl in a new window of the default browser, if possible, otherwise, openurl in the only browser window.

get ([name])
Return a controller object for the browser typename. If nameis empty, return a controller for a default browser
appropriate to the caller’s environment.

register (name, constructor[, instance])
Register the browser typename. Once a browser type is registered, theget() function can return a controller
for that browser type. Ifinstanceis not provided, or isNone, constructorwill be called without parameters to
create an instance when needed. Ifinstanceis provided,constructorwill never be called, and may beNone.

This entry point is only useful if you plan to either set the BROWSER variable or callget with a nonempty
argument matching the name of a handler you declare.

A number of browser types are predefined. This table gives the type names that may be passed to theget() function
and the corresponding instantiations for the controller classes, all defined in this module.

Type Name Class Name Notes
’mozilla’ Netscape(’mozilla’)
’netscape’ Netscape(’netscape’)
’mosaic’ GenericBrowser(’mosaic %s &’)
’kfm’ Konqueror() (1)
’grail’ Grail()
’links’ GenericBrowser(’links %s’)
’lynx’ GenericBrowser(’lynx %s’)
’w3m’ GenericBrowser(’w3m %s’)
’windows-default’ WindowsDefault (2)
’internet-config’ InternetConfig (3)

Notes:

(1) “Konqueror” is the file manager for the KDE desktop environment for UNIX, and only makes sense to use if KDE
is running. Some way of reliably detecting KDE would be nice; the KDEDIR variable is not sufficient. Note
also that the name “kfm” is used even when using thekonqueror command with KDE 2 — the implementation
selects the best strategy for running Konqueror.

(2) Only on Windows platforms; requires the common extension moduleswin32api andwin32con .

(3) Only on MacOS platforms; requires the standard MacPythonic module, described in theMacintosh Library
Modulesmanual.

11.1.1 Browser Controller Objects

Browser controllers provide two methods which parallel two of the module-level convenience functions:

276 Chapter 11. Internet Protocols and Support

open (url[, new])
Display url using the browser handled by this controller. Ifnew is true, a new browser window is opened if
possible.

open new(url)
Openurl in a new window of the browser handled by this controller, if possible, otherwise, openurl in the only
browser window.

11.2 cgi — Common Gateway Interface support.

Support module for CGI (Common Gateway Interface) scripts.

This module defines a number of utilities for use by CGI scripts written in Python.

11.2.1 Introduction

A CGI script is invoked by an HTTP server, usually to process user input submitted through an HTML<FORM>or
<ISINDEX> element.

Most often, CGI scripts live in the server’s special ‘cgi-bin’ directory. The HTTP server places all sorts of information
about the request (such as the client’s hostname, the requested URL, the query string, and lots of other goodies) in the
script’s shell environment, executes the script, and sends the script’s output back to the client.

The script’s input is connected to the client too, and sometimes the form data is read this way; at other times the form
data is passed via the “query string” part of the URL. This module is intended to take care of the different cases and
provide a simpler interface to the Python script. It also provides a number of utilities that help in debugging scripts,
and the latest addition is support for file uploads from a form (if your browser supports it — Grail 0.3 and Netscape
2.0 do).

The output of a CGI script should consist of two sections, separated by a blank line. The first section contains a number
of headers, telling the client what kind of data is following. Python code to generate a minimal header section looks
like this:

print "Content-Type: text/html" # HTML is following
print # blank line, end of headers

The second section is usually HTML, which allows the client software to display nicely formatted text with header,
in-line images, etc. Here’s Python code that prints a simple piece of HTML:

print "<TITLE>CGI script output</TITLE>"
print "<H1>This is my first CGI script</H1>"
print "Hello, world!"

11.2.2 Using the cgi module

Begin by writing ‘import cgi ’. Do not use ‘from cgi import * ’ — the module defines all sorts of names
for its own use or for backward compatibility that you don’t want in your namespace.

It’s best to use theFieldStorage class. The other classes defined in this module are provided mostly for backward
compatibility. Instantiate it exactly once, without arguments. This reads the form contents from standard input or the

11.2. cgi — Common Gateway Interface support. 277

environment (depending on the value of various environment variables set according to the CGI standard). Since it
may consume standard input, it should be instantiated only once.

The FieldStorage instance can be indexed like a Python dictionary, and also supports the standard dictionary
methodshas key() and keys() . Form fields containing empty strings are ignored and do not appear in the
dictionary; to keep such values, provide the optional ‘keep blank values ’ argument when creating theField-
Storage instance.

For instance, the following code (which assumes that theContent-Type header and blank line have already been
printed) checks that the fieldsname andaddr are both set to a non-empty string:

form = cgi.FieldStorage()
if not (form.has_key("name") and form.has_key("addr")):

print "<H1>Error</H1>"
print "Please fill in the name and addr fields."
return

print "<p>name:", form["name"].value
print "<p>addr:", form["addr"].value
...further form processing here...

Here the fields, accessed through ‘form[key] ’, are themselves instances ofFieldStorage (or MiniField-
Storage , depending on the form encoding). Thevalue attribute of the instance yields the string value of the field.
Thegetvalue() method returns this string value directly; it also accepts an optional second argument as a default
to return if the requested key is not present.

If the submitted form data contains more than one field with the same name, the object retrieved by ‘form[key] ’ is
not aFieldStorage or MiniFieldStorage instance but a list of such instances. Similarly, in this situation,
‘ form.getvalue(key) ’ would return a list of strings. If you expect this possibility (i.e., when your HTML form
contains multiple fields with the same name), use thetype() function to determine whether you have a single
instance or a list of instances. For example, here’s code that concatenates any number of username fields, separated by
commas:

value = form.getvalue("username", "")
if type(value) is type([]):

Multiple username fields specified
usernames = ",".join(value)

else:
Single or no username field specified
usernames = value

If a field represents an uploaded file, accessing the value via thevalue attribute or thegetvalue() method reads
the entire file in memory as a string. This may not be what you want. You can test for an uploaded file by testing either
thefilename attribute or thefile attribute. You can then read the data at leisure from thefile attribute:

fileitem = form["userfile"]
if fileitem.file:

It’s an uploaded file; count lines
linecount = 0
while 1:

line = fileitem.file.readline()
if not line: break
linecount = linecount + 1

278 Chapter 11. Internet Protocols and Support

The file upload draft standard entertains the possibility of uploading multiple files from one field (using a recursive
multipart/* encoding). When this occurs, the item will be a dictionary-likeFieldStorage item. This can be deter-
mined by testing itstype attribute, which should bemultipart/form-data (or perhaps another MIME type matching
multipart/*). In this case, it can be iterated over recursively just like the top-level form object.

When a form is submitted in the “old” format (as the query string or as a single data part of typeapplication/x-www-
form-urlencoded), the items will actually be instances of the classMiniFieldStorage . In this case, thelist ,
file , andfilename attributes are alwaysNone.

11.2.3 Old classes

These classes, present in earlier versions of thecgi module, are still supported for backward compatibility. New
applications should use theFieldStorage class.

SvFormContentDict stores single value form content as dictionary; it assumes each field name occurs in the form
only once.

FormContentDict stores multiple value form content as a dictionary (the form items are lists of values). Useful if
your form contains multiple fields with the same name.

Other classes (FormContent , InterpFormContentDict) are present for backwards compatibility with really
old applications only. If you still use these and would be inconvenienced when they disappeared from a next version
of this module, drop me a note.

11.2.4 Functions

These are useful if you want more control, or if you want to employ some of the algorithms implemented in this
module in other circumstances.

parse (fp)
Parse a query in the environment or from a file (defaultsys.stdin).

parse qs (qs[, keep blank values, strict parsing])
Parse a query string given as a string argument (data of typeapplication/x-www-form-urlencoded). Data are
returned as a dictionary. The dictionary keys are the unique query variable names and the values are lists of
values for each name.

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

The optional argumentstrict parsing is a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

parse qsl (qs[, keep blank values, strict parsing])
Parse a query string given as a string argument (data of typeapplication/x-www-form-urlencoded). Data are
returned as a list of name, value pairs.

The optional argumentkeep blank valuesis a flag indicating whether blank values in URL encoded queries
should be treated as blank strings. A true value indicates that blanks should be retained as blank strings. The
default false value indicates that blank values are to be ignored and treated as if they were not included.

The optional argumentstrict parsing is a flag indicating what to do with parsing errors. If false (the default),
errors are silently ignored. If true, errors raise a ValueError exception.

parse multipart (fp, pdict)
Parse input of typemultipart/form-data (for file uploads). Arguments arefp for the input file andpdict for a
dictionary containing other parameters in theContent-Type header.

11.2. cgi — Common Gateway Interface support. 279

Returns a dictionary just likeparse qs() keys are the field names, each value is a list of values for that field.
This is easy to use but not much good if you are expecting megabytes to be uploaded — in that case, use the
FieldStorage class instead which is much more flexible.

Note that this does not parse nested multipart parts — useFieldStorage for that.

parse header (string)
Parse a MIME header (such asContent-Type) into a main value and a dictionary of parameters.

test ()
Robust test CGI script, usable as main program. Writes minimal HTTP headers and formats all information
provided to the script in HTML form.

print environ ()
Format the shell environment in HTML.

print form (form)
Format a form in HTML.

print directory ()
Format the current directory in HTML.

print environ usage ()
Print a list of useful (used by CGI) environment variables in HTML.

escape (s[, quote])
Convert the characters ‘&’, ‘ <’ and ‘>’ in string s to HTML-safe sequences. Use this if you need to display text
that might contain such characters in HTML. If the optional flagquoteis true, the double quote character (‘" ’)
is also translated; this helps for inclusion in an HTML attribute value, e.g. in .

11.2.5 Caring about security

There’s one important rule: if you invoke an external program (e.g. via theos.system() or os.popen() func-
tions), make very sure you don’t pass arbitrary strings received from the client to the shell. This is a well-known
security hole whereby clever hackers anywhere on the web can exploit a gullible CGI script to invoke arbitrary shell
commands. Even parts of the URL or field names cannot be trusted, since the request doesn’t have to come from your
form!

To be on the safe side, if you must pass a string gotten from a form to a shell command, you should make sure the
string contains only alphanumeric characters, dashes, underscores, and periods.

11.2.6 Installing your CGI script on a Unix system

Read the documentation for your HTTP server and check with your local system administrator to find the directory
where CGI scripts should be installed; usually this is in a directory ‘cgi-bin’ in the server tree.

Make sure that your script is readable and executable by “others”; the UNIX file mode should be0755 octal (use
‘chmod 0755 filename’). Make sure that the first line of the script contains#! starting in column 1 followed by
the pathname of the Python interpreter, for instance:

#!/usr/local/bin/python

Make sure the Python interpreter exists and is executable by “others”.

Make sure that any files your script needs to read or write are readable or writable, respectively, by “others” — their
mode should be0644 for readable and0666 for writable. This is because, for security reasons, the HTTP server
executes your script as user “nobody”, without any special privileges. It can only read (write, execute) files that

280 Chapter 11. Internet Protocols and Support

everybody can read (write, execute). The current directory at execution time is also different (it is usually the server’s
cgi-bin directory) and the set of environment variables is also different from what you get at login. In particular, don’t
count on the shell’s search path for executables (PATH) or the Python module search path (PYTHONPATH) to be set
to anything interesting.

If you need to load modules from a directory which is not on Python’s default module search path, you can change the
path in your script, before importing other modules, e.g.:

import sys
sys.path.insert(0, "/usr/home/joe/lib/python")
sys.path.insert(0, "/usr/local/lib/python")

(This way, the directory inserted last will be searched first!)

Instructions for non-UNIX systems will vary; check your HTTP server’s documentation (it will usually have a section
on CGI scripts).

11.2.7 Testing your CGI script

Unfortunately, a CGI script will generally not run when you try it from the command line, and a script that works
perfectly from the command line may fail mysteriously when run from the server. There’s one reason why you should
still test your script from the command line: if it contains a syntax error, the Python interpreter won’t execute it at all,
and the HTTP server will most likely send a cryptic error to the client.

Assuming your script has no syntax errors, yet it does not work, you have no choice but to read the next section.

11.2.8 Debugging CGI scripts

First of all, check for trivial installation errors — reading the section above on installing your CGI script carefully can
save you a lot of time. If you wonder whether you have understood the installation procedure correctly, try installing a
copy of this module file (‘cgi.py’) as a CGI script. When invoked as a script, the file will dump its environment and the
contents of the form in HTML form. Give it the right mode etc, and send it a request. If it’s installed in the standard
‘cgi-bin’ directory, it should be possible to send it a request by entering a URL into your browser of the form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If this gives an error of type 404, the server cannot find the script – perhaps you need to install it in a different directory.
If it gives another error (e.g. 500), there’s an installation problem that you should fix before trying to go any further.
If you get a nicely formatted listing of the environment and form content (in this example, the fields should be listed
as “addr” with value “At Home” and “name” with value “Joe Blow”), the ‘cgi.py’ script has been installed correctly.
If you follow the same procedure for your own script, you should now be able to debug it.

The next step could be to call thecgi module’stest() function from your script: replace its main code with the
single statement

cgi.test()

This should produce the same results as those gotten from installing the ‘cgi.py’ file itself.

When an ordinary Python script raises an unhandled exception (e.g. because of a typo in a module name, a file that
can’t be opened, etc.), the Python interpreter prints a nice traceback and exits. While the Python interpreter will still

11.2. cgi — Common Gateway Interface support. 281

do this when your CGI script raises an exception, most likely the traceback will end up in one of the HTTP server’s
log file, or be discarded altogether.

Fortunately, once you have managed to get your script to executesomecode, it is easy to catch exceptions and cause
a traceback to be printed. Thetest() function below in this module is an example. Here are the rules:

1. Import the traceback module before entering thetry ... except statement

2. Assignsys.stderr to besys.stdout

3. Make sure you finish printing the headers and the blank line early

4. Wrap all remaining code in atry ... except statement

5. In the except clause, calltraceback.print exc()

For example:

import sys
import traceback
print "Content-Type: text/html"
print
sys.stderr = sys.stdout
try:

...your code here...
except:

print "\n\n<PRE>"
traceback.print_exc()

Notes: The assignment tosys.stderr is needed because the traceback prints tosys.stderr . The print
"\n\n<PRE>" statement is necessary to disable the word wrapping in HTML.

If you suspect that there may be a problem in importing the traceback module, you can use an even more robust
approach (which only uses built-in modules):

import sys
sys.stderr = sys.stdout
print "Content-Type: text/plain"
print
...your code here...

This relies on the Python interpreter to print the traceback. The content type of the output is set to plain text, which
disables all HTML processing. If your script works, the raw HTML will be displayed by your client. If it raises an
exception, most likely after the first two lines have been printed, a traceback will be displayed. Because no HTML
interpretation is going on, the traceback will readable.

11.2.9 Common problems and solutions

• Most HTTP servers buffer the output from CGI scripts until the script is completed. This means that it is not
possible to display a progress report on the client’s display while the script is running.

• Check the installation instructions above.

• Check the HTTP server’s log files. (‘tail -f logfile ’ in a separate window may be useful!)

282 Chapter 11. Internet Protocols and Support

• Always check a script for syntax errors first, by doing something like ‘python script.py ’.

• When using any of the debugging techniques, don’t forget to add ‘import sys ’ to the top of the script.

• When invoking external programs, make sure they can be found. Usually, this means using absolute path names
— PATH is usually not set to a very useful value in a CGI script.

• When reading or writing external files, make sure they can be read or written by every user on the system.

• Don’t try to give a CGI script a set-uid mode. This doesn’t work on most systems, and is a security liability as
well.

11.3 urllib — Open arbitrary resources by URL

This module provides a high-level interface for fetching data across the World-Wide Web. In particular, theur-
lopen() function is similar to the built-in functionopen() , but accepts Universal Resource Locators (URLs)
instead of filenames. Some restrictions apply — it can only open URLs for reading, and no seek operations are
available.

It defines the following public functions:

urlopen (url[, data])
Open a network object denoted by a URL for reading. If the URL does not have a scheme identifier, or if it
has ‘file:’ as its scheme identifier, this opens a local file; otherwise it opens a socket to a server somewhere on
the network. If the connection cannot be made, or if the server returns an error code, theIOError excep-
tion is raised. If all went well, a file-like object is returned. This supports the following methods:read() ,
readline() , readlines() , fileno() , close() , info() andgeturl() .

Except for theinfo() andgeturl() methods, these methods have the same interface as for file objects —
see section 2.1.7 in this manual. (It is not a built-in file object, however, so it can’t be used at those few places
where a true built-in file object is required.)

The info() method returns an instance of the classmimetools.Message containing meta-information
associated with the URL. When the method is HTTP, these headers are those returned by the server at the
head of the retrieved HTML page (including Content-Length and Content-Type). When the method is FTP, a
Content-Length header will be present if (as is now usual) the server passed back a file length in response to the
FTP retrieval request. When the method is local-file, returned headers will include a Date representing the file’s
last-modified time, a Content-Length giving file size, and a Content-Type containing a guess at the file’s type.
See also the description of themimetools module.

Thegeturl() method returns the real URL of the page. In some cases, the HTTP server redirects a client to
another URL. Theurlopen() function handles this transparently, but in some cases the caller needs to know
which URL the client was redirected to. Thegeturl() method can be used to get at this redirected URL.

If the url uses the ‘http:’ scheme identifier, the optionaldataargument may be given to specify aPOSTrequest
(normally the request type isGET). The data argument must in standardapplication/x-www-form-urlencoded
format; see theurlencode() function below.

The urlopen() function works transparently with proxies which do not require authentication. In a UNIX

or Windows environment, set the httpproxy, ftp proxy or gopherproxy environment variables to a URL that
identifies the proxy server before starting the Python interpreter. For example (the ‘%’ is the command prompt):

% http_proxy="http://www.someproxy.com:3128"
% export http_proxy
% python
...

In a Macintosh environment,urlopen() will retrieve proxy information from Internet Config.

11.3. urllib — Open arbitrary resources by URL 283

Proxies which require authentication for use are not currently supported; this is considered an implementation
limitation.

urlretrieve (url[, filename[, reporthook[, data]]])
Copy a network object denoted by a URL to a local file, if necessary. If the URL points to a local file, or a valid
cached copy of the object exists, the object is not copied. Return a tuple(filename, headers) wherefilename
is the local file name under which the object can be found, andheadersis eitherNone (for a local object) or
whatever theinfo() method of the object returned byurlopen() returned (for a remote object, possibly
cached). Exceptions are the same as forurlopen() .

The second argument, if present, specifies the file location to copy to (if absent, the location will be a tempfile
with a generated name). The third argument, if present, is a hook function that will be called once on estab-
lishment of the network connection and once after each block read thereafter. The hook will be passed three
arguments; a count of blocks transferred so far, a block size in bytes, and the total size of the file. The third
argument may be-1 on older FTP servers which do not return a file size in response to a retrieval request.

If the url uses the ‘http:’ scheme identifier, the optionaldataargument may be given to specify aPOSTrequest
(normally the request type isGET). The data argument must in standardapplication/x-www-form-urlencoded
format; see theurlencode() function below.

urlcleanup ()
Clear the cache that may have been built up by previous calls tourlretrieve() .

quote (string[, safe])
Replace special characters instringusing the ‘%xx’ escape. Letters, digits, and the characters ‘,.- ’ are never
quoted. The optionalsafeparameter specifies additional characters that should not be quoted — its default value
is ’/’ .

Example:quote(’/˜connolly/’) yields ’/%7econnolly/’ .

quote plus (string[, safe])
Like quote() , but also replaces spaces by plus signs, as required for quoting HTML form values. Plus signs
in the original string are escaped unless they are included insafe.

unquote (string)
Replace ‘%xx’ escapes by their single-character equivalent.

Example:unquote(’/%7Econnolly/’) yields ’/˜connolly/’ .

unquote plus (string)
Like unquote() , but also replaces plus signs by spaces, as required for unquoting HTML form values.

urlencode (query[, doseq])
Convert a mapping object or a sequence of two-element tuples to a “url-encoded” string, suitable to pass to
urlopen() above as the optionaldataargument. This is useful to pass a dictionary of form fields to aPOST
request. The resulting string is a series ofkey=valuepairs separated by ‘&’ characters, where bothkeyand
valueare quoted usingquote plus() above. If the optional parameterdoseqis present and evaluates to true,
individual key=valuepairs are generated for each element of the sequence. When a sequence of two-element
tuples is used as thequeryargument, the first element of each tuple is a key and the second is a value. The order
of parameters in the encoded string will match the order of parameter tuples in the sequence.

The public functionsurlopen() andurlretrieve() create an instance of theFancyURLopener class and use
it to perform their requested actions. To override this functionality, programmers can create a subclass ofURLopener
or FancyURLopener , then assign that an instance of that class to theurllib. urlopener variable before
calling the desired function. For example, applications may want to specify a differentuser-agent header than
URLopener defines. This can be accomplished with the following code:

284 Chapter 11. Internet Protocols and Support

class AppURLopener(urllib.FancyURLopener):
def __init__(self, *args):

self.version = "App/1.7"
apply(urllib.FancyURLopener.__init__, (self,) + args)

urllib._urlopener = AppURLopener()

classURLopener ([proxies[, **x509]])
Base class for opening and reading URLs. Unless you need to support opening objects using schemes other than
‘http:’, ‘ ftp:’, ‘ gopher:’ or ‘ file:’, you probably want to useFancyURLopener .

By default, theURLopener class sends auser-agent header of ‘urllib/ VVV’, whereVVV is theurl-
lib version number. Applications can define their ownuser-agent header by subclassingURLopener
or FancyURLopener and setting the instance attributeversion to an appropriate string value before the
open() method is called.

Additional keyword parameters, collected inx509, are used for authentication with the ‘https:’ scheme. The
keywordskey file and cert file are supported; both are needed to actually retrieve a resource at an ‘https:’
URL.

classFancyURLopener (...)
FancyURLopener subclassesURLopener providing default handling for the following HTTP response
codes: 301, 302 or 401. For 301 and 302 response codes, thelocation header is used to fetch the actual
URL. For 401 response codes (authentication required), basic HTTP authentication is performed. For 301 and
302 response codes, recursion is bounded by the value of themaxtriesattribute, which defaults 10.

The parameters to the constructor are the same as those forURLopener .

Note: When performing basic authentication, aFancyURLopener instance calls its
prompt user passwd() method. The default implementation asks the users for the required infor-
mation on the controlling terminal. A subclass may override this method to support more appropriate behavior
if needed.

Restrictions:

• Currently, only the following protocols are supported: HTTP, (versions 0.9 and 1.0), Gopher (but not Gopher-+),
FTP, and local files.

• The caching feature ofurlretrieve() has been disabled until I find the time to hack proper processing of
Expiration time headers.

• There should be a function to query whether a particular URL is in the cache.

• For backward compatibility, if a URL appears to point to a local file but the file can’t be opened, the URL is
re-interpreted using the FTP protocol. This can sometimes cause confusing error messages.

• Theurlopen() andurlretrieve() functions can cause arbitrarily long delays while waiting for a net-
work connection to be set up. This means that it is difficult to build an interactive web client using these functions
without using threads.

• The data returned byurlopen() or urlretrieve() is the raw data returned by the server. This may be
binary data (e.g. an image), plain text or (for example) HTML. The HTTP protocol provides type information in
the reply header, which can be inspected by looking at thecontent-type header. For the Gopher protocol,
type information is encoded in the URL; there is currently no easy way to extract it. If the returned data is
HTML, you can use the modulehtmllib to parse it.

• This module does not support the use of proxies which require authentication. This may be implemented in the
future.

11.3. urllib — Open arbitrary resources by URL 285

• Although theurllib module contains (undocumented) routines to parse and unparse URL strings, the recom-
mended interface for URL manipulation is in moduleurlparse .

11.3.1 URLopener Objects

URLopener andFancyURLopener objects have the following attributes.

open (fullurl[, data])
Openfullurl using the appropriate protocol. This method sets up cache and proxy information, then calls the
appropriate open method with its input arguments. If the scheme is not recognized,open unknown() is
called. Thedataargument has the same meaning as thedataargument ofurlopen() .

open unknown (fullurl[, data])
Overridable interface to open unknown URL types.

retrieve (url[, filename[, reporthook[, data]]])
Retrieves the contents ofurl and places it infilename. The return value is a tuple consisting of a local filename
and either amimetools.Message object containing the response headers (for remote URLs) or None (for
local URLs). The caller must then open and read the contents offilename. If filenameis not given and the URL
refers to a local file, the input filename is returned. If the URL is non-local andfilenameis not given, the filename
is the output oftempfile.mktemp() with a suffix that matches the suffix of the last path component of the
input URL. If reporthookis given, it must be a function accepting three numeric parameters. It will be called
after each chunk of data is read from the network.reporthookis ignored for local URLs.

If the url uses the ‘http:’ scheme identifier, the optionaldataargument may be given to specify aPOSTrequest
(normally the request type isGET). The data argument must in standardapplication/x-www-form-urlencoded
format; see theurlencode() function below.

version
Variable that specifies the user agent of the opener object. To geturllib to tell servers that it is a particular
user agent, set this in a subclass as a class variable or in the constructor before calling the base constructor.

The FancyURLopener class offers one additional method that should be overloaded to provide the appropriate
behavior:

prompt user passwd (host, realm)
Return information needed to authenticate the user at the given host in the specified security realm. The return
value should be a tuple,(user, password) , which can be used for basic authentication.

The implementation prompts for this information on the terminal; an application should override this method to
use an appropriate interaction model in the local environment.

11.3.2 Examples

Here is an example session that uses the ‘GET’ method to retrieve a URL containing parameters:

>>> import urllib
>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query?%s" % params)
>>> print f.read()

The following example uses the ‘POST’ method instead:

286 Chapter 11. Internet Protocols and Support

>>> import urllib
>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> f = urllib.urlopen("http://www.musi-cal.com/cgi-bin/query", params)
>>> print f.read()

11.4 urllib2 — extensible library for opening URLs

Theurllib2 module defines functions and classes which help in opening URLs (mostly HTTP) in a complex world
— basic and digest authentication, redirections and more.

Theurllib2 module defines the following functions:

urlopen (url[, data])
Open the urlurl, which can either a string or aRequest object (currently the code checks that it really is a
Request instance, or an instance of a subclass ofRequest).

data should be a string, which specifies additional data to send to the server. In HTTP requests, which are
the only ones that supportdata, it should be a buffer in the format ofapplication/x-www-form-urlencoded, for
example one returned fromurllib.urlencode() .

This function returns a file-like object with two additional methods:

•geturl() — return the URL of the resource retrieved

•info() — return the meta-information of the page, as a dictionary-like object

RaisesURLError on errors.

install opener (opener)
Install aOpenerDirector instance as the default opener. The code does not check for a realOpenerDi-
rector , and any class with the appropriate interface will work.

build opener ([handler, ...])
Return anOpenerDirector instance, which chains the handlers in the order given.handlers can be either
instances ofBaseHandler , or subclasses ofBaseHandler (in which case it must be possible to call the
constructor without any parameters. Instances of the following classes will be in the front of thehandlers,
unless thehandlers contain them, instances of them or subclasses of them:

ProxyHandler, UnknownHandler, HTTPHandler, HTTPDefaultErrorHandler,
HTTPRedirectHandler, FTPHandler, FileHandler

If the Python installation has SSL support (socket.ssl() exists),HTTPSHandler will also be added.

The following exceptions are raised as appropriate:

exceptionURLError
The error handlers raise when they run into a problem. It is a subclass ofIOError .

exceptionHTTPError
A subclass ofURLError , it can also function as a non-exceptional file-like return value (the same thing that
urlopen() returns). This is useful when handling exotic HTTP errors, such as requests for authentication.

exceptionGopherError
A subclass ofURLError , this is the error raised by the Gopher handler.

The following classes are provided:

classRequest (url[, data[, headers]])
This class is an abstraction of a URL request.

11.4. urllib2 — extensible library for opening URLs 287

url should be a string which is a valid URL. For descrtion ofdata see theadd data() description.head-
ers should be a dictionary, and will be treated as ifadd header() was called with each key and value as
arguments.

classOpenerDirector ()
TheOpenerDirector class opens URLs viaBaseHandler s chained together. It manages the chaining of
handlers, and recovery from errors.

classBaseHandler ()
This is the base class for all registered handlers — and handles only the simple mechanics of registration.

classHTTPDefaultErrorHandler ()
A class which defines a default handler for HTTP error responses; all responses are turned intoHTTPError
exceptions.

classHTTPRedirectHandler ()
A class to handle redirections.

classProxyHandler ([proxies])
Cause requests to go through a proxy. Ifproxiesis given, it must be a dictionary mapping protocol names to
URLs of proxies. The default is to read the list of proxies from the environment variablesprotocol proxy.

classHTTPPasswordMgr ()
Keep a database of(realm, uri) -> (user, password) mappings.

classHTTPPasswordMgrWithDefaultRealm ()
Keep a database of(realm, uri) -> (user, password) mappings. A realm ofNone is considered a catch-
all realm, which is searched if no other realm fits.

classAbstractBasicAuthHandler ([password mgr])
This is a mixin class that helps with HTTP authentication, both to the remote host and to a proxy.

password mgr should be something that is compatible withHTTPPasswordMgr — supplies the documented
interface above.

classHTTPBasicAuthHandler ([password mgr])
Handle authentication with the remote host. Validpassword mgr, if given, are the same as forAbstractBa-
sicAuthHandler .

classProxyBasicAuthHandler ([password mgr])
Handle authentication with the proxy. Validpassword mgr, if given, are the same as forAbstractBasi-
cAuthHandler .

classAbstractDigestAuthHandler ([password mgr])
This is a mixin class, that helps with HTTP authentication, both to the remote host and to a proxy.

password mgr should be something that is compatible withHTTPPasswordMgr — supplies the documented
interface above.

classHTTPDigestAuthHandler ([password mgr])
Handle authentication with the remote host. Validpassword mgr, if given, are the same as forAbstractBa-
sicAuthHandler .

classProxyDigestAuthHandler ([password mgr])
Handle authentication with the proxy.password mgr, if given, shoudl be the same as for the constructor of
AbstractDigestAuthHandler .

classHTTPHandler ()
A class to handle opening of HTTP URLs.

classHTTPSHandler ()
A class to handle opening of HTTPS URLs.

classFileHandler ()

288 Chapter 11. Internet Protocols and Support

Open local files.

classFTPHandler ()
Open FTP URLs.

classCacheFTPHandler ()
Open FTP URLs, keeping a cache of open FTP connections to minimize delays.

classGopherHandler ()
Open gopher URLs.

classUnknownHandler ()
A catch-all class to handle unknown URLs.

11.4.1 Request Objects

The following methods describe all ofRequest ’s public interface, and so all must be overridden in subclasses.

add data (data)
Set theRequest data todata is ignored by all handlers except HTTP handlers — and there it should be an
application/x-www-form-encoded buffer, and will change the request to bePOSTrather thenGET.

has data (data)
Return whether the instance has a non-None data.

get data (data)
Return the instance’s data.

add header (key, val)
Add another header to the request. Headers are currently ignored by all handlers except HTTP handlers, where
they are added to the list of headers sent to the server. Note that there cannot be more then one header with the
same name, and later calls will overwrite previous calls in case thekeycollides. Currently, this is no loss of
HTTP functionality, since all headers which have meaning when used more then once have a (header-specific)
way of gaining the same functionality using only one header.

get full url ()
Return the URL given in the constructor.

get type ()
Return the type of the URL — also known as the scheme.

get host ()
Return the host to which connection will be made.

get selector ()
Return the selector — the part of the URL that is sent to the server.

set proxy (host, type)
Make the request by connecting to a proxy server. Thehostandtypewill replace those of the instance, and the
instance’s selector will be the original URL given in the constructor.

11.4.2 OpenerDirector Objects

OpenerDirector instances have the following methods:

add handler (handler)
handler should be an instance ofBaseHandler . The following methods are searched, and added to the
possible chains.

•protocol open() — signal that the handler knows how to openprotocolURLs.

11.4. urllib2 — extensible library for opening URLs 289

•protocol error type() — signal that the handler knows how to handletypeerrors fromprotocol.

close ()
Explicitly break cycles, and delete all the handlers. Because theOpenerDirector needs to know the regis-
tered handlers, and a handler needs to know who theOpenerDirector who called it is, there is a reference
cycles. Even though recent versions of Python have cycle-collection, it is sometimes preferable to explicitly
break the cycles.

open (url[, data])
Open the givenurl. (which can be a request object or a string), optionally passing the givendata. Arguments,
return values and exceptions raised are the same as those ofurlopen() (which simply calls theopen()
method on the default installedOpenerDirector .

error (proto[, arg[, ...]])
Handle an error in a given protocol. The HTTP protocol is special cased to use the code as the error. This will
call the registered error handlers for the given protocol with the given arguments (which are protocol specific).

Return values and exceptions raised are the same as those ofurlopen() .

11.4.3 BaseHandler Objects

BaseHandler objects provide a couple of methods that are directly useful, and others that are meant to be used by
derived classes. These are intended for direct use:

add parent (director)
Add a director as parent.

close ()
Remove any parents.

The following members and methods should be used only be classes derived fromBaseHandler :

parent
A valid OpenerDirector , which can be used to open using a different protocol, or handle errors.

default open (req)
This method isnotdefined inBaseHandler , but subclasses should define it if they want to catch all URLs.

This method, if exists, will be called by theparent OpenerDirector . It should return a file-like object
as described in the return value of theopen() of OpenerDirector or None. It should raiseURLError ,
unless a truly exceptional thing happens (for example,MemoryError should not be mapped toURLError .

This method will be called before any protocol-specific open method.

protocol open (req)
This method isnotdefined inBaseHandler , but subclasses should define it if they want to handle URLs with
the given protocol.

This method, if defined, will be called by theparent OpenerDirector . Return values should be the same
as fordefault open() .

unknown open (req)
This method isnot defined inBaseHandler , but subclasses should define it if they want to catch all URLs
with no specific registerd handler to open it.

This method, if exists, will be called by theparent OpenerDirector . Return values should be the same
as fordefault open() .

http error default (req, fp, code, msg, hdrs)
This method isnotdefined inBaseHandler , but subclasses should override it if they intend to provide a catch-
all for otherwise unhandled HTTP errors. It will be called automatically by theOpenerDirector getting the
error, and should not normally be called in other circumstances.

290 Chapter 11. Internet Protocols and Support

reqwill be aRequest object,fp will be a file-like object with the HTTP error body,codewill be the three-digit
code of the error,msgwill be the user-visible explanation of the code andhdrswill be a mapping object with
the headers of the error.

Return values and exceptions raised should be the same as those ofurlopen() .

http error nnn(req, fp, code, msg, hdrs)
nnnshould be a three-digit HTTP error code. This method is also not defined inBaseHandler , but will be
called, if it exists, on an instance of a subclass, when an HTTP error with codennnoccurs.

Subclasses should override this method to handle specific HTTP errors.

Arguments, return values and exceptions raised should be the same as forhttp error default() .

11.4.4 HTTPRedirectHandler Objects

Note: 303 redirection is not supported by this version ofurllib2 .

http error 301 (req, fp, code, msg, hdrs)
Redirect to theLocation: URL. This method is called by the parentOpenerDirector when getting an
HTTP permanent-redirect response.

http error 302 (req, fp, code, msg, hdrs)
The same ashttp error 301() , but called for the temporary-redirect response.

11.4.5 ProxyHandler Objects

protocol open (request)
TheProxyHandler will have a methodprotocol open() for everyprotocolwhich has a proxy in theprox-
ies dictionary given in the constructor. The method will modify requests to go through the proxy, by calling
request.set proxy() , and call the next handler in the chain to actually execute the protocol.

11.4.6 HTTPPasswordMgr Objects

These methods are available onHTTPPasswordMgr andHTTPPasswordMgrWithDefaultRealm objects.

add password (realm, uri, user, passwd)
uri can be either a single URI, or a sequene of URIs.realm, user andpasswdmust be strings. This causes
(user, passwd) to be used as authentication tokens when authentication forrealmand a super-URI of any of
the given URIs is given.

find user password (realm, authuri)
Get user/password for given realm and URI, if any. This method will return(None, None) if there is no
matching user/password.

For HTTPPasswordMgrWithDefaultRealm objects, the realmNone will be searched if the givenrealm
has no matching user/password.

11.4.7 AbstractBasicAuthHandler Objects

handle authentication request (authreq, host, req, headers)
Handle an authentication request by getting user/password pair, and retrying.authreqshould be the name of
the header where the information about the realm,hostis the host to authenticate too,req should be the (failed)
Request object, andheadersshould be the error headers.

11.4. urllib2 — extensible library for opening URLs 291

11.4.8 HTTPBasicAuthHandler Objects

http error 401 (req, fp, code, msg, hdrs)
Retry the request with authentication info, if available.

11.4.9 ProxyBasicAuthHandler Objects

http error 407 (req, fp, code, msg, hdrs)
Retry the request with authentication info, if available.

11.4.10 AbstractDigestAuthHandler Objects

handle authentication request (authreq, host, req, headers)
authreqshould be the name of the header where the information about the realm,hostshould be the host to
authenticate too,reqshould be the (failed)Request object, andheadersshould be the error headers.

11.4.11 HTTPDigestAuthHandler Objects

http error 401 (req, fp, code, msg, hdrs)
Retry the request with authentication info, if available.

11.4.12 ProxyDigestAuthHandler Objects

http error 407 (req, fp, code, msg, hdrs)
Retry the request with authentication information, if available.

11.4.13 HTTPHandler Objects

http open (req)
Send an HTTP request, whcih can be either GET or POST, depending onreq.has data() .

11.4.14 HTTPSHandler Objects

https open (req)
Send an HTTPS request, which can be either GET or POST, depending onreq.has data() .

11.4.15 FileHandler Objects

file open (req)
Open the file locally, if there is no host name, or the host name is’localhost’ . Change the protocol toftp
otherwise, and retry opening it usingparent .

11.4.16 FTPHandler Objects

ftp open (req)
Open the FTP file indicated byreq. The login is always done with empty username and password.

292 Chapter 11. Internet Protocols and Support

11.4.17 CacheFTPHandler Objects

CacheFTPHandler objects areFTPHandler objects with the following additional methods:

setTimeout (t)
Set timeout of connections tot seconds.

setMaxConns (m)
Set maximum number of cached connections tom.

11.4.18 GopherHandler Objects

gopher open (req)
Open the gopher resource indicated byreq.

11.4.19 UnknownHandler Objects

unknown open (R)
aise aURLError exception.

11.5 httplib — HTTP protocol client

This module defines a class which implements the client side of the HTTP protocol. It is normally not used directly
— the moduleurllib uses it to handle URLs that use HTTP.

The module defines one class,HTTP:

classHTTP([host[, port]])
An HTTP instance represents one transaction with an HTTP server. It should be instantiated passing it a host
and optional port number. If no port number is passed, the port is extracted from the host string if it has the
form host: port, else the default HTTP port (80) is used. If no host is passed, no connection is made, and the
connect() method should be used to connect to a server. For example, the following calls all create instances
that connect to the server at the same host and port:

>>> h1 = httplib.HTTP(’www.cwi.nl’)
>>> h2 = httplib.HTTP(’www.cwi.nl:80’)
>>> h3 = httplib.HTTP(’www.cwi.nl’, 80)

Once anHTTPinstance has been connected to an HTTP server, it should be used as follows:

1.Make exactly one call to theputrequest() method.

2.Make zero or more calls to theputheader() method.

3.Call theendheaders() method (this can be omitted if step 4 makes no calls).

4.Optional calls to thesend() method.

5.Call thegetreply() method.

6.Call thegetfile() method and read the data off the file object that it returns.

11.5.1 HTTP Objects

HTTPinstances have the following methods:

11.5. httplib — HTTP protocol client 293

set debuglevel (level)
Set the debugging level (the amount of debugging output printed). The default debug level is0, meaning no
debugging output is printed.

connect (host[, port])
Connect to the server given byhostandport. See the intro for the default port. This should be called directly
only if the instance was instantiated without passing a host.

send (data)
Send data to the server. This should be used directly only after theendheaders() method has been called
and beforegetreply() has been called.

putrequest (request, selector)
This should be the first call after the connection to the server has been made. It sends a line to the server
consisting of therequeststring, theselectorstring, and the HTTP version (HTTP/1.0).

putheader (header, argument[, ...])
Send an RFC 822 style header to the server. It sends a line to the server consisting of the header, a colon and a
space, and the first argument. If more arguments are given, continuation lines are sent, each consisting of a tab
and an argument.

endheaders ()
Send a blank line to the server, signalling the end of the headers.

getreply ()
Complete the request by shutting down the sending end of the socket, read the reply from the server, and return
a triple (replycode, message, headers) . Here,replycodeis the integer reply code from the request (e.g.,
200 if the request was handled properly);messageis the message string corresponding to the reply code; and
headersis an instance of the classmimetools.Message containing the headers received from the server.
See the description of themimetools module.

getfile ()
Return a file object from which the data returned by the server can be read, using theread() , readline()
or readlines() methods.

11.5.2 Examples

Here is an example session that uses the ‘GET’ method:

>>> import httplib
>>> h = httplib.HTTP(’www.cwi.nl’)
>>> h.putrequest(’GET’, ’/index.html’)
>>> h.putheader(’Accept’, ’text/html’)
>>> h.putheader(’Accept’, ’text/plain’)
>>> h.endheaders()
>>> errcode, errmsg, headers = h.getreply()
>>> print errcode # Should be 200
>>> f = h.getfile()
>>> data = f.read() # Get the raw HTML
>>> f.close()

Here is an example session that shows how to ‘POST’ requests:

294 Chapter 11. Internet Protocols and Support

>>> import httplib, urllib
>>> params = urllib.urlencode({’spam’: 1, ’eggs’: 2, ’bacon’: 0})
>>> h = httplib.HTTP("www.musi-cal.com:80")
>>> h.putrequest("POST", "/cgi-bin/query")
>>> h.putheader("Content-type", "application/x-www-form-urlencoded")
>>> h.putheader("Content-length", "%d" % len(params))
>>> h.putheader(’Accept’, ’text/plain’)
>>> h.putheader(’Host’, ’www.musi-cal.com’)
>>> h.endheaders()
>>> h.send(params)
>>> reply, msg, hdrs = h.getreply()
>>> print reply # should be 200
>>> data = h.getfile().read() # get the raw HTML

11.6 ftplib — FTP protocol client

This module defines the classFTP and a few related items. TheFTP class implements the client side of the FTP
protocol. You can use this to write Python programs that perform a variety of automated FTP jobs, such as mirroring
other ftp servers. It is also used by the moduleurllib to handle URLs that use FTP. For more information on FTP
(File Transfer Protocol), see Internet RFC 959.

Here’s a sample session using theftplib module:

>>> from ftplib import FTP
>>> ftp = FTP(’ftp.cwi.nl’) # connect to host, default port
>>> ftp.login() # user anonymous, passwd user@hostname
>>> ftp.retrlines(’LIST’) # list directory contents
total 24418
drwxrwsr-x 5 ftp-usr pdmaint 1536 Mar 20 09:48 .
dr-xr-srwt 105 ftp-usr pdmaint 1536 Mar 21 14:32 ..
-rw-r--r-- 1 ftp-usr pdmaint 5305 Mar 20 09:48 INDEX

.

.

.
>>> ftp.retrbinary(’RETR README’, open(’README’, ’wb’).write)
’226 Transfer complete.’
>>> ftp.quit()

The module defines the following items:

classFTP([host[, user[, passwd[, acct]]]])
Return a new instance of theFTP class. Whenhostis given, the method callconnect(host) is made. When
user is given, additionally the method calllogin(user, passwd, acct) is made (wherepasswdandacct
default to the empty string when not given).

all errors
The set of all exceptions (as a tuple) that methods ofFTP instances may raise as a result of problems with the
FTP connection (as opposed to programming errors made by the caller). This set includes the four exceptions
listed below as well assocket.error andIOError .

exceptionerror reply
Exception raised when an unexpected reply is received from the server.

11.6. ftplib — FTP protocol client 295

exceptionerror temp
Exception raised when an error code in the range 400–499 is received.

exceptionerror perm
Exception raised when an error code in the range 500–599 is received.

exceptionerror proto
Exception raised when a reply is received from the server that does not begin with a digit in the range 1–5.

See Also:

Modulenetrc (section 12.17):
Parser for the ‘.netrc’ file format. The file ‘.netrc’ is typically used by FTP clients to load user authentication
information before prompting the user.

The file ‘Tools/scripts/ftpmirror.py’ in the Python source distribution is a script that can mirror FTP sites, or portions
thereof, using theftplib module. It can be used as an extended example that applies this module.

11.6.1 FTP Objects

Several methods are available in two flavors: one for handling text files and another for binary files. These are named
for the command which is used followed by ‘lines ’ for the text version or ‘binary ’ for the binary version.

FTP instances have the following methods:

set debuglevel (level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default,0,
produces no debugging output. A value of1 produces a moderate amount of debugging output, generally a
single line per request. A value of2 or higher produces the maximum amount of debugging output, logging
each line sent and received on the control connection.

connect (host[, port])
Connect to the given host and port. The default port number is21 , as specified by the FTP protocol specification.
It is rarely needed to specify a different port number. This function should be called only once for each instance;
it should not be called at all if a host was given when the instance was created. All other methods can only be
used after a connection has been made.

getwelcome ()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

login ([user[, passwd[, acct]]])
Log in as the givenuser. Thepasswdandacct parameters are optional and default to the empty string. If no
useris specified, it defaults to’anonymous’ . If useris ’anonymous’ , the defaultpasswdis ‘realuser@host’
whererealuseris the real user name (glanced from the LOGNAME or USER environment variable) andhostis
the hostname as returned bysocket.gethostname() . This function should be called only once for each
instance, after a connection has been established; it should not be called at all if a host and user were given when
the instance was created. Most FTP commands are only allowed after the client has logged in.

abort ()
Abort a file transfer that is in progress. Using this does not always work, but it’s worth a try.

sendcmd (command)
Send a simple command string to the server and return the response string.

voidcmd (command)
Send a simple command string to the server and handle the response. Return nothing if a response code in the
range 200–299 is received. Raise an exception otherwise.

retrbinary (command, callback[, maxblocksize[, rest]])

296 Chapter 11. Internet Protocols and Support

Retrieve a file in binary transfer mode.commandshould be an appropriate ‘RETR’ command, i.e.’RETR
filename’ . Thecallbackfunction is called for each block of data received, with a single string argument giving
the data block. The optionalmaxblocksizeargument specifies the maximum chunk size to read on the low-level
socket object created to do the actual transfer (which will also be the largest size of the data blocks passed to
callback). A reasonable default is chosen.restmeans the same thing as in thetransfercmd() method.

retrlines (command[, callback])
Retrieve a file or directory listing inASCII transfer mode.commandshould be an appropriate ‘RETR’ command
(seeretrbinary() or a ‘LIST ’ command (usually just the string’LIST’). Thecallbackfunction is called
for each line, with the trailing CRLF stripped. The defaultcallbackprints the line tosys.stdout .

set pasv (boolean)
Enable “passive” mode ifbooleanis true, other disable passive mode. (In Python 2.0 and before, passive mode
was off by default; in Python 2.1 and later, it is on by default.)

storbinary (command, file[, blocksize])
Store a file in binary transfer mode.commandshould be an appropriate ‘STOR’ command, i.e."STOR file-
name" . file is an open file object which is read untilEOF using itsread() method in blocks of sizeblocksize
to provide the data to be stored. Theblocksizeargument defaults to 8192. Changed in version 2.1: default for
blocksizeadded.

storlines (command, file)
Store a file in ASCII transfer mode. command should be an appropriate ‘STOR’ command (see
storbinary()). Lines are read untilEOF from the open file objectfile using itsreadline() method
to provide the data to be stored.

transfercmd (cmd[, rest])
Initiate a transfer over the data connection. If the transfer is active, send a ‘PORT’ command and the transfer
command specified bycmd, and accept the connection. If the server is passive, send a ‘PASV’ command,
connect to it, and start the transfer command. Either way, return the socket for the connection.

If optional rest is given, a ‘REST’ command is sent to the server, passingrest as an argument.rest is usually
a byte offset into the requested file, telling the server to restart sending the file’s bytes at the requested offset,
skipping over the initial bytes. Note however that RFC 959 requires only thatrestbe a string containing charac-
ters in the printable range from ASCII code 33 to ASCII code 126. Thetransfercmd() method, therefore,
convertsrest to a string, but no check is performed on the string’s contents. If the server does not recognize the
‘REST’ command, anerror reply exception will be raised. If this happens, simply calltransfercmd()
without arestargument.

ntransfercmd (cmd[, rest])
Like transfercmd() , but returns a tuple of the data connection and the expected size of the data. If the
expected size could not be computed,None will be returned as the expected size.cmdandrestmeans the same
thing as intransfercmd() .

nlst (argument[, . . .])
Return a list of files as returned by the ‘NLST’ command. The optionalargumentis a directory to list (default
is the current server directory). Multiple arguments can be used to pass non-standard options to the ‘NLST’
command.

dir (argument[, . . .])
Produce a directory listing as returned by the ‘LIST ’ command, printing it to standard output. The optional
argumentis a directory to list (default is the current server directory). Multiple arguments can be used to pass
non-standard options to the ‘LIST ’ command. If the last argument is a function, it is used as acallbackfunction
as forretrlines() ; the default prints tosys.stdout . This method returnsNone.

rename (fromname, toname)
Rename filefromnameon the server totoname.

delete (filename)
Remove the file namedfilenamefrom the server. If successful, returns the text of the response, otherwise raises

11.6. ftplib — FTP protocol client 297

error perm on permission errors orerror reply on other errors.

cwd(pathname)
Set the current directory on the server.

mkd(pathname)
Create a new directory on the server.

pwd()
Return the pathname of the current directory on the server.

rmd(dirname)
Remove the directory nameddirnameon the server.

size (filename)
Request the size of the file namedfilenameon the server. On success, the size of the file is returned as an
integer, otherwiseNone is returned. Note that the ‘SIZE ’ command is not standardized, but is supported by
many common server implementations.

quit ()
Send a ‘QUIT’ command to the server and close the connection. This is the “polite” way to close a connection,
but it may raise an exception of the server reponds with an error to the ‘QUIT’ command. This implies a call to
theclose() method which renders theFTP instance useless for subsequent calls (see below).

close ()
Close the connection unilaterally. This should not be applied to an already closed connection (e.g. after a
successful call toquit() . After this call theFTP instance should not be used any more (i.e., after a call to
close() or quit() you cannot reopen the connection by issuing anotherlogin() method).

11.7 gopherlib — Gopher protocol client

This module provides a minimal implementation of client side of the the Gopher protocol. It is used by the module
urllib to handle URLs that use the Gopher protocol.

The module defines the following functions:

send selector (selector, host[, port])
Send aselectorstring to the gopher server athostandport (default70). Returns an open file object from which
the returned document can be read.

send query (selector, query, host[, port])
Send aselectorstring and aquerystring to a gopher server athostandport (default70). Returns an open file
object from which the returned document can be read.

Note that the data returned by the Gopher server can be of any type, depending on the first character of the selector
string. If the data is text (first character of the selector is ‘0’), lines are terminated by CRLF, and the data is terminated
by a line consisting of a single ‘. ’, and a leading ‘. ’ should be stripped from lines that begin with ‘.. ’. Directory
listings (first character of the selector is ‘1’) are transferred using the same protocol.

11.8 poplib — POP3 protocol client

This module defines a class,POP3, which encapsulates a connection to an POP3 server and implements protocol as
defined in RFC 1725. ThePOP3class supports both the minimal and optional command sets.

Note that POP3, though widely supported, is obsolescent. The implementation quality of POP3 servers varies widely,
and too many are quite poor. If your mailserver supports IMAP, you would be better off using theimaplib .IMAP4
class, as IMAP servers tend to be better implemented.

298 Chapter 11. Internet Protocols and Support

A single class is provided by thepoplib module:

classPOP3(host[, port])
This class implements the actual POP3 protocol. The connection is created when the instance is initialized. If
port is omitted, the standard POP3 port (110) is used.

One exception is defined as an attribute of thepoplib module:

exceptionerror proto
Exception raised on any errors. The reason for the exception is passed to the constructor as a string.

See Also:

Module imaplib (section 11.9):
The standard Python IMAP module.

http://www.tuxedo.org/ esr/fetchail/fetchmail-FAQ.html
The FAQ for the fetchmail POP/IMAP client collects information on POP3 server variations and RFC noncom-
pliance that may be useful if you need to write an application based on poplib.

11.8.1 POP3 Objects

All POP3 commands are represented by methods of the same name, in lower-case; most return the response text sent
by the server.

An POP3instance has the following methods:

getwelcome ()
Returns the greeting string sent by the POP3 server.

user (username)
Send user command, response should indicate that a password is required.

pass (password)
Send password, response includes message count and mailbox size. Note: the mailbox on the server is locked
until quit() is called.

apop (user, secret)
Use the more secure APOP authentication to log into the POP3 server.

rpop (user)
Use RPOP authentication (similar to UNIX r-commands) to log into POP3 server.

stat ()
Get mailbox status. The result is a tuple of 2 integers:(message count, mailbox size) .

list ([which])
Request message list, result is in the form(response, [’mesg num octets’, ...]) . If which is set, it
is the message to list.

retr (which)
Retrieve whole message numberwhich, and set its seen flag. Result is in form(response, [’line’, ...],
octets) .

dele (which)
Flag message numberwhich for deletion. On most servers deletions are not actually performed until QUIT
(the major exception is Eudora QPOP, which deliberately violates the RFCs by doing pending deletes on any
disconnect).

rset ()
Remove any deletion marks for the mailbox.

noop ()

11.8. poplib — POP3 protocol client 299

Do nothing. Might be used as a keep-alive.

quit ()
Signoff: commit changes, unlock mailbox, drop connection.

top (which, howmuch)
Retrieves the message header plushowmuchlines of the message after the header of message numberwhich.
Result is in form(response, [’line’, ...], octets) .

The POP3 TOP command this method uses, unlike the RETR command, doesn’t set the message’s seen flag;
unfortunately, TOP is poorly specified in the RFCs and is frequently broken in off-brand servers. Test this
method by hand against the POP3 servers you will use before trusting it.

uidl ([which])
Return message digest (unique id) list. Ifwhichis specified, result contains the unique id for that message in the
form ’ response mesgnum uid, otherwise result is list(response, [’mesgnum uid’, ...], octets) .

11.8.2 POP3 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

import getpass, poplib

M = poplib.POP3(’localhost’)
M.user(getpass.getuser())
M.pass_(getpass.getpass())
numMessages = len(M.list()[1])
for i in range(numMessages):

for j in M.retr(i+1)[1]:
print j

At the end of the module, there is a test section that contains a more extensive example of usage.

11.9 imaplib — IMAP4 protocol client

This module defines a class,IMAP4, which encapsulates a connection to an IMAP4 server and implements a large
subset of the IMAP4rev1 client protocol as defined in RFC 2060. It is backward compatible with IMAP4 (RFC 1730)
servers, but note that the ‘STATUS’ command is not supported in IMAP4.

A single class is provided by theimaplib module:

classIMAP4([host[, port]])
This class implements the actual IMAP4 protocol. The connection is created and protocol version (IMAP4 or
IMAP4rev1) is determined when the instance is initialized. Ifhost is not specified,’’ (the local host) is used.
If port is omitted, the standard IMAP4 port (143) is used.

Two exceptions are defined as attributes of theIMAP4 class:

exceptionIMAP4.error
Exception raised on any errors. The reason for the exception is passed to the constructor as a string.

exceptionIMAP4.abort
IMAP4 server errors cause this exception to be raised. This is a sub-class ofIMAP4.error . Note that closing
the instance and instantiating a new one will usually allow recovery from this exception.

exceptionIMAP4.readonly

300 Chapter 11. Internet Protocols and Support

This exception is raised when a writable mailbox has its status changed by the server. This is a sub-class of
IMAP4.error . Some other client now has write permission, and the mailbox will need to be re-opened to
re-obtain write permission.

The following utility functions are defined:

Internaldate2tuple (datestr)
Converts an IMAP4 INTERNALDATE string to Coordinated Universal Time. Returns atime module tuple.

Int2AP (num)
Converts an integer into a string representation using characters from the set [A .. P].

ParseFlags (flagstr)
Converts an IMAP4 ‘FLAGS’ response to a tuple of individual flags.

Time2Internaldate (date time)
Converts atime module tuple to an IMAP4 ‘INTERNALDATE’ representation. Returns a string in the form:
"DD-Mmm-YYYY HH:MM:SS +HHMM"(including double-quotes).

Note that IMAP4 message numbers change as the mailbox changes; in particular, after an ‘EXPUNGE’ command
performs deletions the remaining messages are renumbered. So it is highly advisable to use UIDs instead, with the
UID command.

At the end of the module, there is a test section that contains a more extensive example of usage.

See Also:

Documents describing the protocol, and sources and binaries for servers implementing it, can all be found at the
University of Washington’sIMAP Information Center(http://www.cac.washington.edu/imap/).

11.9.1 IMAP4 Objects

All IMAP4rev1 commands are represented by methods of the same name, either upper-case or lower-case.

All arguments to commands are converted to strings, except for ‘AUTHENTICATE’, and the last argument to
‘APPEND’ which is passed as an IMAP4 literal. If necessary (the string contains IMAP4 protocol-sensitive char-
acters and isn’t enclosed with either parentheses or double quotes) each string is quoted. However, thepassword
argument to the ‘LOGIN’ command is always quoted. If you want to avoid having an argument string quoted (eg: the
flagsargument to ‘STORE’) then enclose the string in parentheses (eg:r’(\Deleted)’).

Each command returns a tuple:(type, [data, ...]) wheretypeis usually’OK’ or ’NO’ , anddata is either the
text from the command response, or mandated results from the command.

An IMAP4 instance has the following methods:

append (mailbox, flags, datetime, message)
Append message to named mailbox.

authenticate (func)
Authenticate command — requires response processing. This is currently unimplemented, and raises an excep-
tion.

check ()
Checkpoint mailbox on server.

close ()
Close currently selected mailbox. Deleted messages are removed from writable mailbox. This is the recom-
mended command before ‘LOGOUT’.

copy (messageset, newmailbox)
Copymessagesetmessages onto end ofnew mailbox.

create (mailbox)

11.9. imaplib — IMAP4 protocol client 301

Create new mailbox namedmailbox.

delete (mailbox)
Delete old mailbox namedmailbox.

expunge ()
Permanently remove deleted items from selected mailbox. Generates an ‘EXPUNGE’ response for each deleted
message. Returned data contains a list of ‘EXPUNGE’ message numbers in order received.

fetch (messageset, messageparts)
Fetch (parts of) messages.messagepartsshould be a string of message part names enclosed within parentheses,
eg: ‘"(UID BODY[TEXT])" ’. Returned data are tuples of message part envelope and data.

list ([directory[, pattern]])
List mailbox names indirectory matchingpattern. directory defaults to the top-level mail folder, andpattern
defaults to match anything. Returned data contains a list of ‘LIST ’ responses.

login (user, password)
Identify the client using a plaintext password. Thepasswordwill be quoted.

logout ()
Shutdown connection to server. Returns server ‘BYE’ response.

lsub ([directory[, pattern]])
List subscribed mailbox names in directory matching pattern.directorydefaults to the top level directory and
patterndefaults to match any mailbox. Returned data are tuples of message part envelope and data.

noop ()
Send ‘NOOP’ to server.

open (host, port)
Opens socket toport athost. You may override this method.

partial (messagenum, messagepart, start, length)
Fetch truncated part of a message. Returned data is a tuple of message part envelope and data.

recent ()
Prompt server for an update. Returned data isNone if no new messages, else value of ‘RECENT’ response.

rename (oldmailbox, newmailbox)
Rename mailbox namedoldmailboxto newmailbox.

response (code)
Return data for responsecodeif received, orNone. Returns the given code, instead of the usual type.

search (charset, criterium[, ...])
Search mailbox for matching messages. Returned data contains a space separated list of matching message
numbers.charsetmay beNone, in which case no ‘CHARSET’ will be specified in the request to the server.
The IMAP protocol requires that at least one criterium be specified; an exception will be raised when the server
returns an error.

Example:

M is a connected IMAP4 instance...
msgnums = M.search(None, ’FROM’, ’"LDJ"’)

or:
msgnums = M.search(None, ’(FROM "LDJ")’)

select ([mailbox[, readonly]])
Select a mailbox. Returned data is the count of messages inmailbox(‘EXISTS’ response). The defaultmailbox
is ’INBOX’ . If the readonlyflag is set, modifications to the mailbox are not allowed.

302 Chapter 11. Internet Protocols and Support

socket ()
Returns socket instance used to connect to server.

status (mailbox, names)
Request named status conditions formailbox.

store (messageset, command, flaglist)
Alters flag dispositions for messages in mailbox.

subscribe (mailbox)
Subscribe to new mailbox.

uid (command, arg[, ...])
Execute command args with messages identified by UID, rather than message number. Returns response appro-
priate to command. At least one argument must be supplied; if none are provided, the server will return an error
and an exception will be raised.

unsubscribe (mailbox)
Unsubscribe from old mailbox.

xatom (name[, arg[, ...]])
Allow simple extension commands notified by server in ‘CAPABILITY ’ response.

The following attributes are defined on instances ofIMAP4:

PROTOCOLVERSION
The most recent supported protocol in the ‘CAPABILITY ’ response from the server.

debug
Integer value to control debugging output. The initialize value is taken from the module variableDebug. Values
greater than three trace each command.

11.9.2 IMAP4 Example

Here is a minimal example (without error checking) that opens a mailbox and retrieves and prints all messages:

import getpass, imaplib, string

M = imaplib.IMAP4()
M.login(getpass.getuser(), getpass.getpass())
M.select()
typ, data = M.search(None, ’ALL’)
for num in string.split(data[0]):

typ, data = M.fetch(num, ’(RFC822)’)
print ’Message %s\n%s\n’ % (num, data[0][1])

M.logout()

11.10 nntplib — NNTP protocol client

This module defines the classNNTPwhich implements the client side of the NNTP protocol. It can be used to
implement a news reader or poster, or automated news processors. For more information on NNTP (Network News
Transfer Protocol), see Internet RFC 977.

Here are two small examples of how it can be used. To list some statistics about a newsgroup and print the subjects of
the last 10 articles:

11.10. nntplib — NNTP protocol client 303

>>> s = NNTP(’news.cwi.nl’)
>>> resp, count, first, last, name = s.group(’comp.lang.python’)
>>> print ’Group’, name, ’has’, count, ’articles, range’, first, ’to’, last
Group comp.lang.python has 59 articles, range 3742 to 3803
>>> resp, subs = s.xhdr(’subject’, first + ’-’ + last)
>>> for id, sub in subs[-10:]: print id, sub
...
3792 Re: Removing elements from a list while iterating...
3793 Re: Who likes Info files?
3794 Emacs and doc strings
3795 a few questions about the Mac implementation
3796 Re: executable python scripts
3797 Re: executable python scripts
3798 Re: a few questions about the Mac implementation
3799 Re: PROPOSAL: A Generic Python Object Interface for Python C Modules
3802 Re: executable python scripts
3803 Re: \POSIX{} wait and SIGCHLD
>>> s.quit()
’205 news.cwi.nl closing connection. Goodbye.’

To post an article from a file (this assumes that the article has valid headers):

>>> s = NNTP(’news.cwi.nl’)
>>> f = open(’/tmp/article’)
>>> s.post(f)
’240 Article posted successfully.’
>>> s.quit()
’205 news.cwi.nl closing connection. Goodbye.’

The module itself defines the following items:

classNNTP(host[, port [, user[, password[, readermode]]]])
Return a new instance of theNNTPclass, representing a connection to the NNTP server running on hosthost,
listening at portport. The defaultport is 119. If the optionaluserandpasswordare provided, the ‘AUTHINFO
USER’ and ‘AUTHINFO PASS’ commands are used to identify and authenticate the user to the server. If the
optional flagreadermodeis true, then a ‘mode reader ’ command is sent before authentication is performed.
Reader mode is sometimes necessary if you are connecting to an NNTP server on the local machine and intend
to call reader-specific commands, such as ‘group ’. If you get unexpectedNNTPPermanentError s, you
might need to setreadermode. readermodedefaults toNone.

classNNTPError ()
Derived from the standard exceptionException , this is the base class for all exceptions raised by thennt-
plib module.

classNNTPReplyError ()
Exception raised when an unexpected reply is received from the server. For backwards compatibility, the excep-
tion error reply is equivalent to this class.

classNNTPTemporaryError ()
Exception raised when an error code in the range 400–499 is received. For backwards compatibility, the excep-
tion error temp is equivalent to this class.

classNNTPPermanentError ()
Exception raised when an error code in the range 500–599 is received. For backwards compatibility, the excep-
tion error perm is equivalent to this class.

304 Chapter 11. Internet Protocols and Support

classNNTPProtocolError ()
Exception raised when a reply is received from the server that does not begin with a digit in the range 1–5. For
backwards compatibility, the exceptionerror proto is equivalent to this class.

classNNTPDataError ()
Exception raised when there is some error in the response data. For backwards compatibility, the exception
error data is equivalent to this class.

11.10.1 NNTP Objects

NNTP instances have the following methods. Theresponsethat is returned as the first item in the return tuple of almost
all methods is the server’s response: a string beginning with a three-digit code. If the server’s response indicates an
error, the method raises one of the above exceptions.

getwelcome ()
Return the welcome message sent by the server in reply to the initial connection. (This message sometimes
contains disclaimers or help information that may be relevant to the user.)

set debuglevel (level)
Set the instance’s debugging level. This controls the amount of debugging output printed. The default,0,
produces no debugging output. A value of1 produces a moderate amount of debugging output, generally a
single line per request or response. A value of2 or higher produces the maximum amount of debugging output,
logging each line sent and received on the connection (including message text).

newgroups (date, time)
Send a ‘NEWGROUPS’ command. Thedateargument should be a string of the form’ yymmdd’ indicating the
date, andtimeshould be a string of the form’ hhmmss’ indicating the time. Return a pair(response, groups)
wheregroupsis a list of group names that are new since the given date and time.

newnews(group, date, time)
Send a ‘NEWNEWS’ command. Here,group is a group name or’*’ , anddateandtimehave the same meaning
as fornewgroups() . Return a pair(response, articles) wherearticles is a list of article ids.

list ()
Send a ‘LIST ’ command. Return a pair(response, list) wherelist is a list of tuples. Each tuple has the form
(group, last, first, flag) , wheregroup is a group name,last andfirst are the last and first article numbers
(as strings), andflag is ’y’ if posting is allowed,’n’ if not, and’m’ if the newsgroup is moderated. (Note the
ordering:last, first.)

group (name)
Send a ‘GROUP’ command, wherenameis the group name. Return a tuple(response, count, first, last,
name) wherecount is the (estimated) number of articles in the group,first is the first article number in the
group, last is the last article number in the group, andnameis the group name. The numbers are returned as
strings.

help ()
Send a ‘HELP’ command. Return a pair(response, list) wherelist is a list of help strings.

stat (id)
Send a ‘STAT’ command, whereid is the message id (enclosed in ‘<’ and ‘>’) or an article number (as a string).
Return a triple(response, number, id) wherenumberis the article number (as a string) andid is the article
id (enclosed in ‘<’ and ‘>’).

next ()
Send a ‘NEXT’ command. Return as forstat() .

last ()
Send a ‘LAST’ command. Return as forstat() .

11.10. nntplib — NNTP protocol client 305

head (id)
Send a ‘HEAD’ command, whereid has the same meaning as forstat() . Return a tuple(response, num-
ber, id, list) where the first three are the same as forstat() , andlist is a list of the article’s headers (an
uninterpreted list of lines, without trailing newlines).

body (id)
Send a ‘BODY’ command, whereid has the same meaning as forstat() . Return as forhead() .

article (id)
Send an ‘ARTICLE’ command, whereid has the same meaning as forstat() . Return as forhead() .

slave ()
Send a ‘SLAVE’ command. Return the server’sresponse.

xhdr (header, string)
Send an ‘XHDR’ command. This command is not defined in the RFC but is a common extension. Theheader
argument is a header keyword, e.g.’subject’ . Thestringargument should have the form’ first- last’ where
first andlast are the first and last article numbers to search. Return a pair(response, list) , wherelist is a list
of pairs(id, text) , whereid is an article id (as a string) andtext is the text of the requested header for that
article.

post (file)
Post an article using the ‘POST’ command. Thefile argument is an open file object which is read until EOF
using itsreadline() method. It should be a well-formed news article, including the required headers. The
post() method automatically escapes lines beginning with ‘. ’.

ihave (id, file)
Send an ‘IHAVE’ command. If the response is not an error, treatfile exactly as for thepost() method.

date ()
Return a triple(response, date, time) , containing the current date and time in a form suitable for the
newnews() andnewgroups() methods. This is an optional NNTP extension, and may not be supported by
all servers.

xgtitle (name)
Process an ‘XGTITLE’ command, returning a pair(response, list) , wherelist is a list of tuples containing
(name, title) . This is an optional NNTP extension, and may not be supported by all servers.

xover (start, end)
Return a pair(resp, list) . list is a list of tuples, one for each article in the range delimited by thestart and
endarticle numbers. Each tuple is of the form(article number, subject, poster, date, id, references,
size, lines) . This is an optional NNTP extension, and may not be supported by all servers.

xpath (id)
Return a pair(resp, path) , wherepath is the directory path to the article with message IDid. This is an
optional NNTP extension, and may not be supported by all servers.

quit ()
Send a ‘QUIT’ command and close the connection. Once this method has been called, no other methods of the
NNTP object should be called.

11.11 smtplib — SMTP protocol client

Thesmtplib module defines an SMTP client session object that can be used to send mail to any Internet machine
with an SMTP or ESMTP listener daemon. For details of SMTP and ESMTP operation, consult RFC 821 (Simple
Mail Transfer Protocol) and RFC 1869 (SMTP Service Extensions).

classSMTP([host[, port]])
A SMTPinstance encapsulates an SMTP connection. It has methods that support a full repertoire of SMTP and

306 Chapter 11. Internet Protocols and Support

ESMTP operations. If the optional host and port parameters are given, the SMTPconnect() method is called
with those parameters during initialization. AnSMTPConnectError is raised if the specified host doesn’t
respond correctly.

For normal use, you should only require the initialization/connect,sendmail() , andquit() methods. An
example is included below.

A nice selection of exceptions is defined as well:

exceptionSMTPException
Base exception class for all exceptions raised by this module.

exceptionSMTPServerDisconnected
This exception is raised when the server unexpectedly disconnects, or when an attempt is made to use theSMTP
instance before connecting it to a server.

exceptionSMTPResponseException
Base class for all exceptions that include an SMTP error code. These exceptions are generated in some instances
when the SMTP server returns an error code. The error code is stored in thesmtp code attribute of the error,
and thesmtp error attribute is set to the error message.

exceptionSMTPSenderRefused
Sender address refused. In addition to the attributes set by on allSMTPResponseException exceptions,
this sets ‘sender’ to the string that the SMTP server refused.

exceptionSMTPRecipientsRefused
All recipient addresses refused. The errors for each recipient are accessible through the attributerecipients ,
which is a dictionary of exactly the same sort asSMTP.sendmail() returns.

exceptionSMTPDataError
The SMTP server refused to accept the message data.

exceptionSMTPConnectError
Error occurred during establishment of a connection with the server.

exceptionSMTPHeloError
The server refused our ‘HELO’ message.

See Also:

RFC 821, “Simple Mail Transfer Protocol”
Protocol definition for SMTP. This document covers the model, operating procedure, and protocol details for
SMTP.

RFC 1869, “SMTP Service Extensions”
Definition of the ESMTP extensions for SMTP. This describes a framework for extending SMTP with new
commands, supporting dynamic discovery of the commands provided by the server, and defines a few additional
commands.

11.11.1 SMTP Objects

An SMTPinstance has the following methods:

set debuglevel (level)
Set the debug output level. A true value forlevelresults in debug messages for connection and for all messages
sent to and received from the server.

connect ([host[, port]])
Connect to a host on a given port. The defaults are to connect to the local host at the standard SMTP port (25).

If the hostname ends with a colon (‘: ’) followed by a number, that suffix will be stripped off and the number
interpreted as the port number to use.

11.11. smtplib — SMTP protocol client 307

Note: This method is automatically invoked by the constructor if a host is specified during instantiation.

docmd(cmd,[, argstring])
Send a commandcmd to the server. The optional argumentargstring is simply concatenated to the command,
separated by a space.

This returns a 2-tuple composed of a numeric response code and the actual response line (multiline responses
are joined into one long line.)

In normal operation it should not be necessary to call this method explicitly. It is used to implement other
methods and may be useful for testing private extensions.

If the connection to the server is lost while waiting for the reply,SMTPServerDisconnected will be raised.

helo ([hostname])
Identify yourself to the SMTP server using ‘HELO’. The hostname argument defaults to the fully qualified
domain name of the local host.

In normal operation it should not be necessary to call this method explicitly. It will be implicitly called by the
sendmail() when necessary.

ehlo ([hostname])
Identify yourself to an ESMTP server using ‘EHLO’. The hostname argument defaults to the fully quali-
fied domain name of the local host. Examine the response for ESMTP option and store them for use by
has option() .

Unless you wish to usehas option() before sending mail, it should not be necessary to call this method
explicitly. It will be implicitly called bysendmail() when necessary.

has extn (name)
Return1 if nameis in the set of SMTP service extensions returned by the server,0 otherwise. Case is ignored.

verify (address)
Check the validity of an address on this server using SMTP ‘VRFY’. Returns a tuple consisting of code 250 and
a full RFC 822 address (including human name) if the user address is valid. Otherwise returns an SMTP error
code of 400 or greater and an error string.

Note: many sites disable SMTP ‘VRFY’ in order to foil spammers.

sendmail (from addr, to addrs, msg[, mail options, rcpt options])
Send mail. The required arguments are an RFC 822 from-address string, a list of RFC 822 to-address strings,
and a message string. The caller may pass a list of ESMTP options (such as ‘8bitmime ’) to be used in ‘MAIL
FROM’ commands asmail options. ESMTP options (such as ‘DSN’ commands) that should be used with all
‘RCPT’ commands can be passed asrcpt options. (If you need to use different ESMTP options to different
recipients you have to use the low-level methods such asmail , rcpt anddata to send the message.)

Note: Thefrom addrandto addrsparameters are used to construct the message envelope used by the transport
agents. TheSMTPdoes not modify the message headers in any way.

If there has been no previous ‘EHLO’ or ‘ HELO’ command this session, this method tries ESMTP ‘EHLO’ first.
If the server does ESMTP, message size and each of the specified options will be passed to it (if the option is in
the feature set the server advertises). If ‘EHLO’ fails, ‘HELO’ will be tried and ESMTP options suppressed.

This method will return normally if the mail is accepted for at least one recipient. Otherwise it will throw an
exception. That is, if this method does not throw an exception, then someone should get your mail. If this
method does not throw an exception, it returns a dictionary, with one entry for each recipient that was refused.
Each entry contains a tuple of the SMTP error code and the accompanying error message sent by the server.

This method may raise the following exceptions:

SMTPRecipientsRefused All recipients were refused. Nobody got the mail. Therecipients attribute
of the exception object is a dictionary with information about the refused recipients (like the one returned
when at least one recipient was accepted).

SMTPHeloError The server didn’t reply properly to the ‘HELO’ greeting.

308 Chapter 11. Internet Protocols and Support

SMTPSenderRefused The server didn’t accept thefrom addr.

SMTPDataError The server replied with an unexpected error code (other than a refusal of a recipient).

Unless otherwise noted, the connection will be open even after an exception is raised.

quit ()
Terminate the SMTP session and close the connection.

Low-level methods corresponding to the standard SMTP/ESMTP commands ‘HELP’, ‘ RSET’, ‘ NOOP’, ‘ MAIL’,
‘RCPT’, and ‘DATA’ are also supported. Normally these do not need to be called directly, so they are not documented
here. For details, consult the module code.

11.11.2 SMTP Example

This example prompts the user for addresses needed in the message envelope (‘To’ and ‘From’ addresses), and the
message to be delivered. Note that the headers to be included with the message must be included in the message as
entered; this example doesn’t do any processing of the RFC 822 headers. In particular, the ‘To’ and ‘From’ addresses
must be included in the message headers explicitly.

import smtplib
import string

def prompt(prompt):
return raw_input(prompt).strip()

fromaddr = prompt("From: ")
toaddrs = prompt("To: ").split()
print "Enter message, end with ˆD:"

Add the From: and To: headers at the start!
msg = ("From: %s\r\nTo: %s\r\n\r\n"

% (fromaddr, string.join(toaddrs, ", ")))
while 1:

try:
line = raw_input()

except EOFError:
break

if not line:
break

msg = msg + line

print "Message length is " + ‘len(msg)‘

server = smtplib.SMTP(’localhost’)
server.set_debuglevel(1)
server.sendmail(fromaddr, toaddrs, msg)
server.quit()

11.12 telnetlib — Telnet client

The telnetlib module provides aTelnet class that implements the Telnet protocol. See RFC 854 for details
about the protocol.

11.12. telnetlib — Telnet client 309

classTelnet ([host[, port]])
Telnet represents a connection to a telnet server. The instance is initially not connected by default; the
open() method must be used to establish a connection. Alternatively, the host name and optional port number
can be passed to the constructor, to, in which case the connection to the server will be established before the
constructor returns.

Do not reopen an already connected instance.

This class has manyread *() methods. Note that some of them raiseEOFError when the end of the
connection is read, because they can return an empty string for other reasons. See the individual descriptions
below.

See Also:

RFC 854, “Telnet Protocol Specification”
Definition of the Telnet protocol.

11.12.1 Telnet Objects

Telnet instances have the following methods:

read until (expected[, timeout])
Read until a given string is encountered or until timeout.

When no match is found, return whatever is available instead, possibly the empty string. RaiseEOFError if
the connection is closed and no cooked data is available.

read all ()
Read all data untilEOF; block until connection closed.

read some()
Read at least one byte of cooked data unlessEOF is hit. Return’’ if EOF is hit. Block if no data is immediately
available.

read very eager ()
Read everything that can be without blocking in I/O (eager).

RaiseEOFError if connection closed and no cooked data available. Return’’ if no cooked data available
otherwise. Do not block unless in the midst of an IAC sequence.

read eager ()
Read readily available data.

RaiseEOFError if connection closed and no cooked data available. Return’’ if no cooked data available
otherwise. Do not block unless in the midst of an IAC sequence.

read lazy ()
Process and return data already in the queues (lazy).

RaiseEOFError if connection closed and no data available. Return’’ if no cooked data available otherwise.
Do not block unless in the midst of an IAC sequence.

read very lazy ()
Return any data available in the cooked queue (very lazy).

RaiseEOFError if connection closed and no data available. Return’’ if no cooked data available otherwise.
This method never blocks.

open (host[, port])
Connect to a host. The optional second argument is the port number, which defaults to the standard telnet port
(23).

Do not try to reopen an already connected instance.

310 Chapter 11. Internet Protocols and Support

msg(msg[, *args])
Print a debug message when the debug level is> 0. If extra arguments are present, they are substituted in the
message using the standard string formatting operator.

set debuglevel (debuglevel)
Set the debug level. The higher the value ofdebuglevel, the more debug output you get (onsys.stdout).

close ()
Close the connection.

get socket ()
Return the socket object used internally.

fileno ()
Return the file descriptor of the socket object used internally.

write (buffer)
Write a string to the socket, doubling any IAC characters. This can block if the connection is blocked. May
raisesocket.error if the connection is closed.

interact ()
Interaction function, emulates a very dumb telnet client.

mt interact ()
Multithreaded version ofinteract() .

expect (list[, timeout])
Read until one from a list of a regular expressions matches.

The first argument is a list of regular expressions, either compiled (re.RegexObject instances) or uncom-
piled (strings). The optional second argument is a timeout, in seconds; the default is to block indefinitely.

Return a tuple of three items: the index in the list of the first regular expression that matches; the match object
returned; and the text read up till and including the match.

If end of file is found and no text was read, raiseEOFError . Otherwise, when nothing matches, return(-1,
None, text) wheretext is the text received so far (may be the empty string if a timeout happened).

If a regular expression ends with a greedy match (e.g.d.* c) or if more than one expression can match the same
input, the results are indeterministic, and may depend on the I/O timing.

11.12.2 Telnet Example

A simple example illustrating typical use:

11.12. telnetlib — Telnet client 311

import getpass
import sys
import telnetlib

HOST = "localhost"
user = raw_input("Enter your remote account: ")
password = getpass.getpass()

tn = telnetlib.Telnet(HOST)

tn.read_until("login: ")
tn.write(user + "\n")
if password:

tn.read_until("Password: ")
tn.write(password + "\n")

tn.write("ls\n")
tn.write("exit\n")

print tn.read_all()

11.13 urlparse — Parse URLs into components

This module defines a standard interface to break Uniform Resource Locator (URL) strings up in components (ad-
dressing scheme, network location, path etc.), to combine the components back into a URL string, and to convert a
“relative URL” to an absolute URL given a “base URL.”

The module has been designed to match the Internet RFC on Relative Uniform Resource Locators (and discovered a
bug in an earlier draft!).

It defines the following functions:

urlparse (urlstring[, default scheme[, allow fragments]])
Parse a URL into 6 components, returning a 6-tuple: (addressing scheme, network location, path,
parameters, query, fragment identifier). This corresponds to the general structure of a URL:
scheme:// netloc/ path; parameters?query#fragment. Each tuple item is a string, possibly empty. The com-
ponents are not broken up in smaller parts (e.g. the network location is a single string), and % escapes are not
expanded. The delimiters as shown above are not part of the tuple items, except for a leading slash in thepath
component, which is retained if present.

Example:

urlparse(’http://www.cwi.nl:80/%7Eguido/Python.html’)

yields the tuple

(’http’, ’www.cwi.nl:80’, ’/%7Eguido/Python.html’, ’’, ’’, ’’)

If the default schemeargument is specified, it gives the default addressing scheme, to be used only if the URL
string does not specify one. The default value for this argument is the empty string.

If the allow fragmentsargument is zero, fragment identifiers are not allowed, even if the URL’s addressing
scheme normally does support them. The default value for this argument is1.

312 Chapter 11. Internet Protocols and Support

urlunparse (tuple)
Construct a URL string from a tuple as returned byurlparse() . This may result in a slightly different, but
equivalent URL, if the URL that was parsed originally had redundant delimiters, e.g. a ? with an empty query
(the draft states that these are equivalent).

urljoin (base, url[, allow fragments])
Construct a full (“absolute”) URL by combining a “base URL” (base) with a “relative URL” (url). Informally,
this uses components of the base URL, in particular the addressing scheme, the network location and (part of)
the path, to provide missing components in the relative URL.

Example:

urljoin(’http://www.cwi.nl/%7Eguido/Python.html’, ’FAQ.html’)

yields the string

’http://www.cwi.nl/%7Eguido/FAQ.html’

Theallow fragmentsargument has the same meaning as forurlparse() .

See Also:

RFC 1738, “Uniform Resource Locators (URL)”
This specifies the formal syntax and semantics of absolute URLs.

RFC 1808, “Relative Uniform Resource Locators”
This Request For Comments includes the rules for joining an absolute and a relative URL, including a fair
normal of “Abnormal Examples” which govern the treatment of border cases.

RFC 2396, “Uniform Resource Identifiers (URI): Generic Syntax”
Document describing the generic syntactic requirements for both Uniform Resource Names (URNs) and Uni-
form Resource Locators (URLs).

11.14 SocketServer — A framework for network servers

TheSocketServer module simplifies the task of writing network servers.

There are four basic server classes:TCPServer uses the Internet TCP protocol, which provides for continuous
streams of data between the client and server.UDPServer uses datagrams, which are discrete packets of information
that may arrive out of order or be lost while in transit. The more infrequently usedUnixStreamServer and
UnixDatagramServer classes are similar, but use UNIX domain sockets; they’re not available on non-UNIX

platforms. For more details on network programming, consult a book such as W. Richard Steven’sUNIX Network
Programmingor Ralph Davis’sWin32 Network Programming.

These four classes process requestssynchronously; each request must be completed before the next request can be
started. This isn’t suitable if each request takes a long time to complete, because it requires a lot of computation,
or because it returns a lot of data which the client is slow to process. The solution is to create a separate process or
thread to handle each request; theForkingMixIn andThreadingMixIn mix-in classes can be used to support
asynchronous behaviour.

Creating a server requires several steps. First, you must create a request handler class by subclassing the
BaseRequestHandler class and overriding itshandle() method; this method will process incoming requests.
Second, you must instantiate one of the server classes, passing it the server’s address and the request handler class.
Finally, call thehandle request() or serve forever() method of the server object to process one or many
requests.

Server classes have the same external methods and attributes, no matter what network protocol they use:

11.14. SocketServer — A framework for network servers 313

fileno ()
Return an integer file descriptor for the socket on which the server is listening. This function is most commonly
passed toselect.select() , to allow monitoring multiple servers in the same process.

handle request ()
Process a single request. This function calls the following methods in order:get request() , ver-
ify request() , andprocess request() . If the user-providedhandle() method of the handler
class raises an exception, the server’shandle error() method will be called.

serve forever ()
Handle an infinite number of requests. This simply callshandle request() inside an infinite loop.

address family
The family of protocols to which the server’s socket belongs.socket.AF INET andsocket.AF UNIX
are two possible values.

RequestHandlerClass
The user-provided request handler class; an instance of this class is created for each request.

server address
The address on which the server is listening. The format of addresses varies depending on the protocol family;
see the documentation for the socket module for details. For Internet protocols, this is a tuple containing a string
giving the address, and an integer port number:(’127.0.0.1’, 80) , for example.

socket
The socket object on which the server will listen for incoming requests.

The server classes support the following class variables:

allow reuse address
Whether the server will allow the reuse of an address. This defaults to true, and can be set in subclasses to
change the policy.

request queue size
The size of the request queue. If it takes a long time to process a single request, any requests that arrive while
the server is busy are placed into a queue, up torequest queue size requests. Once the queue is full,
further requests from clients will get a “Connection denied” error. The default value is usually 5, but this can be
overridden by subclasses.

socket type
The type of socket used by the server;socket.SOCK STREAMandsocket.SOCK DGRAMare two possible
values.

There are various server methods that can be overridden by subclasses of base server classes likeTCPServer ; these
methods aren’t useful to external users of the server object.

finish request ()
Actually processes the request by instantiatingRequestHandlerClass and calling itshandle() method.

get request ()
Must accept a request from the socket, and return a 2-tuple containing thenew socket object to be used to
communicate with the client, and the client’s address.

handle error (request, clientaddress)
This function is called if theRequestHandlerClass ’s handle() method raises an exception. The default
action is to print the traceback to standard output and continue handling further requests.

process request (request, clientaddress)
Calls finish request() to create an instance of theRequestHandlerClass . If desired, this function
can create a new process or thread to handle the request; theForkingMixIn andThreadingMixIn classes
do this.

314 Chapter 11. Internet Protocols and Support

server activate ()
Called by the server’s constructor to activate the server. May be overridden.

server bind ()
Called by the server’s constructor to bind the socket to the desired address. May be overridden.

verify request (request, clientaddress)
Must return a Boolean value; if the value is true, the request will be processed, and if it’s false, the request will be
denied. This function can be overridden to implement access controls for a server. The default implementation
always return true.

The request handler class must define a newhandle() method, and can override any of the following methods. A
new instance is created for each request.

finish ()
Called after thehandle() method to perform any clean-up actions required. The default implementation does
nothing. Ifsetup() or handle() raise an exception, this function will not be called.

handle ()
This function must do all the work required to service a request. Several instance attributes are available to it;
the request is available asself.request ; the client address asself.client address ; and the server
instance asself.server , in case it needs access to per-server information.

The type of self.request is different for datagram or stream services. For stream services,
self.request is a socket object; for datagram services,self.request is a string. However, this
can be hidden by using the mix-in request handler classesStreamRequestHandler or DatagramRe-
questHandler , which override thesetup() and finish() methods, and providesself.rfile and
self.wfile attributes. self.rfile andself.wfile can be read or written, respectively, to get the
request data or return data to the client.

setup ()
Called before thehandle() method to perform any initialization actions required. The default implementation
does nothing.

11.15 BaseHTTPServer — Basic HTTP server

This module defines two classes for implementing HTTP servers (web servers). Usually, this module isn’t used
directly, but is used as a basis for building functioning web servers. See theSimpleHTTPServer and CGI-
HTTPServer modules.

The first class,HTTPServer , is aSocketServer.TCPServer subclass. It creates and listens at the web socket,
dispatching the requests to a handler. Code to create and run the server looks like this:

def run(server_class=BaseHTTPServer.HTTPServer,
handler_class=BaseHTTPServer.BaseHTTPRequestHandler):

server_address = (’’, 8000)
httpd = server_class(server_address, handler_class)
httpd.serve_forever()

classHTTPServer (server address, RequestHandlerClass)
This class builds on theTCPServer class by storing the server address as instance variables named
server name andserver port . The server is accessible by the handler, typically through the handler’s
server instance variable.

classBaseHTTPRequestHandler (request, clientaddress, server)
This class is used to handle the HTTP requests that arrive at the server. By itself, it cannot respond to any actual

11.15. BaseHTTPServer — Basic HTTP server 315

HTTP requests; it must be subclassed to handle each request method (e.g. GET or POST).BaseHTTPRe-
questHandler provides a number of class and instance variables, and methods for use by subclasses.

The handler will parse the request and the headers, then call a method specific to the request type. The method
name is constructed from the request. For example, for the request method ‘SPAM’, the do SPAM() method
will be called with no arguments. All of the relevant information is stored in instance variables of the handler.
Subclasses should not need to override or extend theinit () method.

BaseHTTPRequestHandler has the following instance variables:

client address
Contains a tuple of the form(host, port) referring to the client’s address.

command
Contains the command (request type). For example,’GET’ .

path
Contains the request path.

request version
Contains the version string from the request. For example,’HTTP/1.0’ .

headers
Holds an instance of the class specified by theMessageClass class variable. This instance parses and man-
ages the headers in the HTTP request.

rfile
Contains an input stream, positioned at the start of the optional input data.

wfile
Contains the output stream for writing a response back to the client. Proper adherence to the HTTP protocol
must be used when writing to this stream.

BaseHTTPRequestHandler has the following class variables:

server version
Specifies the server software version. You may want to override this. The format is multiple whitespace-
separated strings, where each string is of the form name[/version]. For example,’BaseHTTP/0.2’ .

sys version
Contains the Python system version, in a form usable by theversion string method and the
server version class variable. For example,’Python/1.4’ .

error message format
Specifies a format string for building an error response to the client. It uses parenthesized, keyed format spec-
ifiers, so the format operand must be a dictionary. Thecodekey should be an integer, specifying the numeric
HTTP error code value.messageshould be a string containing a (detailed) error message of what occurred, and
explainshould be an explanation of the error code number. Defaultmessageandexplainvalues can found in the
responsesclass variable.

protocol version
This specifies the HTTP protocol version used in responses. Typically, this should not be overridden. Defaults
to ’HTTP/1.0’ .

MessageClass
Specifies arfc822.Message -like class to parse HTTP headers. Typically, this is not overridden, and it
defaults tomimetools.Message .

responses
This variable contains a mapping of error code integers to two-element tuples containing a short and long
message. For example,{ code: (shortmessage, longmessage)} . Theshortmessageis usually used as the
messagekey in an error response, andlongmessageas theexplainkey (see theerror message format
class variable).

316 Chapter 11. Internet Protocols and Support

A BaseHTTPRequestHandler instance has the following methods:

handle ()
Overrides the superclass’handle() method to provide the specific handler behavior. This method will parse
and dispatch the request to the appropriatedo *() method.

send error (code[, message])
Sends and logs a complete error reply to the client. The numericcodespecifies the HTTP error code, with
messageas optional, more specific text. A complete set of headers is sent, followed by text composed using the
error message format class variable.

send response (code[, message])
Sends a response header and logs the accepted request. The HTTP response line is sent, followed byServer
and Date headers. The values for these two headers are picked up from theversion string() and
date time string() methods, respectively.

send header (keyword, value)
Writes a specific MIME header to the output stream.keywordshould specify the header keyword, withvalue
specifying its value.

end headers ()
Sends a blank line, indicating the end of the MIME headers in the response.

log request ([code[, size]])
Logs an accepted (successful) request.codeshould specify the numeric HTTP code associated with the re-
sponse. If a size of the response is available, then it should be passed as thesizeparameter.

log error (...)
Logs an error when a request cannot be fulfilled. By default, it passes the message tolog message() , so it
takes the same arguments (formatand additional values).

log message (format, ...)
Logs an arbitrary message tosys.stderr . This is typically overridden to create custom error logging
mechanisms. Theformat argument is a standard printf-style format string, where the additional arguments
to log message() are applied as inputs to the formatting. The client address and current date and time are
prefixed to every message logged.

version string ()
Returns the server software’s version string. This is a combination of theserver version and
sys version class variables.

date time string ()
Returns the current date and time, formatted for a message header.

log data time string ()
Returns the current date and time, formatted for logging.

address string ()
Returns the client address, formatted for logging. A name lookup is performed on the client’s IP address.

See Also:

ModuleCGIHTTPServer (section 11.17):
Extended request handler that supports CGI scripts.

ModuleSimpleHTTPServer (section 11.16):
Basic request handler that limits response to files actually under the document root.

11.16 SimpleHTTPServer — Simple HTTP request handler

11.16. SimpleHTTPServer — Simple HTTP request handler 317

The SimpleHTTPServer module defines a request-handler class, interface compatible withBase-
HTTPServer.BaseHTTPRequestHandler which serves files only from a base directory.

TheSimpleHTTPServer module defines the following class:

classSimpleHTTPRequestHandler (request, clientaddress, server)
This class is used, to serve files from current directory and below, directly mapping the directory structure to
HTTP requests.

A lot of the work is done by the base classBaseHTTPServer.BaseHTTPRequestHandler , such as
parsing the request. This class implements thedo GET() anddo HEAD() functions.

TheSimpleHTTPRequestHandler defines the following member variables:

server version
This will be "SimpleHTTP/" + version , where version is defined in the module.

extensions map
A dictionary mapping suffixes into MIME types. Default is signified by an empty string, and is considered to be
text/plain . The mapping is used case-insensitively, and so should contain only lower-cased keys.

TheSimpleHTTPRequestHandler defines the following methods:

do HEAD()
This method serves the’HEAD’ request type: it sends the headers it would send for the equivalentGETrequest.
See thedo GET() method for more complete explanation of the possible headers.

do GET()
The request is mapped to a local file by interpreting the request as a path relative to the current working directory.

If the request was mapped to a directory, a403 respond is output, followed by the explanation’Directory
listing not supported’ . Any IOError exception in opening the requested file, is mapped to a404 ,
’File not found’ error. Otherwise, the content type is guessed using theextensionsmapvariable.

A ’Content-type:’ with the guessed content type is output, and then a blank line, signifying end of
headers, and then the contents of the file. The file is always opened in binary mode.

For example usage, see the implementation of thetest() function.

See Also:

ModuleBaseHTTPServer (section 11.15):
Base class implementation for Web server and request handler.

11.17 CGIHTTPServer — CGI-capable HTTP request handler

The CGIHTTPServer module defines a request-handler class, interface compatible with
BaseHTTPServer.BaseHTTPRequestHandler and inherits behavior from Simple-
HTTPServer.SimpleHTTPRequestHandler but can also run CGI scripts.

Note: This module is UNIX dependent since it creates the CGI process usingos.fork() andos.exec() .

TheCGIHTTPServer module defines the following class:

classCGIHTTPRequestHandler (request, clientaddress, server)
This class is used to serve either files or output of CGI scripts from the current directory and be-
low. Note that mapping HTTP hierarchic structure to local directory structure is exactly as inSimple-
HTTPServer.SimpleHTTPRequestHandler .

The class will however, run the CGI script, instead of serving it as a file, if it guesses it to be a CGI script. Only
directory-based CGI are used — the other common server configuration is to treat special extensions as denoting
CGI scripts.

318 Chapter 11. Internet Protocols and Support

The do GET() anddo HEAD() functions are modified to run CGI scripts and serve the output, instead of
serving files, if the request leads to somewhere below thecgi directories path.

TheCGIHTTPRequestHandler defines the following data member:

cgi directories
This defaults to[’/cgi-bin’, ’/htbin’] and describes directories to treat as containing CGI scripts.

TheCGIHTTPRequestHandler defines the following methods:

do POST()
This method serves the’POST’ request type, only allowed for CGI scripts. Error 501, ”Can only POST to CGI
scripts”, is output when trying to POST to a non-CGI url.

Note that CGI scripts will be run with UID of user nobody, for security reasons. Problems with the CGI script will be
translated to error 403.

For example usage, see the implementation of thetest() function.

See Also:

ModuleBaseHTTPServer (section 11.15):
Base class implementation for Web server and request handler.

11.18 Cookie — HTTP state management

TheCookie module defines classes for abstracting the concept of cookies, an HTTP state management mechanism.
It supports both simple string-only cookies, and provides an abstraction for having any serializable data-type as cookie
value.

The module formerly strictly applied the parsing rules described in in the RFC 2109 and RFC 2068 specifications. It
has since been discovered that MSIE 3.0x doesn’t follow the character rules outlined in those specs. As a result, the
parsing rules used are a bit less strict.

exceptionCookieError
Exception failing because of RFC 2109 invalidity: incorrect attributes, incorrectSet-Cookie header, etc.

classBaseCookie ([input])
This class is a dictionary-like object whose keys are strings and whose values areMorsel s. Note that upon
setting a key to a value, the value is first converted to aMorsel containing the key and the value.

If input is given, it is passed to theload() method.

classSimpleCookie ([input])
This class derives fromBaseCookie and overridesvalue decode() andvalue encode() to be the
identity andstr() respectively.

classSerialCookie ([input])
This class derives fromBaseCookie and overridesvalue decode() andvalue encode() to be the
pickle.loads() andpickle.dumps() .

Do not use this class. Reading pickled values from a cookie is a security hole, as arbitrary client-code can be
run onpickle.loads() . It is supported for backwards compatibility.

classSmartCookie ([input])
This class derives fromBaseCookie . It overridesvalue decode() to bepickle.loads() if it is a
valid pickle, and otherwise the value itself. It overridesvalue encode() to bepickle.dumps() unless
it is a string, in which case it returns the value itself.

The same security warning fromSerialCookie applies here.

See Also:

11.18. Cookie — HTTP state management 319

RFC 2109, “HTTP State Management Mechanism”
This is the state management specification implemented by this module.

11.18.1 Cookie Objects

value decode (val)
Return a decoded value from a string representation. Return value can be any type. This method does nothing
in BaseCookie — it exists so it can be overridden.

value encode (val)
Return an encoded value.val can be any type, but return value must be a string. This method does nothing in
BaseCookie — it exists so it can be overridden

In general, it should be the case thatvalue encode() andvalue decode() are inverses on the range of
value decode.

output ([attrs[, header[, sep]]])
Return a string representation suitable to be sent as HTTP headers.attrsandheaderare sent to eachMorsel ’s
output() method.sepis used to join the headers together, and is by default a newline.

js output ([attrs])
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will act the
same as if the HTTP headers was sent.

The meaning forattrs is the same as inoutput() .

load (rawdata)
If rawdata is a string, parse it as anHTTP COOKIEand add the values found there asMorsel s. If it is a
dictionary, it is equivalent to:

for k, v in rawdata.items():
cookie[k] = v

11.18.2 Morsel Objects

classMorsel ()
Abstract a key/value pair, which has some RFC 2109 attributes.

Morsels are dictionary-like objects, whose set of keys is constant — the valid RFC 2109 attributes, which are

•expires

•path

•comment

•domain

•max-age

•secure

•version

The keys are case-insensitive.

value
The value of the cookie.

coded value
The encoded value of the cookie — this is what should be sent.

320 Chapter 11. Internet Protocols and Support

key
The name of the cookie.

set (key, value, codedvalue)
Set thekey, valueandcoded valuemembers.

isReservedKey (K)
WhetherK is a member of the set of keys of aMorsel .

output ([attrs[, header]])
Return a string representation of the Morsel, suitable to be sent as an HTTP header. By default, all the attributes
are included, unlessattrs is given, in which case it should be a list of attributes to use.headeris by default
"Set-Cookie:" .

js output ([attrs])
Return an embeddable JavaScript snippet, which, if run on a browser which supports JavaScript, will act the
same as if the HTTP header was sent.

The meaning forattrs is the same as inoutput() .

OutputString ([attrs])
Return a string representing the Morsel, without any surrounding HTTP or JavaScript.

The meaning forattrs is the same as inoutput() .

11.18.3 Example

The following example demonstrates how to use theCookie module.

11.18. Cookie — HTTP state management 321

>>> import Cookie
>>> C = Cookie.SimpleCookie()
>>> C = Cookie.SerialCookie()
>>> C = Cookie.SmartCookie()
>>> C = Cookie.Cookie() # backwards-compatible alias for SmartCookie
>>> C = Cookie.SmartCookie()
>>> C["fig"] = "newton"
>>> C["sugar"] = "wafer"
>>> print C # generate HTTP headers
Set-Cookie: sugar=wafer;
Set-Cookie: fig=newton;
>>> print C.output() # same thing
Set-Cookie: sugar=wafer;
Set-Cookie: fig=newton;
>>> C = Cookie.SmartCookie()
>>> C["rocky"] = "road"
>>> C["rocky"]["path"] = "/cookie"
>>> print C.output(header="Cookie:")
Cookie: rocky=road; Path=/cookie;
>>> print C.output(attrs=[], header="Cookie:")
Cookie: rocky=road;
>>> C = Cookie.SmartCookie()
>>> C.load("chips=ahoy; vienna=finger") # load from a string (HTTP header)
>>> print C
Set-Cookie: vienna=finger;
Set-Cookie: chips=ahoy;
>>> C = Cookie.SmartCookie()
>>> C.load(’keebler="E=everybody; L=\\"Loves\\"; fudge=\\012;";’)
>>> print C
Set-Cookie: keebler="E=everybody; L=\"Loves\"; fudge=\012;";
>>> C = Cookie.SmartCookie()
>>> C["oreo"] = "doublestuff"
>>> C["oreo"]["path"] = "/"
>>> print C
Set-Cookie: oreo=doublestuff; Path=/;
>>> C = Cookie.SmartCookie()
>>> C["twix"] = "none for you"
>>> C["twix"].value
’none for you’
>>> C = Cookie.SimpleCookie()
>>> C["number"] = 7 # equivalent to C["number"] = str(7)
>>> C["string"] = "seven"
>>> C["number"].value
’7’
>>> C["string"].value
’seven’
>>> print C
Set-Cookie: number=7;
Set-Cookie: string=seven;
>>> C = Cookie.SerialCookie()
>>> C["number"] = 7
>>> C["string"] = "seven"
>>> C["number"].value
7
>>> C["string"].value
’seven’
>>> print C
Set-Cookie: number="I7\012.";
Set-Cookie: string="S’seven’\012p1\012.";
>>> C = Cookie.SmartCookie()
>>> C["number"] = 7
>>> C["string"] = "seven"
>>> C["number"].value
7
>>> C["string"].value
’seven’
>>> print C
Set-Cookie: number="I7\012.";
Set-Cookie: string=seven;

322 Chapter 11. Internet Protocols and Support

11.19 asyncore — Asynchronous socket handler

This module provides the basic infrastructure for writing asynchronous socket service clients and servers.

There are only two ways to have a program on a single processor do “more than one thing at a time.” Multi-threaded
programming is the simplest and most popular way to do it, but there is another very different technique, that lets you
have nearly all the advantages of multi-threading, without actually using multiple threads. It’s really only practical if
your program is largely I/O bound. If your program is CPU bound, then pre-emptive scheduled threads are probably
what you really need. Network servers are rarely CPU-bound, however.

If your operating system supports theselect() system call in its I/O library (and nearly all do), then you can use it to
juggle multiple communication channels at once; doing other work while your I/O is taking place in the “background.”
Although this strategy can seem strange and complex, especially at first, it is in many ways easier to understand and
control than multi-threaded programming. The module documented here solves many of the difficult problems for
you, making the task of building sophisticated high-performance network servers and clients a snap.

classdispatcher ()
The first class we will introduce is thedispatcher class. This is a thin wrapper around a low-level socket
object. To make it more useful, it has a few methods for event-handling on it. Otherwise, it can be treated as a
normal non-blocking socket object.

The direct interface between the select loop and the socket object are thehandle read event() and
handle write event() methods. These are called whenever an object ‘fires’ that event.

The firing of these low-level events can tell us whether certain higher-level events have taken place, depending
on the timing and the state of the connection. For example, if we have asked for a socket to connect to another
host, we know that the connection has been made when the socket fires a write event (at this point you know
that you may write to it with the expectation of success). The implied higher-level events are:

Event Description
handle connect() Implied by a write event
handle close() Implied by a read event with no data available
handle accept() Implied by a read event on a listening socket

This set of user-level events is larger than the basics. The full set of methods that can be overridden in your subclass
are:

handle read ()
Called when there is new data to be read from a socket.

handle write ()
Called when there is an attempt to write data to the object. Often this method will implement the necessary
buffering for performance. For example:

def handle_write(self):
sent = self.send(self.buffer)
self.buffer = self.buffer[sent:]

handle expt ()
Called when there is out of band (OOB) data for a socket connection. This will almost never happen, as OOB is
tenuously supported and rarely used.

handle connect ()
Called when the socket actually makes a connection. This might be used to send a “welcome” banner, or
something similar.

handle close ()
Called when the socket is closed.

handle accept ()
Called on listening sockets when they actually accept a new connection.

11.19. asyncore — Asynchronous socket handler 323

readable ()
Each time through theselect() loop, the set of sockets is scanned, and this method is called to see if there
is any interest in reading. The default method simply returns1, indicating that by default, all channels will be
interested.

writable ()
Each time through theselect() loop, the set of sockets is scanned, and this method is called to see if there
is any interest in writing. The default method simply returns1, indicating that by default, all channels will be
interested.

In addition, there are the basic methods needed to construct and manipulate “channels,” which are what we will call
the socket connections in this context. Note that most of these are nearly identical to their socket partners.

create socket (family, type)
This is identical to the creation of a normal socket, and will use the same options for creation. Refer to the
socket documentation for information on creating sockets.

connect (address)
As with the normal socket object,addressis a tuple with the first element the host to connect to, and the second
the port.

send (data)
Senddataout the socket.

recv (buffer size)
Read at mostbuffer sizebytes from the socket.

listen (backlog)
Listen for connections made to the socket. Thebacklogargument specifies the maximum number of queued
connections and should be at least 1; the maximum value is system-dependent (usually 5).

bind (address)
Bind the socket toaddress. The socket must not already be bound. (The format ofaddressdepends on the
address family — see above.)

accept ()
Accept a connection. The socket must be bound to an address and listening for connections. The return value is
a pair(conn, address) whereconnis anewsocket object usable to send and receive data on the connection,
andaddressis the address bound to the socket on the other end of the connection.

close ()
Close the socket. All future operations on the socket object will fail. The remote end will receive no more data
(after queued data is flushed). Sockets are automatically closed when they are garbage-collected.

11.19.1 Example basic HTTP client

As a basic example, below is a very basic HTTP client that uses thedispatcher class to implement its socket
handling:

324 Chapter 11. Internet Protocols and Support

class http_client(asyncore.dispatcher):
def __init__(self, host,path):

asyncore.dispatcher.__init__(self)
self.path = path
self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
self.connect((host, 80))
self.buffer = ’GET %s HTTP/1.0\r\n\r\n’ % self.path

def handle_connect(self):
pass

def handle_read(self):
data = self.recv(8192)
print data

def writable(self):
return (len(self.buffer) > 0)

def handle_write(self):
sent = self.send(self.buffer)
self.buffer = self.buffer[sent:]

11.19. asyncore — Asynchronous socket handler 325

326

CHAPTER

TWELVE

Internet Data Handling

This chapter describes modules which support handling data formats commonly used on the internet. Some, like
SGML and XML, may be useful for other applications as well.

formatter Generic output formatter and device interface.
rfc822 Parse RFC 822 style mail headers.
mimetools Tools for parsing MIME-style message bodies.
MimeWriter Generic MIME file writer.
multifile Support for reading files which contain distinct parts, such as some MIME data.
binhex Encode and decode files in binhex4 format.
uu Encode and decode files in uuencode format.
binascii Tools for converting between binary and variousASCII-encoded binary representations.
xdrlib Encoders and decoders for the External Data Representation (XDR).
mailcap Mailcap file handling.
mimetypes Mapping of filename extensions to MIME types.
base64 Encode and decode files using the MIME base64 data.
quopri Encode and decode files using the MIME quoted-printable encoding.
mailbox Read various mailbox formats.
mhlib Manipulate MH mailboxes from Python.
mimify Mimification and unmimification of mail messages.
netrc Loading of ‘.netrc’ files.
robotparser Accepts as input a list of lines or URL that refers to a robots.txt file, parses the file, then builds a set of rules from that list and answers questions about fetchability of other URLs.

12.1 formatter — Generic output formatting

This module supports two interface definitions, each with multiple implementations. Theformatterinterface is used
by theHTMLParser class of thehtmllib module, and thewriter interface is required by the formatter interface.

Formatter objects transform an abstract flow of formatting events into specific output events on writer objects. Format-
ters manage several stack structures to allow various properties of a writer object to be changed and restored; writers
need not be able to handle relative changes nor any sort of “change back” operation. Specific writer properties which
may be controlled via formatter objects are horizontal alignment, font, and left margin indentations. A mechanism
is provided which supports providing arbitrary, non-exclusive style settings to a writer as well. Additional interfaces
facilitate formatting events which are not reversible, such as paragraph separation.

Writer objects encapsulate device interfaces. Abstract devices, such as file formats, are supported as well as physical
devices. The provided implementations all work with abstract devices. The interface makes available mechanisms for
setting the properties which formatter objects manage and inserting data into the output.

327

12.1.1 The Formatter Interface

Interfaces to create formatters are dependent on the specific formatter class being instantiated. The interfaces described
below are the required interfaces which all formatters must support once initialized.

One data element is defined at the module level:

AS IS
Value which can be used in the font specification passed to thepush font() method described below, or
as the new value to any otherpush property() method. Pushing theAS IS value allows the corresponding
pop property() method to be called without having to track whether the property was changed.

The following attributes are defined for formatter instance objects:

writer
The writer instance with which the formatter interacts.

end paragraph (blanklines)
Close any open paragraphs and insert at leastblanklinesbefore the next paragraph.

add line break ()
Add a hard line break if one does not already exist. This does not break the logical paragraph.

add hor rule (*args, **kw)
Insert a horizontal rule in the output. A hard break is inserted if there is data in the current paragraph, but the logi-
cal paragraph is not broken. The arguments and keywords are passed on to the writer’ssend line break()
method.

add flowing data (data)
Provide data which should be formatted with collapsed whitespace. Whitespace from preceding and successive
calls toadd flowing data() is considered as well when the whitespace collapse is performed. The data
which is passed to this method is expected to be word-wrapped by the output device. Note that any word-
wrapping still must be performed by the writer object due to the need to rely on device and font information.

add literal data (data)
Provide data which should be passed to the writer unchanged. Whitespace, including newline and tab characters,
are considered legal in the value ofdata.

add label data (format, counter)
Insert a label which should be placed to the left of the current left margin. This should be used for constructing
bulleted or numbered lists. If theformatvalue is a string, it is interpreted as a format specification forcounter,
which should be an integer. The result of this formatting becomes the value of the label; ifformat is not a
string it is used as the label value directly. The label value is passed as the only argument to the writer’s
send label data() method. Interpretation of non-string label values is dependent on the associated writer.

Format specifications are strings which, in combination with a counter value, are used to compute label values.
Each character in the format string is copied to the label value, with some characters recognized to indicate
a transform on the counter value. Specifically, the character ‘1’ represents the counter value formatter as an
Arabic number, the characters ‘A’ and ‘a’ represent alphabetic representations of the counter value in upper and
lower case, respectively, and ‘I ’ and ‘i ’ represent the counter value in Roman numerals, in upper and lower
case. Note that the alphabetic and roman transforms require that the counter value be greater than zero.

flush softspace ()
Send any pending whitespace buffered from a previous call toadd flowing data() to the associated
writer object. This should be called before any direct manipulation of the writer object.

push alignment (align)
Push a new alignment setting onto the alignment stack. This may beAS IS if no change is desired. If the
alignment value is changed from the previous setting, the writer’snew alignment() method is called with
thealign value.

328 Chapter 12. Internet Data Handling

pop alignment ()
Restore the previous alignment.

push font ((size, italic, bold, teletype))
Change some or all font properties of the writer object. Properties which are not set toAS IS are set to the
values passed in while others are maintained at their current settings. The writer’snew font() method is
called with the fully resolved font specification.

pop font ()
Restore the previous font.

push margin (margin)
Increase the number of left margin indentations by one, associating the logical tagmarginwith the new indenta-
tion. The initial margin level is0. Changed values of the logical tag must be true values; false values other than
AS IS are not sufficient to change the margin.

pop margin ()
Restore the previous margin.

push style (*styles)
Push any number of arbitrary style specifications. All styles are pushed onto the styles stack in order. A tuple
representing the entire stack, includingAS IS values, is passed to the writer’snew styles() method.

pop style ([n = 1])
Pop the lastn style specifications passed topush style() . A tuple representing the revised stack, including
AS IS values, is passed to the writer’snew styles() method.

set spacing (spacing)
Set the spacing style for the writer.

assert line data ([flag = 1])
Inform the formatter that data has been added to the current paragraph out-of-band. This should be used when the
writer has been manipulated directly. The optionalflag argument can be set to false if the writer manipulations
produced a hard line break at the end of the output.

12.1.2 Formatter Implementations

Two implementations of formatter objects are provided by this module. Most applications may use one of these classes
without modification or subclassing.

classNullFormatter ([writer])
A formatter which does nothing. Ifwriter is omitted, aNullWriter instance is created. No methods of the
writer are called byNullFormatter instances. Implementations should inherit from this class if implement-
ing a writer interface but don’t need to inherit any implementation.

classAbstractFormatter (writer)
The standard formatter. This implementation has demonstrated wide applicability to many writers, and may be
used directly in most circumstances. It has been used to implement a full-featured world-wide web browser.

12.1.3 The Writer Interface

Interfaces to create writers are dependent on the specific writer class being instantiated. The interfaces described below
are the required interfaces which all writers must support once initialized. Note that while most applications can use
theAbstractFormatter class as a formatter, the writer must typically be provided by the application.

flush ()
Flush any buffered output or device control events.

12.1. formatter — Generic output formatting 329

new alignment (align)
Set the alignment style. Thealign value can be any object, but by convention is a string orNone, where
None indicates that the writer’s “preferred” alignment should be used. Conventionalalign values are’left’ ,
’center’ , ’right’ , and’justify’ .

new font (font)
Set the font style. The value offont will be None, indicating that the device’s default font should be used, or
a tuple of the form(size, italic, bold, teletype) . Size will be a string indicating the size of font that should be
used; specific strings and their interpretation must be defined by the application. Theitalic, bold, andteletype
values are boolean indicators specifying which of those font attributes should be used.

new margin (margin, level)
Set the margin level to the integerleveland the logical tag tomargin. Interpretation of the logical tag is at the
writer’s discretion; the only restriction on the value of the logical tag is that it not be a false value for non-zero
values oflevel.

new spacing (spacing)
Set the spacing style tospacing.

new styles (styles)
Set additional styles. Thestylesvalue is a tuple of arbitrary values; the valueAS IS should be ignored. The
stylestuple may be interpreted either as a set or as a stack depending on the requirements of the application and
writer implementation.

send line break ()
Break the current line.

send paragraph (blankline)
Produce a paragraph separation of at leastblanklineblank lines, or the equivalent. Theblanklinevalue will be
an integer. Note that the implementation will receive a call tosend line break() before this call if a line
break is needed; this method should not include ending the last line of the paragraph. It is only responsible for
vertical spacing between paragraphs.

send hor rule (*args, **kw)
Display a horizontal rule on the output device. The arguments to this method are entirely application- and
writer-specific, and should be interpreted with care. The method implementation may assume that a line break
has already been issued viasend line break() .

send flowing data (data)
Output character data which may be word-wrapped and re-flowed as needed. Within any sequence of calls to
this method, the writer may assume that spans of multiple whitespace characters have been collapsed to single
space characters.

send literal data (data)
Output character data which has already been formatted for display. Generally, this should be interpreted to
mean that line breaks indicated by newline characters should be preserved and no new line breaks should
be introduced. The data may contain embedded newline and tab characters, unlike data provided to the
send formatted data() interface.

send label data (data)
Setdata to the left of the current left margin, if possible. The value ofdata is not restricted; treatment of non-
string values is entirely application- and writer-dependent. This method will only be called at the beginning of
a line.

12.1.4 Writer Implementations

Three implementations of the writer object interface are provided as examples by this module. Most applications will
need to derive new writer classes from theNullWriter class.

330 Chapter 12. Internet Data Handling

classNullWriter ()
A writer which only provides the interface definition; no actions are taken on any methods. This should be the
base class for all writers which do not need to inherit any implementation methods.

classAbstractWriter ()
A writer which can be used in debugging formatters, but not much else. Each method simply announces itself
by printing its name and arguments on standard output.

classDumbWriter ([file[, maxcol = 72]])
Simple writer class which writes output on the file object passed in asfile or, if file is omitted, on standard output.
The output is simply word-wrapped to the number of columns specified bymaxcol. This class is suitable for
reflowing a sequence of paragraphs.

12.2 rfc822 — Parse RFC 822 mail headers

This module defines a class,Message , which represents a collection of “email headers” as defined by the Internet
standard RFC 822. It is used in various contexts, usually to read such headers from a file. This module also defines a
helper classAddressList for parsing RFC 822 addresses. Please refer to the RFC for information on the specific
syntax of RFC 822 headers.

Themailbox module provides classes to read mailboxes produced by various end-user mail programs.

classMessage (file[, seekable])
A Message instance is instantiated with an input object as parameter. Message relies only on the input object
having areadline() method; in particular, ordinary file objects qualify. Instantiation reads headers from the
input object up to a delimiter line (normally a blank line) and stores them in the instance. The message body,
following the headers, is not consumed.

This class can work with any input object that supports areadline() method. If the input object has seek
and tell capability, therewindbody() method will work; also, illegal lines will be pushed back onto the
input stream. If the input object lacks seek but has anunread() method that can push back a line of input,
Message will use that to push back illegal lines. Thus this class can be used to parse messages coming from a
buffered stream.

The optionalseekableargument is provided as a workaround for certain stdio libraries in whichtell() dis-
cards buffered data before discovering that thelseek() system call doesn’t work. For maximum portability,
you should set the seekable argument to zero to prevent that initialtell() when passing in an unseekable
object such as a a file object created from a socket object.

Input lines as read from the file may either be terminated by CR-LF or by a single linefeed; a terminating CR-LF
is replaced by a single linefeed before the line is stored.

All header matching is done independent of upper or lower case; e.g.m[’From’] , m[’from’] and
m[’FROM’] all yield the same result.

classAddressList (field)
You may instantiate theAddressList helper class using a single string parameter, a comma-separated list of
RFC 822 addresses to be parsed. (The parameterNone yields an empty list.)

parsedate (date)
Attempts to parse a date according to the rules in RFC 822. however, some mailers don’t follow that format as
specified, soparsedate() tries to guess correctly in such cases.dateis a string containing an RFC 822 date,
such as’Mon, 20 Nov 1995 19:12:08 -0500’ . If it succeeds in parsing the date,parsedate()
returns a 9-tuple that can be passed directly totime.mktime() ; otherwiseNone will be returned. Note that
fields 6, 7, and 8 of the result tuple are not usable.

parsedate tz (date)
Performs the same function asparsedate() , but returns eitherNone or a 10-tuple; the first 9 elements make
up a tuple that can be passed directly totime.mktime() , and the tenth is the offset of the date’s timezone

12.2. rfc822 — Parse RFC 822 mail headers 331

from UTC (which is the official term for Greenwich Mean Time). (Note that the sign of the timezone offset is
the opposite of the sign of thetime.timezone variable for the same timezone; the latter variable follows the
POSIX standard while this module follows RFC 822.) If the input string has no timezone, the last element of
the tuple returned isNone. Note that fields 6, 7, and 8 of the result tuple are not usable.

mktime tz (tuple)
Turn a 10-tuple as returned byparsedate tz() into a UTC timestamp. It the timezone item in the tuple
is None, assume local time. Minor deficiency: this first interprets the first 8 elements as a local time and then
compensates for the timezone difference; this may yield a slight error around daylight savings time switch dates.
Not enough to worry about for common use.

See Also:

Modulemailbox (section 12.14):
Classes to read various mailbox formats produced by end-user mail programs.

Modulemimetools (section 12.3):
Subclass of rfc.Message that handles MIME encoded messages.

12.2.1 Message Objects

A Message instance has the following methods:

rewindbody ()
Seek to the start of the message body. This only works if the file object is seekable.

isheader (line)
Returns a line’s canonicalized fieldname (the dictionary key that will be used to index it) if the line is a legal
RFC 822 header; otherwise returns None (implying that parsing should stop here and the line be pushed back
on the input stream). It is sometimes useful to override this method in a subclass.

islast (line)
Return true if the given line is a delimiter on which Message should stop. The delimiter line is consumed, and
the file object’s read location positioned immediately after it. By default this method just checks that the line is
blank, but you can override it in a subclass.

iscomment (line)
Return true if the given line should be ignored entirely, just skipped. By default this is a stub that always returns
false, but you can override it in a subclass.

getallmatchingheaders (name)
Return a list of lines consisting of all headers matchingname, if any. Each physical line, whether it is a contin-
uation line or not, is a separate list item. Return the empty list if no header matchesname.

getfirstmatchingheader (name)
Return a list of lines comprising the first header matchingname, and its continuation line(s), if any. Return
None if there is no header matchingname.

getrawheader (name)
Return a single string consisting of the text after the colon in the first header matchingname. This includes
leading whitespace, the trailing linefeed, and internal linefeeds and whitespace if there any continuation line(s)
were present. ReturnNone if there is no header matchingname.

getheader (name[, default])
Like getrawheader(name) , but strip leading and trailing whitespace. Internal whitespace is not stripped.
The optionaldefaultargument can be used to specify a different default to be returned when there is no header
matchingname.

get (name[, default])
An alias forgetheader() , to make the interface more compatible with regular dictionaries.

332 Chapter 12. Internet Data Handling

getaddr (name)
Return a pair(full name, email address) parsed from the string returned bygetheader(name) . If no
header matchingnameexists, return(None, None) ; otherwise both the full name and the address are (pos-
sibly empty) strings.

Example: If m’s first From header contains the string’jack@cwi.nl (Jack Jansen)’ , then
m.getaddr(’From’) will yield the pair (’Jack Jansen’, ’jack@cwi.nl’) . If the header con-
tained’Jack Jansen <jack@cwi.nl>’ instead, it would yield the exact same result.

getaddrlist (name)
This is similar togetaddr(list) , but parses a header containing a list of email addresses (e.g. aTo header)
and returns a list of(full name, email address) pairs (even if there was only one address in the header). If
there is no header matchingname, return an empty list.

If multiple headers exist that match the named header (e.g. if there are severalCc headers), all are parsed for
addresses. Any continuation lines the named headers contain are also parsed.

getdate (name)
Retrieve a header usinggetheader() and parse it into a 9-tuple compatible withtime.mktime() ; note
that fields 6, 7, and 8 are not usable. If there is no header matchingname, or it is unparsable, returnNone.

Date parsing appears to be a black art, and not all mailers adhere to the standard. While it has been tested
and found correct on a large collection of email from many sources, it is still possible that this function may
occasionally yield an incorrect result.

getdate tz (name)
Retrieve a header usinggetheader() and parse it into a 10-tuple; the first 9 elements will make a tuple
compatible withtime.mktime() , and the 10th is a number giving the offset of the date’s timezone from
UTC. Note that fields 6, 7, and 8 are not usable. Similarly togetdate() , if there is no header matchingname,
or it is unparsable, returnNone.

Message instances also support a limited mapping interface. In particular:m[name] is like
m.getheader(name) but raisesKeyError if there is no matching header; andlen(m) , m.has key(name) ,
m.keys() , m.values() andm.items() act as expected (and consistently).Message instances also support
the mapping writable interfacem[name] = value anddel m[name] . Message objects do not support the
clear() , copy() , get() , popitem() , setdefault() , or update() methods of the mapping interface.

Finally, Message instances have two public instance variables:

headers
A list containing the entire set of header lines, in the order in which they were read (except that setitem calls
may disturb this order). Each line contains a trailing newline. The blank line terminating the headers is not
contained in the list.

fp
The file or file-like object passed at instantiation time. This can be used to read the message content.

12.2.2 AddressList Objects

An AddressList instance has the following methods:

len ()
Return the number of addresses in the address list.

str ()
Return a canonicalized string representation of the address list. Addresses are rendered in ”name”
¡host@domain¿ form, comma-separated.

add (alist)
Return a newAddressList instance that contains all addresses in bothAddressList operands, with du-
plicates removed (set union).

12.2. rfc822 — Parse RFC 822 mail headers 333

iadd (alist)
In-place version of add () ; turns thisAddressList instance into the union of itself and the right-hand
instance,alist.

sub (alist)
Return a newAddressList instance that contains every address in the left-handAddressList operand
that is not present in the right-hand address operand (set difference).

isub (alist)
In-place version of sub () , removing addresses in this list which are also inalist.

Finally, AddressList instances have one public instance variable:

addresslist
A list of tuple string pairs, one per address. In each member, the first is the canonicalized name part, the second
is the actual route-address (‘@’-separated username-host.domain pair).

12.3 mimetools — Tools for parsing MIME messages

This module defines a subclass of therfc822 module’sMessage class and a number of utility functions that are
useful for the manipulation for MIME multipart or encoded message.

It defines the following items:

classMessage (fp[, seekable])
Return a new instance of theMessage class. This is a subclass of therfc822.Message class, with some
additional methods (see below). Theseekableargument has the same meaning as forrfc822.Message .

choose boundary ()
Return a unique string that has a high likelihood of being usable as a part boundary. The string has the form
’ hostipaddr. uid. pid. timestamp. random’ .

decode (input, output, encoding)
Read data encoded using the allowed MIMEencodingfrom open file objectinput and write the decoded data to
open file objectoutput. Valid values forencodinginclude’base64’ , ’quoted-printable’ and’uuen-
code’ .

encode (input, output, encoding)
Read data from open file objectinputand write it encoded using the allowed MIMEencodingto open file object
output. Valid values forencodingare the same as fordecode() .

copyliteral (input, output)
Read lines from open fileinput until EOF and write them to open fileoutput.

copybinary (input, output)
Read blocks untilEOF from open fileinput and write them to open fileoutput. The block size is currently fixed
at 8192.

See Also:

Modulerfc822 (section 12.2):
Provides the base class formimetools.Message .

Modulemultifile (section 12.5):
Support for reading files which contain distinct parts, such as MIME data.

http://www.cs.uu.nl/wais/html/na-dir/mail/mime-faq/.html
The MIME Frequently Asked Questions document. For an overview of MIME, see the answer to question 1.1
in Part 1 of this document.

334 Chapter 12. Internet Data Handling

12.3.1 Additional Methods of Message Objects

TheMessage class defines the following methods in addition to therfc822.Message methods:

getplist ()
Return the parameter list of thecontent-type header. This is a list of strings. For parameters of the
form ‘key=value’, key is converted to lower case butvalue is not. For example, if the message contains the
header ‘Content-type: text/html; spam=1; Spam=2; Spam ’ then getplist() will return
the Python list[’spam=1’, ’spam=2’, ’Spam’] .

getparam (name)
Return thevalueof the first parameter (as returned bygetplist() of the form ‘name=value’ for the given
name. If valueis surrounded by quotes of the form ‘<...>’ or ‘ " ..." ’, these are removed.

getencoding ()
Return the encoding specified in thecontent-transfer-encoding message header. If no such header
exists, return’7bit’ . The encoding is converted to lower case.

gettype ()
Return the message type (of the form ‘type/ subtype’) as specified in thecontent-type header. If no such
header exists, return’text/plain’ . The type is converted to lower case.

getmaintype ()
Return the main type as specified in thecontent-type header. If no such header exists, return’text’ .
The main type is converted to lower case.

getsubtype ()
Return the subtype as specified in thecontent-type header. If no such header exists, return’plain’ . The
subtype is converted to lower case.

12.4 MimeWriter — Generic MIME file writer

This module defines the classMimeWriter . The MimeWriter class implements a basic formatter for creating
MIME multi-part files. It doesn’t seek around the output file nor does it use large amounts of buffer space. You must
write the parts out in the order that they should occur in the final file.MimeWriter does buffer the headers you add,
allowing you to rearrange their order.

classMimeWriter (fp)
Return a new instance of theMimeWriter class. The only argument passed,fp, is a file object to be used for
writing. Note that aStringIO object could also be used.

12.4.1 MimeWriter Objects

MimeWriter instances have the following methods:

addheader (key, value[, prefix])
Add a header line to the MIME message. Thekeyis the name of the header, where thevalueobviously provides
the value of the header. The optional argumentprefixdetermines where the header is inserted; ‘0’ means append
at the end, ‘1’ is insert at the start. The default is to append.

flushheaders ()
Causes all headers accumulated so far to be written out (and forgotten). This is useful if you don’t need a body
part at all, e.g. for a subpart of typemessage/rfc822 that’s (mis)used to store some header-like information.

startbody (ctype[, plist[, prefix]])
Returns a file-like object which can be used to write to the body of the message. The content-type is set to the

12.4. MimeWriter — Generic MIME file writer 335

providedctype, and the optional parameterplist provides additional parameters for the content-type declaration.
prefix functions as inaddheader() except that the default is to insert at the start.

startmultipartbody (subtype[, boundary[, plist[, prefix]]])
Returns a file-like object which can be used to write to the body of the message. Additionally, this method
initializes the multi-part code, wheresubtypeprovides the multipart subtype,boundarymay provide a user-
defined boundary specification, andplist provides optional parameters for the subtype.prefix functions as in
startbody() . Subparts should be created usingnextpart() .

nextpart ()
Returns a new instance ofMimeWriter which represents an individual part in a multipart message. This may
be used to write the part as well as used for creating recursively complex multipart messages. The message must
first be initialized withstartmultipartbody() before usingnextpart() .

lastpart ()
This is used to designate the last part of a multipart message, and shouldalwaysbe used when writing multipart
messages.

12.5 multifile — Support for files containing distinct parts

TheMultiFile object enables you to treat sections of a text file as file-like input objects, with’’ being returned by
readline() when a given delimiter pattern is encountered. The defaults of this class are designed to make it useful
for parsing MIME multipart messages, but by subclassing it and overriding methods it can be easily adapted for more
general use.

classMultiFile (fp[, seekable])
Create a multi-file. You must instantiate this class with an input object argument for theMultiFile instance
to get lines from, such as as a file object returned byopen() .

MultiFile only ever looks at the input object’sreadline() , seek() and tell() methods, and the
latter two are only needed if you want random access to the individual MIME parts. To useMultiFile on a
non-seekable stream object, set the optionalseekableargument to false; this will prevent using the input object’s
seek() andtell() methods.

It will be useful to know that inMultiFile ’s view of the world, text is composed of three kinds of lines: data,
section-dividers, and end-markers. MultiFile is designed to support parsing of messages that may have multiple
nested message parts, each with its own pattern for section-divider and end-marker lines.

12.5.1 MultiFile Objects

A MultiFile instance has the following methods:

readline (str)
Read a line. If the line is data (not a section-divider or end-marker or real EOF) return it. If the line matches the
most-recently-stacked boundary, return’’ and setself.last to 1 or 0 according as the match is or is not an
end-marker. If the line matches any other stacked boundary, raise an error. On encountering end-of-file on the
underlying stream object, the method raisesError unless all boundaries have been popped.

readlines (str)
Return all lines remaining in this part as a list of strings.

read ()
Read all lines, up to the next section. Return them as a single (multiline) string. Note that this doesn’t take a
size argument!

seek (pos[, whence])
Seek. Seek indices are relative to the start of the current section. Theposandwhencearguments are interpreted

336 Chapter 12. Internet Data Handling

as for a file seek.

tell ()
Return the file position relative to the start of the current section.

next ()
Skip lines to the next section (that is, read lines until a section-divider or end-marker has been consumed). Return
true if there is such a section, false if an end-marker is seen. Re-enable the most-recently-pushed boundary.

is data (str)
Return true ifstr is data and false if it might be a section boundary. As written, it tests for a prefix other than
’--’ at start of line (which all MIME boundaries have) but it is declared so it can be overridden in derived
classes.

Note that this test is used intended as a fast guard for the real boundary tests; if it always returns false it will
merely slow processing, not cause it to fail.

push (str)
Push a boundary string. When an appropriately decorated version of this boundary is found as an input line,
it will be interpreted as a section-divider or end-marker. All subsequent reads will return the empty string to
indicate end-of-file, until a call topop() removes the boundary a ornext() call reenables it.

It is possible to push more than one boundary. Encountering the most-recently-pushed boundary will return
EOF; encountering any other boundary will raise an error.

pop ()
Pop a section boundary. This boundary will no longer be interpreted as EOF.

section divider (str)
Turn a boundary into a section-divider line. By default, this method prepends’--’ (which MIME section
boundaries have) but it is declared so it can be overridden in derived classes. This method need not append LF
or CR-LF, as comparison with the result ignores trailing whitespace.

end marker (str)
Turn a boundary string into an end-marker line. By default, this method prepends’--’ and appends’--’
(like a MIME-multipart end-of-message marker) but it is declared so it can be be overridden in derived classes.
This method need not append LF or CR-LF, as comparison with the result ignores trailing whitespace.

Finally, MultiFile instances have two public instance variables:

level
Nesting depth of the current part.

last
True if the last end-of-file was for an end-of-message marker.

12.5. multifile — Support for files containing distinct parts 337

12.5.2 MultiFile Example

import mimetools
import multifile
import StringIO

def extract_mime_part_matching(stream, mimetype):
"""Return the first element in a multipart MIME message on stream
matching mimetype."""

msg = mimetools.Message(stream)
msgtype = msg.gettype()
params = msg.getplist()

data = StringIO.StringIO()
if msgtype[:10] == "multipart/":

file = multifile.MultiFile(stream)
file.push(msg.getparam("boundary"))
while file.next():

submsg = mimetools.Message(file)
try:

data = StringIO.StringIO()
mimetools.decode(file, data, submsg.getencoding())

except ValueError:
continue

if submsg.gettype() == mimetype:
break

file.pop()
return data.getvalue()

12.6 binhex — Encode and decode binhex4 files

This module encodes and decodes files in binhex4 format, a format allowing representation of Macintosh files in
ASCII. On the Macintosh, both forks of a file and the finder information are encoded (or decoded), on other platforms
only the data fork is handled.

Thebinhex module defines the following functions:

binhex (input, output)
Convert a binary file with filenameinput to binhex fileoutput. Theoutputparameter can either be a filename or
a file-like object (any object supporting awrite() andclose() method).

hexbin (input[, output])
Decode a binhex fileinput. input may be a filename or a file-like object supportingread() andclose()
methods. The resulting file is written to a file namedoutput, unless the argument is omitted in which case the
output filename is read from the binhex file.

See Also:

Modulebinascii (section 12.8):
Support module containingASCII-to-binary and binary-to-ASCII conversions.

338 Chapter 12. Internet Data Handling

12.6.1 Notes

There is an alternative, more powerful interface to the coder and decoder, see the source for details.

If you code or decode textfiles on non-Macintosh platforms they will still use the Macintosh newline convention
(carriage-return as end of line).

As of this writing,hexbin() appears to not work in all cases.

12.7 uu — Encode and decode uuencode files

This module encodes and decodes files in uuencode format, allowing arbitrary binary data to be transferred over
ascii-only connections. Wherever a file argument is expected, the methods accept a file-like object. For backwards
compatibility, a string containing a pathname is also accepted, and the corresponding file will be opened for reading and
writing; the pathname’-’ is understood to mean the standard input or output. However, this interface is deprecated;
it’s better for the caller to open the file itself, and be sure that, when required, the mode is’rb’ or ’wb’ on Windows
or DOS.

This code was contributed by Lance Ellinghouse, and modified by Jack Jansen.

Theuu module defines the following functions:

encode (in file, out file[, name[, mode]])
Uuencode filein file into file out file. The uuencoded file will have the header specifyingnameandmodeas
the defaults for the results of decoding the file. The default defaults are taken fromin file, or ’-’ and0666
respectively.

decode (in file[, out file[, mode]])
This call decodes uuencoded filein file placing the result on fileout file. If out file is a pathname,modeis
used to set the permission bits if the file must be created. Defaults forout file andmodeare taken from the
uuencode header.

See Also:

Modulebinascii (section 12.8):
Support module containingASCII-to-binary and binary-to-ASCII conversions.

12.8 binascii — Convert between binary and ASCII

Thebinascii module contains a number of methods to convert between binary and variousASCII-encoded binary
representations. Normally, you will not use these functions directly but use wrapper modules likeuu or binhex
instead, this module solely exists because bit-manipulation of large amounts of data is slow in Python.

Thebinascii module defines the following functions:

a2b uu(string)
Convert a single line of uuencoded data back to binary and return the binary data. Lines normally contain 45
(binary) bytes, except for the last line. Line data may be followed by whitespace.

b2a uu(data)
Convert binary data to a line ofASCII characters, the return value is the converted line, including a newline char.
The length ofdatashould be at most 45.

a2b base64 (string)
Convert a block of base64 data back to binary and return the binary data. More than one line may be passed at
a time.

b2a base64 (data)

12.7. uu — Encode and decode uuencode files 339

Convert binary data to a line ofASCII characters in base64 coding. The return value is the converted line,
including a newline char. The length ofdatashould be at most 57 to adhere to the base64 standard.

a2b hqx (string)
Convert binhex4 formattedASCII data to binary, without doing RLE-decompression. The string should contain
a complete number of binary bytes, or (in case of the last portion of the binhex4 data) have the remaining bits
zero.

rledecode hqx (data)
Perform RLE-decompression on the data, as per the binhex4 standard. The algorithm uses0x90 after a byte as
a repeat indicator, followed by a count. A count of0 specifies a byte value of0x90 . The routine returns the
decompressed data, unless data input data ends in an orphaned repeat indicator, in which case theIncomplete
exception is raised.

rlecode hqx (data)
Perform binhex4 style RLE-compression ondataand return the result.

b2a hqx (data)
Perform hexbin4 binary-to-ASCII translation and return the resulting string. The argument should already be
RLE-coded, and have a length divisible by 3 (except possibly the last fragment).

crc hqx (data, crc)
Compute the binhex4 crc value ofdata, starting with an initialcrc and returning the result.

crc32 (data[, crc])
Compute CRC-32, the 32-bit checksum of data, starting with an initial crc. This is consistent with the ZIP file
checksum. Use as follows:

print binascii.crc32("hello world")
Or, in two pieces:
crc = binascii.crc32("hello")
crc = binascii.crc32(" world", crc)
print crc

b2a hex (data)
hexlify (data)

Return the hexadecimal representation of the binarydata. Every byte ofdatais converted into the corresponding
2-digit hex representation. The resulting string is therefore twice as long as the length ofdata.

a2b hex (hexstr)
unhexlify (hexstr)

Return the binary data represented by the hexadecimal stringhexstr. This function is the inverse of
b2a hex() . hexstrmust contain an even number of hexadecimal digits (which can be upper or lower case),
otherwise aTypeError is raised.

exceptionError
Exception raised on errors. These are usually programming errors.

exceptionIncomplete
Exception raised on incomplete data. These are usually not programming errors, but may be handled by reading
a little more data and trying again.

See Also:

Modulebase64 (section 12.12):
Support for base64 encoding used in MIME email messages.

Modulebinhex (section 12.6):
Support for the binhex format used on the Macintosh.

Moduleuu (section 12.7):

340 Chapter 12. Internet Data Handling

Support for UU encoding used on UNIX .

12.9 xdrlib — Encode and decode XDR data

Thexdrlib module supports the External Data Representation Standard as described in RFC 1014, written by Sun
Microsystems, Inc. June 1987. It supports most of the data types described in the RFC.

Thexdrlib module defines two classes, one for packing variables into XDR representation, and another for unpack-
ing from XDR representation. There are also two exception classes.

classPacker ()
Packer is the class for packing data into XDR representation. ThePacker class is instantiated with no
arguments.

classUnpacker (data)
Unpacker is the complementary class which unpacks XDR data values from a string buffer. The input buffer
is given asdata.

See Also:

RFC 1014, “XDR: External Data Representation Standard”
This RFC defined the encoding of data which was XDR at the time this module was originally written. It has
appearantly been obsoleted by RFC 1832.

RFC 1832, “XDR: External Data Representation Standard”
Newer RFC that provides a revised definition of XDR.

12.9.1 Packer Objects

Packer instances have the following methods:

get buffer ()
Returns the current pack buffer as a string.

reset ()
Resets the pack buffer to the empty string.

In general, you can pack any of the most common XDR data types by calling the appropriatepack type()
method. Each method takes a single argument, the value to pack. The following simple data type packing meth-
ods are supported:pack uint() , pack int() , pack enum() , pack bool() , pack uhyper() , and
pack hyper() .

pack float (value)
Packs the single-precision floating point numbervalue.

pack double (value)
Packs the double-precision floating point numbervalue.

The following methods support packing strings, bytes, and opaque data:

pack fstring (n, s)
Packs a fixed length string,s. n is the length of the string but it isnot packed into the data buffer. The string is
padded with null bytes if necessary to guaranteed 4 byte alignment.

pack fopaque (n, data)
Packs a fixed length opaque data stream, similarly topack fstring() .

pack string (s)
Packs a variable length string,s. The length of the string is first packed as an unsigned integer, then the string

12.9. xdrlib — Encode and decode XDR data 341

data is packed withpack fstring() .

pack opaque (data)
Packs a variable length opaque data string, similarly topack string() .

pack bytes (bytes)
Packs a variable length byte stream, similarly topack string() .

The following methods support packing arrays and lists:

pack list (list, pack item)
Packs alist of homogeneous items. This method is useful for lists with an indeterminate size; i.e. the size is not
available until the entire list has been walked. For each item in the list, an unsigned integer1 is packed first,
followed by the data value from the list.pack item is the function that is called to pack the individual item. At
the end of the list, an unsigned integer0 is packed.

For example, to pack a list of integers, the code might appear like this:

import xdrlib
p = xdrlib.Packer()
p.pack_list([1, 2, 3], p.pack_int)

pack farray (n, array, pack item)
Packs a fixed length list (array) of homogeneous items.n is the length of the list; it isnotpacked into the buffer,
but aValueError exception is raised iflen(array) is not equal ton. As above,pack item is the function
used to pack each element.

pack array (list, pack item)
Packs a variable lengthlist of homogeneous items. First, the length of the list is packed as an unsigned integer,
then each element is packed as inpack farray() above.

12.9.2 Unpacker Objects

TheUnpacker class offers the following methods:

reset (data)
Resets the string buffer with the givendata.

get position ()
Returns the current unpack position in the data buffer.

set position (position)
Sets the data buffer unpack position toposition. You should be careful about usingget position() and
set position() .

get buffer ()
Returns the current unpack data buffer as a string.

done ()
Indicates unpack completion. Raises anError exception if all of the data has not been unpacked.

In addition, every data type that can be packed with aPacker , can be unpacked with anUnpacker . Unpacking
methods are of the formunpack type() , and take no arguments. They return the unpacked object.

unpack float ()
Unpacks a single-precision floating point number.

unpack double ()
Unpacks a double-precision floating point number, similarly tounpack float() .

In addition, the following methods unpack strings, bytes, and opaque data:

342 Chapter 12. Internet Data Handling

unpack fstring (n)
Unpacks and returns a fixed length string.n is the number of characters expected. Padding with null bytes to
guaranteed 4 byte alignment is assumed.

unpack fopaque (n)
Unpacks and returns a fixed length opaque data stream, similarly tounpack fstring() .

unpack string ()
Unpacks and returns a variable length string. The length of the string is first unpacked as an unsigned integer,
then the string data is unpacked withunpack fstring() .

unpack opaque ()
Unpacks and returns a variable length opaque data string, similarly tounpack string() .

unpack bytes ()
Unpacks and returns a variable length byte stream, similarly tounpack string() .

The following methods support unpacking arrays and lists:

unpack list (unpack item)
Unpacks and returns a list of homogeneous items. The list is unpacked one element at a time by first unpacking
an unsigned integer flag. If the flag is1, then the item is unpacked and appended to the list. A flag of0 indicates
the end of the list.unpack item is the function that is called to unpack the items.

unpack farray (n, unpack item)
Unpacks and returns (as a list) a fixed length array of homogeneous items.n is number of list elements to expect
in the buffer. As above,unpack item is the function used to unpack each element.

unpack array (unpack item)
Unpacks and returns a variable lengthlist of homogeneous items. First, the length of the list is unpacked as an
unsigned integer, then each element is unpacked as inunpack farray() above.

12.9.3 Exceptions

Exceptions in this module are coded as class instances:

exceptionError
The base exception class.Error has a single public data membermsg containing the description of the error.

exceptionConversionError
Class derived fromError . Contains no additional instance variables.

Here is an example of how you would catch one of these exceptions:

import xdrlib
p = xdrlib.Packer()
try:

p.pack_double(8.01)
except xdrlib.ConversionError, instance:

print ’packing the double failed:’, instance.msg

12.10 mailcap — Mailcap file handling.

Mailcap files are used to configure how MIME-aware applications such as mail readers and Web browsers react to
files with different MIME types. (The name “mailcap” is derived from the phrase “mail capability”.) For example, a
mailcap file might contain a line like ‘video/mpeg; xmpeg %s ’. Then, if the user encounters an email message

12.10. mailcap — Mailcap file handling. 343

or Web document with the MIME typevideo/mpeg, ‘%s’ will be replaced by a filename (usually one belonging to a
temporary file) and thexmpegprogram can be automatically started to view the file.

The mailcap format is documented in RFC 1524, “A User Agent Configuration Mechanism For Multimedia Mail
Format Information,” but is not an Internet standard. However, mailcap files are supported on most UNIX systems.

findmatch (caps, MIMEtype[, key[, filename[, plist]]])
Return a 2-tuple; the first element is a string containing the command line to be executed (which can be passed
to os.system()), and the second element is the mailcap entry for a given MIME type. If no matching MIME
type can be found,(None, None) is returned.

key is the name of the field desired, which represents the type of activity to be performed; the default value
is ’view’, since in the most common case you simply want to view the body of the MIME-typed data. Other
possible values might be ’compose’ and ’edit’, if you wanted to create a new body of the given MIME type or
alter the existing body data. See RFC 1524 for a complete list of these fields.

filenameis the filename to be substituted for ‘%s’ in the command line; the default value is’/dev/null’
which is almost certainly not what you want, so usually you’ll override it by specifying a filename.

plist can be a list containing named parameters; the default value is simply an empty list. Each entry in the list
must be a string containing the parameter name, an equals sign (=), and the parameter’s value. Mailcap entries
can contain named parameters like%{foo} , which will be replaced by the value of the parameter named ’foo’.
For example, if the command line ‘showpartial %{id} %{number} %{total} ’ was in a mailcap
file, andplist was set to[’id=1’, ’number=2’, ’total=3’] , the resulting command line would be
"showpartial 1 2 3" .

In a mailcap file, the ”test” field can optionally be specified to test some external condition (e.g., the machine
architecture, or the window system in use) to determine whether or not the mailcap line applies.findmatch()
will automatically check such conditions and skip the entry if the check fails.

getcaps ()
Returns a dictionary mapping MIME types to a list of mailcap file entries. This dictionary must be passed to the
findmatch() function. An entry is stored as a list of dictionaries, but it shouldn’t be necessary to know the
details of this representation.

The information is derived from all of the mailcap files found on the system. Settings in the user’s mailcap
file ‘$HOME/.mailcap’ will override settings in the system mailcap files ‘/etc/mailcap’, ‘ /usr/etc/mailcap’, and
‘ /usr/local/etc/mailcap’.

An example usage:

>>> import mailcap
>>> d=mailcap.getcaps()
>>> mailcap.findmatch(d, ’video/mpeg’, filename=’/tmp/tmp1223’)
(’xmpeg /tmp/tmp1223’, {’view’: ’xmpeg %s’})

12.11 mimetypes — Map filenames to MIME types

Themimetypes converts between a filename or URL and the MIME type associated with the filename extension.
Conversions are provided from filename to MIME type and from MIME type to filename extension; encodings are not
supported for the later conversion.

The functions described below provide the primary interface for this module. If the module has not been initialized,
they will call init() .

guess type (filename)
Guess the type of a file based on its filename or URL, given byfilename. The return value is a tuple(type,

344 Chapter 12. Internet Data Handling

encoding) where type is None if the type can’t be guessed (no or unknown suffix) or a string of the form
’ type/ subtype’ , usable for a MIMEcontent-type header; and encoding isNone for no encoding or the
name of the program used to encode (e.g.compressor gzip). The encoding is suitable for use as acontent-
encoding header,not as acontent-transfer-encoding header. The mappings are table driven. En-
coding suffixes are case sensitive; type suffixes are first tried case sensitive, then case insensitive.

guess extension (type)
Guess the extension for a file based on its MIME type, given bytype. The return value is a string giving a
filename extension, including the leading dot (‘. ’). The extension is not guaranteed to have been associated
with any particular data stream, but would be mapped to the MIME typetype by guess type() . If no
extension can be guessed fortype, None is returned.

Some additional functions and data items are available for controlling the behavior of the module.

init ([files])
Initialize the internal data structures. If given,filesmust be a sequence of file names which should be used to
augment the default type map. If omitted, the file names to use are taken fromknownfiles . Each file named
in filesor knownfiles takes precedence over those named before it. Callinginit() repeatedly is allowed.

read mime types (filename)
Load the type map given in the filefilename, if it exists. The type map is returned as a dictionary mapping
filename extensions, including the leading dot (‘. ’), to strings of the form’ type/ subtype’ . If the file filename
does not exist or cannot be read,None is returned.

inited
Flag indicating whether or not the global data structures have been initialized. This is set to true byinit() .

knownfiles
List of type map file names commonly installed. These files are typically named ‘mime.types’ and are installed
in different locations by different packages.

suffix map
Dictionary mapping suffixes to suffixes. This is used to allow recognition of encoded files for which the encoding
and the type are indicated by the same extension. For example, the ‘.tgz’ extension is mapped to ‘.tar.gz’ to allow
the encoding and type to be recognized separately.

encodings map
Dictionary mapping filename extensions to encoding types.

types map
Dictionary mapping filename extensions to MIME types.

12.12 base64 — Encode and decode MIME base64 data

This module performs base64 encoding and decoding of arbitrary binary strings into text strings that can be safely
emailed or posted. The encoding scheme is defined in RFC 1521 (MIME (Multipurpose Internet Mail Extensions)
Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies, section 5.2, “Base64
Content-Transfer-Encoding”) and is used for MIME email and various other Internet-related applications; it is not the
same as the output produced by theuuencodeprogram. For example, the string’www.python.org’ is encoded
as the string’d3d3LnB5dGhvbi5vcmc=\n’ .

decode (input, output)
Decode the contents of theinput file and write the resulting binary data to theoutput file. input andoutput
must either be file objects or objects that mimic the file object interface.input will be read untilinput.read()
returns an empty string.

decodestring (s)
Decode the strings, which must contain one or more lines of base64 encoded data, and return a string containing

12.12. base64 — Encode and decode MIME base64 data 345

the resulting binary data.

encode (input, output)
Encode the contents of theinput file and write the resulting base64 encoded data to theoutput file. input
andoutputmust either be file objects or objects that mimic the file object interface.input will be read until
input.read() returns an empty string.

encodestring (s)
Encode the strings, which can contain arbitrary binary data, and return a string containing one or more lines of
base64 encoded data.

See Also:

Modulebinascii (section 12.8):
Support module containingASCII-to-binary and binary-to-ASCII conversions.

RFC 1521, “MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for Specifying and Describing the Format of Internet Message Bodies”
Section 5.2, “Base64 Content-Transfer-Encoding,” provides the definition of the base64 encoding.

12.13 quopri — Encode and decode MIME quoted-printable data

This module performs quoted-printable transport encoding and decoding, as defined in RFC 1521: “MIME (Mul-
tipurpose Internet Mail Extensions) Part One”. The quoted-printable encoding is designed for data where there are
relatively few nonprintable characters; the base64 encoding scheme available via thebase64 module is more compact
if there are many such characters, as when sending a graphics file.

decode (input, output)
Decode the contents of theinput file and write the resulting decoded binary data to theoutput file. input
andoutputmust either be file objects or objects that mimic the file object interface.input will be read until
input.read() returns an empty string.

encode (input, output, quotetabs)
Encode the contents of theinput file and write the resulting quoted-printable data to theoutput file. input
andoutputmust either be file objects or objects that mimic the file object interface.input will be read until
input.read() returns an empty string.

See Also:

Modulemimify (section 12.16):
General utilities for processing of MIME messages.

12.14 mailbox — Read various mailbox formats

This module defines a number of classes that allow easy and uniform access to mail messages in a (UNIX) mailbox.

classUnixMailbox (fp[, factory])
Access to a classic UNIX -style mailbox, where all messages are contained in a single file and separated by
‘From ’ (a.k.a. ‘From ’) lines. The file objectfp points to the mailbox file. The optionalfactoryparameter
is a callable that should create new message objects.factory is called with one argument,fp by thenext()
method of the mailbox object. The default is therfc822.Message class (see therfc822 module).

For maximum portability, messages in a UNIX -style mailbox are separated by any line that begins exactly
with the string’From ’ (note the trailing space) if preceded by exactly two newlines. Because of the wide-
range of variations in practice, nothing else on the Fromline should be considered. However, the current
implementation doesn’t check for the leading two newlines. This is usually fine for most applications.

TheUnixMailbox class implements a more strict version of Fromline checking, using a regular expression
that usually correctly matched Fromdelimiters. It considers delimiter line to be separated by ‘From name

346 Chapter 12. Internet Data Handling

time’ lines. For maximum portability, use thePortableUnixMailbox class instead. This class is identical
to UnixMailbox except that individual messages are separated by only ‘From ’ lines.

For more information, seeConfiguring Netscape Mail onUNIX : Why the Content-Length Format is Bad.

classPortableUnixMailbox (fp[, factory])
A less-strict version ofUnixMailbox , which considers only the ‘From ’ at the beginning of the line sepa-
rating messages. The “name time” portion of the From line is ignored, to protect against some variations that
are observed in practice. This works since lines in the message which begin with’From ’ are quoted by mail
handling software well before delivery.

classMmdfMailbox (fp[, factory])
Access an MMDF-style mailbox, where all messages are contained in a single file and separated by lines con-
sisting of 4 control-A characters. The file objectfp points to the mailbox file. Optionalfactory is as with the
UnixMailbox class.

classMHMailbox (dirname[, factory])
Access an MH mailbox, a directory with each message in a separate file with a numeric name. The name of the
mailbox directory is passed indirname. factory is as with theUnixMailbox class.

classMaildir (dirname[, factory])
Access a Qmail mail directory. All new and current mail for the mailbox specified bydirnameis made available.
factory is as with theUnixMailbox class.

classBabylMailbox (fp[, factory])
Access a Babyl mailbox, which is similar to an MMDF mailbox. In Babyl format, each message has two sets
of headers, theoriginal headers and thevisible headers. The original headers appear before a a line contain-
ing only ’*** EOOH ***’ (End-Of-Original-Headers) and the visible headers appear after theEOOHline.
Babyl-compliant mail readers will show you only the visible headers, andBabylMailbox objects will return
messages containing only the visible headers. You’ll have to do your own parsing of the mailbox file to get at the
original headers. Mail messages start with the EOOH line and end with a line containing only’\037\014’ .
factory is as with theUnixMailbox class.

12.14.1 Mailbox Objects

All implementations of Mailbox objects have one externally visible method:

next ()
Return the next message in the mailbox, created with the optionalfactory argument passed into the mailbox
object’s constructor. By defaul this is anrfc822.Message object (see therfc822 module). Depending on
the mailbox implementation thefp attribute of this object may be a true file object or a class instance simulating
a file object, taking care of things like message boundaries if multiple mail messages are contained in a single
file, etc. If no more messages are available, this method returnsNone.

12.15 mhlib — Access to MH mailboxes

Themhlib module provides a Python interface to MH folders and their contents.

The module contains three basic classes,MH, which represents a particular collection of folders,Folder , which
represents a single folder, andMessage , which represents a single message.

classMH([path[, profile]])
MHrepresents a collection of MH folders.

classFolder (mh, name)
TheFolder class represents a single folder and its messages.

12.15. mhlib — Access to MH mailboxes 347

classMessage (folder, number[, name])
Message objects represent individual messages in a folder. The Message class is derived frommime-
tools.Message .

12.15.1 MH Objects

MHinstances have the following methods:

error (format[, ...])
Print an error message – can be overridden.

getprofile (key)
Return a profile entry (None if not set).

getpath ()
Return the mailbox pathname.

getcontext ()
Return the current folder name.

setcontext (name)
Set the current folder name.

listfolders ()
Return a list of top-level folders.

listallfolders ()
Return a list of all folders.

listsubfolders (name)
Return a list of direct subfolders of the given folder.

listallsubfolders (name)
Return a list of all subfolders of the given folder.

makefolder (name)
Create a new folder.

deletefolder (name)
Delete a folder – must have no subfolders.

openfolder (name)
Return a new open folder object.

12.15.2 Folder Objects

Folder instances represent open folders and have the following methods:

error (format[, ...])
Print an error message – can be overridden.

getfullname ()
Return the folder’s full pathname.

getsequencesfilename ()
Return the full pathname of the folder’s sequences file.

getmessagefilename (n)
Return the full pathname of messagen of the folder.

listmessages ()

348 Chapter 12. Internet Data Handling

Return a list of messages in the folder (as numbers).

getcurrent ()
Return the current message number.

setcurrent (n)
Set the current message number ton.

parsesequence (seq)
Parse msgs syntax into list of messages.

getlast ()
Get last message, or0 if no messages are in the folder.

setlast (n)
Set last message (internal use only).

getsequences ()
Return dictionary of sequences in folder. The sequence names are used as keys, and the values are the lists of
message numbers in the sequences.

putsequences (dict)
Return dictionary of sequences in folder name: list.

removemessages (list)
Remove messages in list from folder.

refilemessages (list, tofolder)
Move messages in list to other folder.

movemessage(n, tofolder, ton)
Move one message to a given destination in another folder.

copymessage (n, tofolder, ton)
Copy one message to a given destination in another folder.

12.15.3 Message Objects

TheMessage class adds one method to those ofmimetools.Message :

openmessage (n)
Return a new open message object (costs a file descriptor).

12.16 mimify — MIME processing of mail messages

The mimify module defines two functions to convert mail messages to and from MIME format. The mail message
can be either a simple message or a so-called multipart message. Each part is treated separately. Mimifying (a part
of) a message entails encoding the message as quoted-printable if it contains any characters that cannot be represented
using 7-bitASCII. Unmimifying (a part of) a message entails undoing the quoted-printable encoding. Mimify and
unmimify are especially useful when a message has to be edited before being sent. Typical use would be:

unmimify message
edit message
mimify message
send message

The modules defines the following user-callable functions and user-settable variables:

12.16. mimify — MIME processing of mail messages 349

mimify (infile, outfile)
Copy the message ininfile to outfile, converting parts to quoted-printable and adding MIME mail headers when
necessary.infile andoutfilecan be file objects (actually, any object that has areadline() method (forinfile)
or awrite() method (foroutfile)) or strings naming the files. Ifinfile andoutfileare both strings, they may
have the same value.

unmimify (infile, outfile[, decodebase64])
Copy the message ininfile to outfile, decoding all quoted-printable parts.infile andoutfile can be file objects
(actually, any object that has areadline() method (forinfile) or awrite() method (foroutfile)) or strings
naming the files. Ifinfile andoutfile are both strings, they may have the same value. If thedecode base64
argument is provided and tests true, any parts that are coded in the base64 encoding are decoded as well.

mime decode header (line)
Return a decoded version of the encoded header line inline.

mime encode header (line)
Return a MIME-encoded version of the header line inline.

MAXLEN
By default, a part will be encoded as quoted-printable when it contains any non-ASCII characters (i.e., characters
with the 8th bit set), or if there are any lines longer thanMAXLENcharacters (default value 200).

CHARSET
When not specified in the mail headers, a character set must be filled in. The string used is stored inCHARSET,
and the default value is ISO-8859-1 (also known as Latin1 (latin-one)).

This module can also be used from the command line. Usage is as follows:

mimify.py -e [-l length] [infile [outfile]]
mimify.py -d [-b] [infile [outfile]]

to encode (mimify) and decode (unmimify) respectively.infile defaults to standard input,outfiledefaults to standard
output. The same file can be specified for input and output.

If the -l option is given when encoding, if there are any lines longer than the specifiedlength, the containing part will
be encoded.

If the -b option is given when decoding, any base64 parts will be decoded as well.

See Also:

Modulequopri (section 12.13):
Encode and decode MIME quoted-printable files.

12.17 netrc — netrc file processing

New in version 1.5.2.

Thenetrc class parses and encapsulates the netrc file format used by the UNIX ftp program and other FTP clients.

classnetrc ([file])
A netrc instance or subclass instance encapsulates data from a netrc file. The initialization argument, if
present, specifies the file to parse. If no argument is given, the file ‘.netrc’ in the user’s home directory will
be read. Parse errors will raiseNetrcParseError with diagnostic information including the file name, line
number, and terminating token.

exceptionNetrcParseError
Exception raised by thenetrc class when syntactical errors are encountered in source text. Instances of this

350 Chapter 12. Internet Data Handling

exception provide three interesting attributes:msg is a textual explanation of the error,filename is the name
of the source file, andlineno gives the line number on which the error was found.

12.17.1 netrc Objects

A netrc instance has the following methods:

authenticators (host)
Return a 3-tuple(login, account, password) of authenticators forhost. If the netrc file did not contain an
entry for the given host, return the tuple associated with the ‘default’ entry. If neither matching host nor default
entry is available, returnNone.

repr ()
Dump the class data as a string in the format of a netrc file. (This discards comments and may reorder the
entries.)

Instances ofnetrc have public instance variables:

hosts
Dictionary mapping host names to(login, account, password) tuples. The ‘default’ entry, if any, is repre-
sented as a pseudo-host by that name.

macros
Dictionary mapping macro names to string lists.

12.18 robotparser — Parser for robots.txt

This module provides a single class,RobotFileParser , which answers questions about whether or not a particular
user agent can fetch a URL on the web site that published the ‘robots.txt’ file. For more details on the structure of
‘ robots.txt’ files, seehttp://info.webcrawler.com/mak/projects/robots/norobots.html.

classRobotFileParser ()
This class provides a set of methods to read, parse and answer questions about a single ‘robots.txt’ file.

set url (url)
Sets the URL referring to a ‘robots.txt’ file.

read ()
Reads the ‘robots.txt’ URL and feeds it to the parser.

parse (lines)
Parses the lines argument.

can fetch (useragent, url)
Returns true if theuseragentis allowed to fetch theurl according to the rules contained in the parsed
‘ robots.txt’ file.

mtime ()
Returns the time therobots.txt file was last fetched. This is useful for long-running web spiders that
need to check for newrobots.txt files periodically.

modified ()
Sets the time therobots.txt file was last fetched to the current time.

The following example demonstrates basic use of the RobotFileParser class.

12.18. robotparser — Parser for robots.txt 351

>>> import robotparser
>>> rp = robotparser.RobotFileParser()
>>> rp.set_url("http://www.musi-cal.com/robots.txt")
>>> rp.read()
>>> rp.can_fetch("*", "http://www.musi-cal.com/cgi-bin/search?city=San+Francisco")
0
>>> rp.can_fetch("*", "http://www.musi-cal.com/")
1

352 Chapter 12. Internet Data Handling

CHAPTER

THIRTEEN

Structured Markup Processing Tools

Python supports a variety of modules to work with various forms of structured data markup. This includes modules to
work with the Standard Generalized Markup Language (SGML) and the Hypertext Markup Language (HTML), and
several interfaces for working with the Extensible Markup Language (XML).

sgmllib Only as much of an SGML parser as needed to parse HTML.
htmllib A parser for HTML documents.
htmlentitydefs Definitions of HTML general entities.
xml.parsers.expat An interface to the Expat non-validating XML parser.
xml.dom Document Object Model API for Python.
xml.dom.minidom Lightweight Document Object Model (DOM) implementation.
xml.dom.pulldom Support for building partial DOM trees from SAX events.
xml.sax Package containing SAX2 base classes and convenience functions.
xml.sax.handler Base classes for SAX event handlers.
xml.sax.saxutils Convenience functions and classes for use with SAX.
xml.sax.xmlreader Interface which SAX-compliant XML parsers must implement.
xmllib A parser for XML documents.

13.1 sgmllib — Simple SGML parser

This module defines a classSGMLParser which serves as the basis for parsing text files formatted in SGML (Stan-
dard Generalized Mark-up Language). In fact, it does not provide a full SGML parser — it only parses SGML insofar
as it is used by HTML, and the module only exists as a base for thehtmllib module.

classSGMLParser ()
TheSGMLParser class is instantiated without arguments. The parser is hardcoded to recognize the following
constructs:

•Opening and closing tags of the form ‘<tag attr=" value" ...> ’ and ‘</ tag>’, respectively.

•Numeric character references of the form ‘&#name; ’.

•Entity references of the form ‘&name; ’.

•SGML comments of the form ‘<!-- text--> ’. Note that spaces, tabs, and newlines are allowed between
the trailing ‘>’ and the immediately preceding ‘-- ’.

SGMLParser instances have the following interface methods:

reset ()
Reset the instance. Loses all unprocessed data. This is called implicitly at instantiation time.

setnomoretags ()
Stop processing tags. Treat all following input as literal input (CDATA). (This is only provided so the HTML

353

tag<PLAINTEXT> can be implemented.)

setliteral ()
Enter literal mode (CDATA mode).

feed (data)
Feed some text to the parser. It is processed insofar as it consists of complete elements; incomplete data is
buffered until more data is fed orclose() is called.

close ()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be redefined
by a derived class to define additional processing at the end of the input, but the redefined version should always
call close() .

get starttag text ()
Return the text of the most recently opened start tag. This should not normally be needed for structured process-
ing, but may be useful in dealing with HTML “as deployed” or for re-generating input with minimal changes
(whitespace between attributes can be preserved, etc.).

handle starttag (tag, method, attributes)
This method is called to handle start tags for which either astart tag() or do tag() method has been
defined. Thetag argument is the name of the tag converted to lower case, and themethodargument is the
bound method which should be used to support semantic interpretation of the start tag. Theattributesar-
gument is a list of(name, value) pairs containing the attributes found inside the tag’s<> brackets. The
namehas been translated to lower case and double quotes and backslashes in thevalue have been inter-
preted. For instance, for the tag , this method would be called as
‘unknown starttag(’a’, [(’href’, ’http://www.cwi.nl/’)]) ’. The base implementation
simply callsmethodwith attributesas the only argument.

handle endtag (tag, method)
This method is called to handle endtags for which anend tag() method has been defined. Thetag argument
is the name of the tag converted to lower case, and themethodargument is the bound method which should
be used to support semantic interpretation of the end tag. If noend tag() method is defined for the closing
element, this handler is not called. The base implementation simply callsmethod.

handle data (data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base class
implementation does nothing.

handle charref (ref)
This method is called to process a character reference of the form ‘&#ref ; ’. In the base implementa-
tion, ref must be a decimal number in the range 0-255. It translates the character toASCII and calls the
methodhandle data() with the character as argument. Ifref is invalid or out of range, the methodun-
known charref(ref) is called to handle the error. A subclass must override this method to provide support
for named character entities.

handle entityref (ref)
This method is called to process a general entity reference of the form ‘&ref ; ’ where ref is an general entity
reference. It looks forref in the instance (or class) variableentitydefs which should be a mapping from
entity names to corresponding translations. If a translation is found, it calls the methodhandle data()
with the translation; otherwise, it calls the methodunknown entityref(ref) . The defaultentitydefs
defines translations for& , &apos , > , < , and" .

handle comment(comment)
This method is called when a comment is encountered. Thecommentargument is a string containing the text
between the ‘<!-- ’ and ‘--> ’ delimiters, but not the delimiters themselves. For example, the comment ‘<!-
-text--> ’ will cause this method to be called with the argument’text’ . The default method does nothing.

handle decl (data)
Method called when an SGML declaration is read by the parser. In practice, theDOCTYPEdeclaration is the

354 Chapter 13. Structured Markup Processing Tools

only thing observed in HTML, but the parser does not discriminate among different (or broken) declarations.
Internal subsets in aDOCTYPEdeclaration are not supported. Thedataparameter will be the entire contents of
the declaration inside the<! ...> markup. The default implementation does nothing.

report unbalanced (tag)
This method is called when an end tag is found which does not correspond to any open element.

unknown starttag (tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown endtag (tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived class; the base
class implementation does nothing.

unknown charref (ref)
This method is called to process unresolvable numeric character references. Refer tohandle charref()
to determine what is handled by default. It is intended to be overridden by a derived class; the base class
implementation does nothing.

unknown entityref (ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived class;
the base class implementation does nothing.

Apart from overriding or extending the methods listed above, derived classes may also define methods of the following
form to define processing of specific tags. Tag names in the input stream are case independent; thetag occurring in
method names must be in lower case:

start tag(attributes)
This method is called to process an opening tagtag. It has preference overdo tag() . Theattributesargument
has the same meaning as described forhandle starttag() above.

do tag(attributes)
This method is called to process an opening tagtag that does not come with a matching closing tag. The
attributesargument has the same meaning as described forhandle starttag() above.

end tag()
This method is called to process a closing tagtag.

Note that the parser maintains a stack of open elements for which no end tag has been found yet. Only tags processed
by start tag() are pushed on this stack. Definition of anend tag() method is optional for these tags. For tags
processed bydo tag() or by unknown tag() , noend tag() method must be defined; if defined, it will not be
used. If bothstart tag() anddo tag() methods exist for a tag, thestart tag() method takes precedence.

13.2 htmllib — A parser for HTML documents

This module defines a class which can serve as a base for parsing text files formatted in the HyperText Mark-up
Language (HTML). The class is not directly concerned with I/O — it must be provided with input in string form via
a method, and makes calls to methods of a “formatter” object in order to produce output. TheHTMLParser class is
designed to be used as a base class for other classes in order to add functionality, and allows most of its methods to
be extended or overridden. In turn, this class is derived from and extends theSGMLParser class defined in module
sgmllib . TheHTMLParser implementation supports the HTML 2.0 language as described in RFC 1866. Two
implementations of formatter objects are provided in theformatter module; refer to the documentation for that
module for information on the formatter interface.

The following is a summary of the interface defined bysgmllib.SGMLParser :

13.2. htmllib — A parser for HTML documents 355

• The interface to feed data to an instance is through thefeed() method, which takes a string argument. This can
be called with as little or as much text at a time as desired; ‘p.feed(a); p.feed(b) ’ has the same effect as
‘p.feed(a+b) ’. When the data contains complete HTML tags, these are processed immediately; incomplete
elements are saved in a buffer. To force processing of all unprocessed data, call theclose() method.

For example, to parse the entire contents of a file, use:

parser.feed(open(’myfile.html’).read())
parser.close()

• The interface to define semantics for HTML tags is very simple: derive a class and define methods called
start tag() , end tag() , or do tag() . The parser will call these at appropriate moments:start tag or
do tag() is called when an opening tag of the form<tag ...> is encountered;end tag() is called when a
closing tag of the form<tag> is encountered. If an opening tag requires a corresponding closing tag, like<H1>
... </H1> , the class should define thestart tag() method; if a tag requires no closing tag, like<P>, the
class should define thedo tag() method.

The module defines a single class:

classHTMLParser (formatter)
This is the basic HTML parser class. It supports all entity names required by the HTML 2.0 specification (RFC
1866). It also defines handlers for all HTML 2.0 and many HTML 3.0 and 3.2 elements.

See Also:

Modulehtmlentitydefs (section 13.3):
Definition of replacement text for HTML 2.0 entities.

Modulesgmllib (section 13.1):
Base class forHTMLParser .

13.2.1 HTMLParser Objects

In addition to tag methods, theHTMLParser class provides some additional methods and instance variables for use
within tag methods.

formatter
This is the formatter instance associated with the parser.

nofill
Boolean flag which should be true when whitespace should not be collapsed, or false when it should be. In
general, this should only be true when character data is to be treated as “preformatted” text, as within a<PRE>
element. The default value is false. This affects the operation ofhandle data() andsave end() .

anchor bgn (href, name, type)
This method is called at the start of an anchor region. The arguments correspond to the attributes of the<A> tag
with the same names. The default implementation maintains a list of hyperlinks (defined by theHREFattribute
for <A> tags) within the document. The list of hyperlinks is available as the data attributeanchorlist .

anchor end ()
This method is called at the end of an anchor region. The default implementation adds a textual footnote marker
using an index into the list of hyperlinks created byanchor bgn() .

handle image (source, alt[, ismap[, align[, width[, height]]]])
This method is called to handle images. The default implementation simply passes thealt value to thehan-
dle data() method.

356 Chapter 13. Structured Markup Processing Tools

save bgn ()
Begins saving character data in a buffer instead of sending it to the formatter object. Retrieve the stored data via
save end() . Use of thesave bgn() / save end() pair may not be nested.

save end ()
Ends buffering character data and returns all data saved since the preceding call tosave bgn() . If the
nofill flag is false, whitespace is collapsed to single spaces. A call to this method without a preceding call to
save bgn() will raise aTypeError exception.

13.3 htmlentitydefs — Definitions of HTML general entities

This module defines a single dictionary,entitydefs , which is used by thehtmllib module to provide theenti-
tydefs member of theHTMLParser class. The definition provided here contains all the entities defined by HTML
2.0 that can be handled using simple textual substitution in the Latin-1 character set (ISO-8859-1).

entitydefs
A dictionary mapping HTML 2.0 entity definitions to their replacement text in ISO Latin-1.

13.4 xml.parsers.expat — Fast XML parsing using Expat

New in version 2.0.

Thexml.parsers.expat module is a Python interface to the Expat non-validating XML parser. The module pro-
vides a single extension type,xmlparser , that represents the current state of an XML parser. After anxmlparser
object has been created, various attributes of the object can be set to handler functions. When an XML document is
then fed to the parser, the handler functions are called for the character data and markup in the XML document.

This module uses thepyexpat module to provide access to the Expat parser. Direct use of thepyexpat module is
deprecated.

This module provides one exception and one type object:

exceptionExpatError
The exception raised when Expat reports an error.

exceptionerror
Alias for ExpatError .

XMLParserType
The type of the return values from theParserCreate() function.

Thexml.parsers.expat module contains two functions:

ErrorString (errno)
Returns an explanatory string for a given error numbererrno.

ParserCreate ([encoding[, namespaceseparator]])
Creates and returns a newxmlparser object.encoding, if specified, must be a string naming the encoding used
by the XML data. Expat doesn’t support as many encodings as Python does, and its repertoire of encodings can’t
be extended; it supports UTF-8, UTF-16, ISO-8859-1 (Latin1), and ASCII. Ifencodingis given it will override
the implicit or explicit encoding of the document.

Expat can optionally do XML namespace processing for you, enabled by providing a value fornames-
pace separator. The value must be a one-character string; aValueError will be raised if the string has
an illegal length (None is considered the same as omission). When namespace processing is enabled, element
type names and attribute names that belong to a namespace will be expanded. The element name passed to the
element handlersStartElementHandler andEndElementHandler will be the concatenation of the

13.3. htmlentitydefs — Definitions of HTML general entities 357

namespace URI, the namespace separator character, and the local part of the name. If the namespace separator
is a zero byte (chr(0)) then the namespace URI and the local part will be concatenated without any separator.

For example, ifnamespaceseparatoris set to a space character (‘ ’) and the following document is parsed:

<?xml version="1.0"?>
<root xmlns = "http://default-namespace.org/"

xmlns:py = "http://www.python.org/ns/">
<py:elem1 />
<elem2 xmlns="" />

</root>

StartElementHandler will receive the following strings for each element:

http://default-namespace.org/ root
http://www.python.org/ns/ elem1
elem2

13.4.1 XMLParser Objects

xmlparser objects have the following methods:

Parse (data[, isfinal])
Parses the contents of the stringdata, calling the appropriate handler functions to process the parsed data.isfinal
must be true on the final call to this method.datacan be the empty string at any time.

ParseFile (file)
Parse XML data reading from the objectfile. file only needs to provide theread(nbytes) method, returning
the empty string when there’s no more data.

SetBase (base)
Sets the base to be used for resolving relative URIs in system identifiers in declarations. Resolving relative iden-
tifiers is left to the application: this value will be passed through as thebaseargument to theExternalEn-
tityRefHandler , NotationDeclHandler , andUnparsedEntityDeclHandler functions.

GetBase ()
Returns a string containing the base set by a previous call toSetBase() , or None if SetBase() hasn’t been
called.

GetInputContext ()
Returns the input data that generated the current event as a string. The data is in the encoding of the entity which
contains the text. When called while an event handler is not active, the return value isNone. New in version
2.1.

ExternalEntityParserCreate (context[, encoding])
Create a “child” parser which can be used to parse an external parsed entity referred to by content parsed by
the parent parser. Thecontextparameter should be the string passed to theExternalEntityRefHan-
dler() handler function, described below. The child parser is created with theordered attributes ,
returns unicode andspecified attributes set to the values of this parser.

xmlparser objects have the following attributes:

ordered attributes
Setting this attribute to a non-zero integer causes the attributes to be reported as a list rather than a dictionary.
The attributes are presented in the order found in the document text. For each attribute, two list entries are
presented: the attribute name and the attribute value. (Older versions of this module also used this format.) By
default, this attribute is false; it may be changed at any time. New in version 2.1.

358 Chapter 13. Structured Markup Processing Tools

returns unicode
If this attribute is set to a non-zero integer, the handler functions will be passed Unicode strings. Ifre-
turns unicode is 0, 8-bit strings containing UTF-8 encoded data will be passed to the handlers. Changed
in version 1.6: Can be changed at any time to affect the result type..

specified attributes
If set to a non-zero integer, the parser will report only those attributes which were specified in the document
instance and not those which were derived from attribute declarations. Applications which set this need to be
especially careful to use what additional information is available from the declarations as needed to comply with
the standards for the behavior of XML processors. By default, this attribute is false; it may be changed at any
time. New in version 2.1.

The following attributes contain values relating to the most recent error encountered by anxmlparser
object, and will only have correct values once a call toParse() or ParseFile() has raised a
xml.parsers.expat.ExpatError exception.

ErrorByteIndex
Byte index at which an error occurred.

ErrorCode
Numeric code specifying the problem. This value can be passed to theErrorString() function, or compared
to one of the constants defined in theerrors object.

ErrorColumnNumber
Column number at which an error occurred.

ErrorLineNumber
Line number at which an error occurred.

Here is the list of handlers that can be set. To set a handler on anxmlparser objecto, useo. handlername= func.
handlernamemust be taken from the following list, andfuncmust be a callable object accepting the correct number
of arguments. The arguments are all strings, unless otherwise stated.

XmlDeclHandler (version, encoding, standalone)
Called when the XML declaration is parsed. The XML declaration is the (optional) declaration of the appli-
cable version of the XML recommendation, the encoding of the document text, and an optional “standalone”
declaration.versionandencodingwill be strings of the type dictated by thereturns unicode attribute, and
standalonewill be 1 if the document is declared standalone,0 if it is declared not to be standalone, or-1 if the
standalone clause was omitted. This is only available with Expat version 1.95.0 or newer. New in version 2.1.

StartDoctypeDeclHandler (doctypeName, systemId, publicId, hasinternal subset)
Called when Expat begins parsing the document type declaration (<!DOCTYPE ...). ThedoctypeNameis
provided exactly as presented. ThesystemIdandpublicId parameters give the system and public identifiers if
specified, orNone if omitted. has internal subsetwill be true if the document contains and internal document
declaration subset. This requires Expat version 1.2 or newer.

EndDoctypeDeclHandler ()
Called when Expat is done parsing the document type delaration. This requires Expat version 1.2 or newer.

ElementDeclHandler (name, model)
Called once for each element type declaration.nameis the name of the element type, andmodelis a represen-
tation of the content model.

AttlistDeclHandler (elname, attname, type, default, required)
Called for each declared attribute for an element type. If an attribute list declaration declares three attributes, this
handler is called three times, once for each attribute.elnameis the name of the element to which the declaration
applies andattnameis the name of the attribute declared. The attribute type is a string passed astype; the
possible values are’CDATA’ , ’ID’ , ’IDREF’ , ... defaultgives the default value for the attribute used when
the attribute is not specified by the document instance, orNone if there is no default value (#IMPLIED values).
If the attribute is required to be given in the document instance,required will be true. This requires Expat

13.4. xml.parsers.expat — Fast XML parsing using Expat 359

version 1.95.0 or newer.

StartElementHandler (name, attributes)
Called for the start of every element.nameis a string containing the element name, andattributesis a dictionary
mapping attribute names to their values.

EndElementHandler (name)
Called for the end of every element.

ProcessingInstructionHandler (target, data)
Called for every processing instruction.

CharacterDataHandler (data)
Called for character data. This will be called for normal character data, CDATA marked content, and ignorable
whitespace. Applications which must distinguish these cases can use theStartCdataSectionHandler ,
EndCdataSectionHandler , andElementDeclHandler callbacks to collect the required information.

UnparsedEntityDeclHandler (entityName, base, systemId, publicId, notationName)
Called for unparsed (NDATA) entity declarations. This is only present for version 1.2 of the Expat library; for
more recent versions, useEntityDeclHandler instead. (The underlying function in the Expat library has
been declared obsolete.)

EntityDeclHandler (entityName, isparameter entity, value, base, systemId, publicId, notationName)
Called for all entity declarations. For parameter and internal entities,valuewill be a string giving the declared
contents of the entity; this will beNone for external entities. ThenotationNameparameter will beNone for
parsed entities, and the name of the notation for unparsed entities.is parameter entitywill be true if the entity
is a paremeter entity or false for general entities (most applications only need to be concerned with general
entities). This is only available starting with version 1.95.0 of the Expat library. New in version 2.1.

NotationDeclHandler (notationName, base, systemId, publicId)
Called for notation declarations.notationName, base, andsystemId, andpublicId are strings if given. If the
public identifier is omitted,publicId will be None.

StartNamespaceDeclHandler (prefix, uri)
Called when an element contains a namespace declaration. Namespace declarations are processed before the
StartElementHandler is called for the element on which declarations are placed.

EndNamespaceDeclHandler (prefix)
Called when the closing tag is reached for an element that contained a namespace declaration. This is called
once for each namespace declaration on the element in the reverse of the order for which theStartNames-
paceDeclHandler was called to indicate the start of each namespace declaration’s scope. Calls to this
handler are made after the correspondingEndElementHandler for the end of the element.

CommentHandler (data)
Called for comments.data is the text of the comment, excluding the leading ‘<!-- ’ and trailing ‘--> ’.

StartCdataSectionHandler ()
Called at the start of a CDATA section. This andStartCdataSectionHandler are needed to be able to
identify the syntactical start and end for CDATA sections.

EndCdataSectionHandler ()
Called at the end of a CDATA section.

DefaultHandler (data)
Called for any characters in the XML document for which no applicable handler has been specified. This means
characters that are part of a construct which could be reported, but for which no handler has been supplied.

DefaultHandlerExpand (data)
This is the same as theDefaultHandler , but doesn’t inhibit expansion of internal entities. The entity
reference will not be passed to the default handler.

NotStandaloneHandler ()

360 Chapter 13. Structured Markup Processing Tools

Called if the XML document hasn’t been declared as being a standalone document. This happens when there is
an external subset or a reference to a parameter entity, but the XML declaration does not set standalone toyes in
an XML declaration. If this handler returns0, then the parser will throw anXML ERRORNOT STANDALONE
error. If this handler is not set, no exception is raised by the parser for this condition.

ExternalEntityRefHandler (context, base, systemId, publicId)
Called for references to external entities.baseis the current base, as set by a previous call toSetBase() . The
public and system identifiers,systemIdandpublicId, are strings if given; if the public identifier is not given,
publicId will be None. Thecontextvalue is opaque and should only be used as described below.

For external entities to be parsed, this handler must be implemented. It is responsible for creating the sub-
parser usingExternalEntityParserCreate(context) , initializing it with the appropriate callbacks,
and parsing the entity. This handler should return an integer; if it returns0, the parser will throw an
XML ERROREXTERNALENTITY HANDLINGerror, otherwise parsing will continue.

If this handler is not provided, external entities are reported by theDefaultHandler callback, if provided.

13.4.2 ExpatError Exceptions

ExpatError exceptions have a number of interesting attributes:

code
Expat’s internal error number for the specific error. This will match one of the constants defined in theerrors
object from this module. New in version 2.1.

lineno
Line number on which the error was detected. The first line is numbered1. New in version 2.1.

offset
Character offset into the line where the error occurred. The first column is numbered0. New in version 2.1.

13.4.3 Example

The following program defines three handlers that just print out their arguments.

import xml.parsers.expat

3 handler functions
def start_element(name, attrs):

print ’Start element:’, name, attrs
def end_element(name):

print ’End element:’, name
def char_data(data):

print ’Character data:’, repr(data)

p = xml.parsers.expat.ParserCreate()

p.StartElementHandler = start_element
p.EndElementHandler = end_element
p.CharacterDataHandler = char_data

p.Parse("""<?xml version="1.0"?>
<parent id="top"><child1 name="paul">Text goes here</child1>
<child2 name="fred">More text</child2>
</parent>""")

13.4. xml.parsers.expat — Fast XML parsing using Expat 361

The output from this program is:

Start element: parent {’id’: ’top’}
Start element: child1 {’name’: ’paul’}
Character data: ’Text goes here’
End element: child1
Character data: ’\n’
Start element: child2 {’name’: ’fred’}
Character data: ’More text’
End element: child2
Character data: ’\n’
End element: parent

13.4.4 Content Model Descriptions

Content modules are described using nested tuples. Each tuple contains four values: the type, the quantifier, the name,
and a tuple of children. Children are simply additional content module descriptions.

The values of the first two fields are constants defined in themodel object of thexml.parsers.expat module.
These constants can be collected in two groups: the model type group and the quantifier group.

The constants in the model type group are:

XML CTYPE ANY
The element named by the model name was declared to have a content model ofANY.

XML CTYPE CHOICE
The named element allows a choice from a number of options; this is used for content models such as(A | B
| C) .

XML CTYPE EMPTY
Elements which are declared to beEMPTYhave this model type.

XML CTYPE MIXED

XML CTYPE NAME

XML CTYPE SEQ
Models which represent a series of models which follow one after the other are indicated with this model type.
This is used for models such as(A, B, C) .

The constants in the quantifier group are:

XML CQUANTNONE

XML CQUANTOPT
The model is option: it can appear once or not at all, as forA?.

XML CQUANTPLUS
The model must occur one or more times (A+).

XML CQUANTREP
The model must occur zero or more times, as forA* .

13.4.5 Expat error constants

The following constants are provided in theerrors object of thexml.parsers.expat module. These constants
are useful in interpreting some of the attributes of theExpatError exception objects raised when an error has

362 Chapter 13. Structured Markup Processing Tools

occurred.

Theerrors object has the following attributes:

XML ERRORASYNC ENTITY

XML ERRORATTRIBUTE EXTERNALENTITY REF
An entity reference in an attribute value referred to an external entity instead of an internal entity.

XML ERRORBAD CHAR REF

XML ERRORBINARY ENTITY REF

XML ERRORDUPLICATE ATTRIBUTE
An attribute was used more than once in a start tag.

XML ERRORINCORRECTENCODING

XML ERRORINVALID TOKEN

XML ERRORJUNK AFTER DOC ELEMENT
Something other than whitespace occurred after the document element.

XML ERRORMISPLACED XML PI

XML ERRORNO ELEMENTS
The document contains no elements.

XML ERRORNO MEMORY
Expat was not able to allocate memory internally.

XML ERRORPARAMENTITY REF

XML ERRORPARTIAL CHAR

XML ERRORRECURSIVE ENTITY REF

XML ERRORSYNTAX
Some unspecified syntax error was encountered.

XML ERRORTAG MISMATCH
An end tag did not match the innermost open start tag.

XML ERRORUNCLOSEDTOKEN

XML ERRORUNDEFINED ENTITY
A reference was made to a entity which was not defined.

XML ERRORUNKNOWNENCODING
The document encoding is not supported by Expat.

13.5 xml.dom — The Document Object Model API

New in version 2.0.

The Document Object Model, or “DOM,” is a cross-language API from the World Wide Web Consortium (W3C) for
accessing and modifying XML documents. A DOM implementation presents an XML document as a tree structure,
or allows client code to build such a structure from scratch. It then gives access to the structure through a set of objects
which provided well-known interfaces.

The DOM is extremely useful for random-access applications. SAX only allows you a view of one bit of the document
at a time. If you are looking at one SAX element, you have no access to another. If you are looking at a text node, you
have no access to a containing element. When you write a SAX application, you need to keep track of your program’s
position in the document somewhere in your own code. SAX does not do it for you. Also, if you need to look ahead

13.5. xml.dom — The Document Object Model API 363

in the XML document, you are just out of luck.

Some applications are simply impossible in an event driven model with no access to a tree. Of course you could build
some sort of tree yourself in SAX events, but the DOM allows you to avoid writing that code. The DOM is a standard
tree representation for XML data.

The Document Object Model is being defined by the W3C in stages, or “levels” in their terminology. The Python
mapping of the API is substantially based on the DOM Level 2 recommendation. Some aspects of the API will only
become available in Python 2.1, or may only be available in particular DOM implementations.

DOM applications typically start by parsing some XML into a DOM. How this is accomplished is not covered at all
by DOM Level 1, and Level 2 provides only limited improvements. There is aDOMImplementation object class
which provides access toDocument creation methods, but these methods were only added in DOM Level 2 and were
not implemented in time for Python 2.0. There is also no well-defined way to access these methods without an existing
Document object. For Python 2.0, consult the documentation for each particular DOM implementation to determine
the bootstrap procedure needed to create and initializeDocument andDocumentType instances.

Once you have a DOM document object, you can access the parts of your XML document through its properties and
methods. These properties are defined in the DOM specification; this portion of the reference manual describes the
interpretation of the specification in Python.

The specification provided by the W3C defines the DOM API for Java, ECMAScript, and OMG IDL. The Python
mapping defined here is based in large part on the IDL version of the specification, but strict compliance is not required
(though implementations are free to support the strict mapping from IDL). See section 13.5.3, “Conformance,” for a
detailed discussion of mapping requirements.

See Also:

Document Object Model (DOM) Level 2 Specification
(http://www.w3.org/TR/DOM-Level-2-Core/)

The W3C recommendation upon which the Python DOM API is based.

Document Object Model (DOM) Level 1 Specification
(http://www.w3.org/TR/REC-DOM-Level-1/)

The W3C recommendation for the DOM supported byxml.dom.minidom .

PyXML
(http://pyxml.sourceforge.net)

Users that require a full-featured implementation of DOM should use the PyXML package.

CORBA Scripting with Python
(http://cgi.omg.org/cgi-bin/doc?orbos/99-08-02.pdf)

This specifies the mapping from OMG IDL to Python.

13.5.1 Module Contents

Thexml.dom contains the following functions:

registerDOMImplementation (name, factory)
Register thefactory function with the namename. The factory function should return an object which imple-
ments theDOMImplementation interface. The factory function can return the same object every time, or a
new one for each call, as appropriate for the specific implementation (e.g. if that implementation supports some
customization).

getDOMImplementation (name = None, features = ())
Return a suitable DOM implementation. Thenameis either well-known, the module name of a DOM implemen-
tation, orNone. If it is not None, imports the corresponding module and returns aDOMImplementation
object if the import succeeds. If no name is given, and if the environment variable PYTHONDOM is set, this
variable is used to find the implementation.

364 Chapter 13. Structured Markup Processing Tools

If name is not given, consider the available implementations to find one with the required feature set. If no
implementation can be found, raise anImportError . The features list must be a sequence of (feature, version)
pairs which are passed to hasFeature.

In addition,xml.dom contains theNode, and the DOM exceptions.

13.5.2 Objects in the DOM

The definitive documentation for the DOM is the DOM specification from the W3C.

Note that DOM attributes may also be manipulated as nodes instead of as simple strings. It is fairly rare that you must
do this, however, so this usage is not yet documented.

Interface Section Purpose
DOMImplementation 13.5.2 Interface to the underlying implementation.
Node 13.5.2 Base interface for most objects in a document.
NodeList 13.5.2 Interface for a sequence of nodes.
DocumentType 13.5.2 Information about the declarations needed to process a document.
Document 13.5.2 Object which represents an entire document.
Element 13.5.2 Element nodes in the document hierarchy.
Attr 13.5.2 Attribute value nodes on element nodes.
Comment 13.5.2 Representation of comments in the source document.
Text 13.5.2 Nodes containing textual content from the document.
ProcessingInstruction 13.5.2 Processing instruction representation.

An additional section describes the exceptions defined for working with the DOM in Python.

DOMImplementation Objects

The DOMImplementation interface provides a way for applications to determine the availability of particular
features in the DOM they are using. DOM Level 2 added the ability to create newDocument andDocumentType
objects using theDOMImplementation as well.

hasFeature (feature, version)

Node Objects

All of the components of an XML document are subclasses ofNode.

nodeType
An integer representing the node type. Symbolic constants for the types are on theNode object:
ELEMENTNODE, ATTRIBUTE NODE, TEXT NODE, CDATA SECTION NODE, ENTITY NODE, PRO-
CESSING INSTRUCTION NODE, COMMENTNODE, DOCUMENTNODE, DOCUMENTTYPE NODE, NO-
TATION NODE. This is a read-only attribute.

parentNode
The parent of the current node, orNone for the document node. The value is always aNode object orNone.
For Element nodes, this will be the parent element, except for the root element, in which case it will be the
Document object. ForAttr nodes, this is alwaysNone. This is a read-only attribute.

attributes
A NamedNodeList of attribute objects. Only elements have actual values for this; others provideNone for
this attribute. This is a read-only attribute.

13.5. xml.dom — The Document Object Model API 365

previousSibling
The node that immediately precedes this one with the same parent. For instance the element with an end-tag
that comes just before theself element’s start-tag. Of course, XML documents are made up of more than just
elements so the previous sibling could be text, a comment, or something else. If this node is the first child of the
parent, this attribute will beNone. This is a read-only attribute.

nextSibling
The node that immediately follows this one with the same parent. See alsopreviousSibling . If this is the
last child of the parent, this attribute will beNone. This is a read-only attribute.

childNodes
A list of nodes contained within this node. This is a read-only attribute.

firstChild
The first child of the node, if there are any, orNone. This is a read-only attribute.

lastChild
The last child of the node, if there are any, orNone. This is a read-only attribute.

localName
The part of thetagName following the colon if there is one, else the entiretagName . The value is a string.

prefix
The part of thetagName preceding the colon if there is one, else the empty string. The value is a string, or
None

namespaceURI
The namespace associated with the element name. This will be a string orNone. This is a read-only attribute.

nodeName
This has a different meaning for each node type; see the DOM specification for details. You can always get the
information you would get here from another property such as thetagName property for elements or thename
property for attributes. For all node types, the value of this attribute will be either a string orNone. This is a
read-only attribute.

nodeValue
This has a different meaning for each node type; see the DOM specification for details. The situation is similar
to that withnodeName. The value is a string orNone.

hasAttributes ()
Returns true if the node has any attributes.

hasChildNodes ()
Returns true if the node has any child nodes.

isSameNode (other)
Returns true ifother refers to the same node as this node. This is especially useful for DOM implementations
which use any sort of proxy architecture (because more than one object can refer to the same node).

Note: This is based on a proposed DOM Level 3 API which is still in the “working draft” stage, but this
particular interface appears uncontroversial. Changes from the W3C will not necessarily affect this method in
the Python DOM interface (though any new W3C API for this would also be supported).

appendChild (newChild)
Add a new child node to this node at the end of the list of children, returningnewChild.

insertBefore (newChild, refChild)
Insert a new child node before an existing child. It must be the case thatrefChild is a child of this node; if not,
ValueError is raised.newChildis returned.

removeChild (oldChild)
Remove a child node.oldChildmust be a child of this node; if not,ValueError is raised.oldChild is returned
on success. IfoldChild will not be used further, itsunlink() method should be called.

366 Chapter 13. Structured Markup Processing Tools

replaceChild (newChild, oldChild)
Replace an existing node with a new node. It must be the case thatoldChild is a child of this node; if not,
ValueError is raised.

normalize ()
Join adjacent text nodes so that all stretches of text are stored as singleText instances. This simplifies process-
ing text from a DOM tree for many applications. New in version 2.1.

cloneNode (deep)
Clone this node. Settingdeepmeans to clone all child nodes as well. This returns the clone.

NodeList Objects

A NodeList represents a sequence of nodes. These objects are used in two ways in the DOM Core recommen-
dation: theElement objects provides one as it’s list of child nodes, and thegetElementsByTagName() and
getElementsByTagNameNS() methods ofNode return objects with this interface to represent query results.

The DOM Level 2 recommendation defines one method and one attribute for these objects:

item (i)
Return thei’th item from the sequence, if there is one, orNone. The indexi is not allowed to be less then zero
or greater than or equal to the length of the sequence.

length
The number of nodes in the sequence.

In addition, the Python DOM interface requires that some additional support is provided to allowNodeList ob-
jects to be used as Python sequences. AllNodeList implementations must include support for len () and

getitem () ; this allows iteration over theNodeList in for statements and proper support for thelen()
built-in function.

If a DOM implementation supports modification of the document, theNodeList implementation must also support
the setitem () and delitem () methods.

DocumentType Objects

Information about the notations and entities declared by a document (including the external subset if the parser uses it
and can provide the information) is available from aDocumentType object. TheDocumentType for a document
is available from theDocument object’sdoctype attribute.

DocumentType is a specialization ofNode, and adds the following attributes:

publicId
The public identifier for the external subset of the document type definition. This will be a string orNone.

systemId
The system identifier for the external subset of the document type definition. This will be a URI as a string, or
None.

internalSubset
A string giving the complete internal subset from the document. This does not include the brackets which
enclose the subset. If the document has no internal subset, this should beNone.

name
The name of the root element as given in theDOCTYPEdeclaration, if present. If the was noDOCTYPEdecla-
ration, this will beNone.

entities
This is aNamedNodeMapgiving the definitions of external entities. For entity names defined more than once,

13.5. xml.dom — The Document Object Model API 367

only the first definition is provided (others are ignored as required by the XML recommendation). This may be
None if the information is not provided by the parser, or if no entities are defined.

notations
This is aNamedNodeMapgiving the definitions of notations. For notation names defined more than once, only
the first definition is provided (others are ignored as required by the XML recommendation). This may beNone
if the information is not provided by the parser, or if no notations are defined.

Document Objects

A Document represents an entire XML document, including its constituent elements, attributes, processing instruc-
tions, comments etc. Remeber that it inherits properties fromNode.

documentElement
The one and only root element of the document.

createElement (tagName)
Create and return a new element node. The element is not inserted into the document when it is created. You
need to explicitly insert it with one of the other methods such asinsertBefore() or appendChild() .

createElementNS (namespaceURI, tagName)
Create and return a new element with a namespace. ThetagNamemay have a prefix. The element is not
inserted into the document when it is created. You need to explicitly insert it with one of the other methods such
asinsertBefore() or appendChild() .

createTextNode (data)
Create and return a text node containing the data passed as a parameter. As with the other creation methods, this
one does not insert the node into the tree.

createComment (data)
Create and return a comment node containing the data passed as a parameter. As with the other creation methods,
this one does not insert the node into the tree.

createProcessingInstruction (target, data)
Create and return a processing instruction node containing thetarget anddatapassed as parameters. As with
the other creation methods, this one does not insert the node into the tree.

createAttribute (name)
Create and return an attribute node. This method does not associate the attribute node with any particular
element. You must usesetAttributeNode() on the appropriateElement object to use the newly created
attribute instance.

createAttributeNS (namespaceURI, qualifiedName)
Create and return an attribute node with a namespace. ThetagNamemay have a prefix. This method does
not associate the attribute node with any particular element. You must usesetAttributeNode() on the
appropriateElement object to use the newly created attribute instance.

getElementsByTagName (tagName)
Search for all descendants (direct children, children’s children, etc.) with a particular element type name.

getElementsByTagNameNS (namespaceURI, localName)
Search for all descendants (direct children, children’s children, etc.) with a particular namespace URI and
localname. The localname is the part of the namespace after the prefix.

Element Objects

Element is a subclass ofNode, so inherits all the attributes of that class.

tagName

368 Chapter 13. Structured Markup Processing Tools

The element type name. In a namespace-using document it may have colons in it. The value is a string.

getElementsByTagName (tagName)
Same as equivalent method in theDocument class.

getElementsByTagNameNS (tagName)
Same as equivalent method in theDocument class.

getAttribute (attname)
Return an attribute value as a string.

getAttributeNode (attrname)
Return theAttr node for the attribute named byattrname.

getAttributeNS (namespaceURI, localName)
Return an attribute value as a string, given anamespaceURIandlocalName.

getAttributeNodeNS (namespaceURI, localName)
Return an attribute value as a node, given anamespaceURIandlocalName.

removeAttribute (attname)
Remove an attribute by name. No exception is raised if there is no matching attribute.

removeAttributeNode (oldAttr)
Remove and returnoldAttr from the attribute list, if present. IfoldAttr is not present,NotFoundErr is raised.

removeAttributeNS (namespaceURI, localName)
Remove an attribute by name. Note that it uses a localName, not a qname. No exception is raised if there is no
matching attribute.

setAttribute (attname, value)
Set an attribute value from a string.

setAttributeNode (newAttr)
Add a new attibute node to the element, replacing an existing attribute if necessary if thenameattribute matches.
If a replacement occurs, the old attribute node will be returned. IfnewAttris already in use,InuseAttribu-
teErr will be raised.

setAttributeNodeNS (newAttr)
Add a new attibute node to the element, replacing an existing attribute if necessary if thenamespaceURI and
localName attributes match. If a replacement occurs, the old attribute node will be returned. IfnewAttr is
already in use,InuseAttributeErr will be raised.

setAttributeNS (namespaceURI, qname, value)
Set an attribute value from a string, given anamespaceURIand aqname. Note that a qname is the whole
attribute name. This is different than above.

Attr Objects

Attr inherits fromNode, so inherits all its attributes.

name
The attribute name. In a namespace-using document it may have colons in it.

localName
The part of the name following the colon if there is one, else the entire name. This is a read-only attribute.

prefix
The part of the name preceding the colon if there is one, else the empty string.

13.5. xml.dom — The Document Object Model API 369

NamedNodeMap Objects

NamedNodeMapdoesnot inherit fromNode.

length
The length of the attribute list.

item (index)
Return an attribute with a particular index. The order you get the attributes in is arbitrary but will be consistent
for the life of a DOM. Each item is an attribute node. Get its value with thevalue attribbute.

There are also experimental methods that give this class more mapping behavior. You can use them or you can use the
standardizedgetAttribute*() -family methods on theElement objects.

Comment Objects

Comment represents a comment in the XML document. It is a subclass ofNode, but cannot have child nodes.

data
The content of the comment as a string. The attribute contains all characters between the leading<!-- and
trailing --> , but does not include them.

Text and CDATASection Objects

TheText interface represents text in the XML document. If the parser and DOM implementation support the DOM’s
XML extension, portions of the text enclosed in CDATA marked sections are stored inCDATASection objects.
These two interfaces are identical, but provide different values for thenodeType attribute.

These interfaces extend theNode interface. They cannot have child nodes.

data
The content of the text node as a string.

Note: The use of aCDATASection node does not indicate that the node represents a complete CDATA marked
section, only that the content of the node was part of a CDATA section. A single CDATA section may be represented
by more than one node in the document tree. There is no way to determine whether two adjacentCDATASection
nodes represent different CDATA marked sections.

ProcessingInstruction Objects

Represents a processing instruction in the XML document; this inherits from theNode interface and cannot have child
nodes.

target
The content of the processing instruction up to the first whitespace character. This is a read-only attribute.

data
The content of the processing instruction following the first whitespace character.

Exceptions

New in version 2.1.

The DOM Level 2 recommendation defines a single exception,DOMException , and a number of constants that
allow applications to determine what sort of error occurred.DOMException instances carry acode attribute that
provides the appropriate value for the specific exception.

370 Chapter 13. Structured Markup Processing Tools

The Python DOM interface provides the constants, but also expands the set of exceptions so that a specific exception
exists for each of the exception codes defined by the DOM. The implementations must raise the appropriate specific
exception, each of which carries the appropriate value for thecode attribute.

exceptionDOMException
Base exception class used for all specific DOM exceptions. This exception class cannot be directly instantiated.

exceptionDomstringSizeErr
Raised when a specified range of text does not fit into a string. This is not known to be used in the Python DOM
implementations, but may be received from DOM implementations not written in Python.

exceptionHierarchyRequestErr
Raised when an attempt is made to insert a node where the node type is not allowed.

exceptionIndexSizeErr
Raised when an index or size parameter to a method is negative or exceeds the allowed values.

exceptionInuseAttributeErr
Raised when an attempt is made to insert anAttr node that is already present elsewhere in the document.

exceptionInvalidAccessErr
Raised if a parameter or an operation is not supported on the underlying object.

exceptionInvalidCharacterErr
This exception is raised when a string parameter contains a character that is not permitted in the context it’s
being used in by the XML 1.0 recommendation. For example, attempting to create anElement node with a
space in the element type name will cause this error to be raised.

exceptionInvalidModificationErr
Raised when an attempt is made to modify the type of a node.

exceptionInvalidStateErr
Raised when an attempt is made to use an object that is not or is no longer usable.

exceptionNamespaceErr
If an attempt is made to change any object in a way that is not permitted with regard to theNamespaces in XML
recommendation, this exception is raised.

exceptionNotFoundErr
Exception when a node does not exist in the referenced context. For example,
NamedNodeMap.removeNamedItem() will raise this if the node passed in does not exist in the
map.

exceptionNotSupportedErr
Raised when the implementation does not support the requested type of object or operation.

exceptionNoDataAllowedErr
This is raised if data is specified for a node which does not support data.

exceptionNoModificationAllowedErr
Raised on attempts to modify an object where modifications are not allowed (such as for read-only nodes).

exceptionSyntaxErr
Raised when an invalid or illegal string is specified.

exceptionWrongDocumentErr
Raised when a node is inserted in a different document than it currently belongs to, and the implementation does
not support migrating the node from one document to the other.

The exception codes defined in the DOM recommendation map to the exceptions described above according to this
table:

13.5. xml.dom — The Document Object Model API 371

Constant Exception
DOMSTRINGSIZE ERR DomstringSizeErr
HIERARCHYREQUESTERR HierarchyRequestErr
INDEX SIZE ERR IndexSizeErr
INUSE ATTRIBUTE ERR InuseAttributeErr
INVALID ACCESSERR InvalidAccessErr
INVALID CHARACTERERR InvalidCharacterErr
INVALID MODIFICATION ERR InvalidModificationErr
INVALID STATE ERR InvalidStateErr
NAMESPACEERR NamespaceErr
NOT FOUNDERR NotFoundErr
NOT SUPPORTEDERR NotSupportedErr
NO DATA ALLOWEDERR NoDataAllowedErr
NO MODIFICATION ALLOWEDERR NoModificationAllowedErr
SYNTAX ERR SyntaxErr
WRONGDOCUMENTERR WrongDocumentErr

13.5.3 Conformance

This section describes the conformance requirements and relationships between the Python DOM API, the W3C DOM
recommendations, and the OMG IDL mapping for Python.

Type Mapping

The primitive IDL types used in the DOM specification are mapped to Python types according to the following table.

IDL Type Python Type
boolean IntegerType (with a value of0 or 1)
int IntegerType
long int IntegerType
unsigned int IntegerType

Additionally, theDOMString defined in the recommendation is mapped to a Python string or Unicode string. Appli-
cations should be able to handle Unicode whenever a string is returned from the DOM.

The IDL null value is mapped toNone, which may be accepted or provided by the implementation whenevernull
is allowed by the API.

Accessor Methods

The mapping from OMG IDL to Python defines accessor functions for IDLattribute declarations in much the
way the Java mapping does. Mapping the IDL declarations

readonly attribute string someValue;
attribute string anotherValue;

yeilds three accessor functions: a “get” method forsomeValue (get someValue()), and “get” and “set” meth-
ods foranotherValue (get anotherValue() and set anotherValue()). The mapping, in particular,
does not require that the IDL attributes are accessible as normal Python attributes:object.someValue is notrequired
to work, and may raise anAttributeError .

372 Chapter 13. Structured Markup Processing Tools

The Python DOM API, however,doesrequire that normal attribute access work. This means that the typical surrogates
generated by Python IDL compilers are not likely to work, and wrapper objects may be needed on the client if the
DOM objects are accessed via CORBA. While this does require some additional consideration for CORBA DOM
clients, the implementers with experience using DOM over CORBA from Python do not consider this a problem.
Attributes that are declaredreadonly may not restrict write access in all DOM implementations.

Additionally, the accessor functions are not required. If provided, they should take the form defined by the Python
IDL mapping, but these methods are considered unnecessary since the attributes are accessible directly from Python.
“Set” accessors should never be provided forreadonly attributes.

13.6 xml.dom.minidom — Lightweight DOM implementation

New in version 2.0.

xml.dom.minidom is a light-weight implementation of the Document Object Model interface. It is intended to be
simpler than the full DOM and also significantly smaller.

DOM applications typically start by parsing some XML into a DOM. Withxml.dom.minidom , this is done through
the parse functions:

from xml.dom.minidom import parse, parseString

dom1 = parse(’c:\\temp\\mydata.xml’) # parse an XML file by name

datasource = open(’c:\\temp\\mydata.xml’)
dom2 = parse(datasource) # parse an open file

dom3 = parseString(’<myxml>Some data<empty/> some more data</myxml>’)

The parse function can take either a filename or an open file object.

parse (filename or file, parser)
Return aDocument from the given input.filename or file may be either a file name, or a file-like object.
parser, if given, must be a SAX2 parser object. This function will change the document handler of the parser
and activate namespace support; other parser configuration (like setting an entity resolver) must have been done
in advance.

If you have XML in a string, you can use theparseString() function instead:

parseString (string[, parser])
Return aDocument that represents thestring. This method creates aStringIO object for the string and
passes that on toparse .

Both functions return aDocument object representing the content of the document.

You can also create aDocument node merely by instantiating a document object. Then you could add child nodes to
it to populate the DOM:

from xml.dom.minidom import Document

newdoc = Document()
newel = newdoc.createElement("some_tag")
newdoc.appendChild(newel)

Once you have a DOM document object, you can access the parts of your XML document through its properties and
methods. These properties are defined in the DOM specification. The main property of the document object is the

13.6. xml.dom.minidom — Lightweight DOM implementation 373

documentElement property. It gives you the main element in the XML document: the one that holds all others.
Here is an example program:

dom3 = parseString("<myxml>Some data</myxml>")
assert dom3.documentElement.tagName == "myxml"

When you are finished with a DOM, you should clean it up. This is necessary because some versions of Python do
not support garbage collection of objects that refer to each other in a cycle. Until this restriction is removed from all
versions of Python, it is safest to write your code as if cycles would not be cleaned up.

The way to clean up a DOM is to call itsunlink() method:

dom1.unlink()
dom2.unlink()
dom3.unlink()

unlink() is axml.dom.minidom -specific extension to the DOM API. After callingunlink() on a node, the
node and its descendents are essentially useless.

See Also:

Document Object Model (DOM) Level 1 Specification
(http://www.w3.org/TR/REC-DOM-Level-1/)

The W3C recommendation for the DOM supported byxml.dom.minidom .

13.6.1 DOM objects

The definition of the DOM API for Python is given as part of thexml.dom module documentation. This section lists
the differences between the API andxml.dom.minidom .

unlink ()
Break internal references within the DOM so that it will be garbage collected on versions of Python without
cyclic GC. Even when cyclic GC is available, using this can make large amounts of memory available sooner,
so calling this on DOM objects as soon as they are no longer needed is good practice. This only needs to be
called on theDocument object, but may be called on child nodes to discard children of that node.

writexml (writer)
Write XML to the writer object. The writer should have awrite() method which matches that of the file
object interface.

toxml ()
Return the XML that the DOM represents as a string.

The following standard DOM methods have special considerations withxml.dom.minidom :

cloneNode (deep)
Although this method was present in the version ofxml.dom.minidom packaged with Python 2.0, it was
seriously broken. This has been corrected for subsequent releases.

13.6.2 DOM Example

This example program is a fairly realistic example of a simple program. In this particular case, we do not take much
advantage of the flexibility of the DOM.

374 Chapter 13. Structured Markup Processing Tools

import xml.dom.minidom

document = """\
<slideshow>
<title>Demo slideshow</title>
<slide><title>Slide title</title>
<point>This is a demo</point>
<point>Of a program for processing slides</point>
</slide>

<slide><title>Another demo slide</title>
<point>It is important</point>
<point>To have more than</point>
<point>one slide</point>
</slide>
</slideshow>
"""

dom = xml.dom.minidom.parseString(document)

space = " "
def getText(nodelist):

rc = ""
for node in nodelist:

if node.nodeType == node.TEXT_NODE:
rc = rc + node.data

return rc

def handleSlideshow(slideshow):
print "<html>"
handleSlideshowTitle(slideshow.getElementsByTagName("title")[0])
slides = slideshow.getElementsByTagName("slide")
handleToc(slides)
handleSlides(slides)
print "</html>"

def handleSlides(slides):
for slide in slides:

handleSlide(slide)

def handleSlide(slide):
handleSlideTitle(slide.getElementsByTagName("title")[0])
handlePoints(slide.getElementsByTagName("point"))

def handleSlideshowTitle(title):
print "<title>%s</title>" % getText(title.childNodes)

def handleSlideTitle(title):
print "<h2>%s</h2>" % getText(title.childNodes)

def handlePoints(points):
print ""
for point in points:

handlePoint(point)
print ""

def handlePoint(point):
print "%s" % getText(point.childNodes)

def handleToc(slides):
for slide in slides:

title = slide.getElementsByTagName("title")[0]
print "<p>%s</p>" % getText(title.childNodes)

handleSlideshow(dom)

13.6. xml.dom.minidom — Lightweight DOM implementation 375

13.6.3 minidom and the DOM standard

Thexml.dom.minidom module is essentially a DOM 1.0-compatible DOM with some DOM 2 features (primarily
namespace features).

Usage of the DOM interface in Python is straight-forward. The following mapping rules apply:

• Interfaces are accessed through instance objects. Applications should not instantiate the classes themselves; they
should use the creator functions available on theDocument object. Derived interfaces support all operations
(and attributes) from the base interfaces, plus any new operations.

• Operations are used as methods. Since the DOM uses onlyin parameters, the arguments are passed in normal
order (from left to right). There are no optional arguments.void operations returnNone.

• IDL attributes map to instance attributes. For compatibility with the OMG IDL language mapping for Python, an
attributefoo can also be accessed through accessor methodsget foo() and set foo() . readonly
attributes must not be changed; this is not enforced at runtime.

• The typesshort int , unsigned int , unsigned long long , andboolean all map to Python inte-
ger objects.

• The typeDOMString maps to Python strings.xml.dom.minidom supports either byte or Unicode strings,
but will normally produce Unicode strings. Attributes of typeDOMString may also beNone.

• const declarations map to variables in their respective scope (e.g.
xml.dom.minidom.Node.PROCESSING INSTRUCTION NODE); they must not be changed.

• DOMException is currently not supported inxml.dom.minidom . Instead,xml.dom.minidom uses
standard Python exceptions such asTypeError andAttributeError .

• NodeList objects are implemented as Python’s built-in list type, so don’t support the official API, but are
much more “Pythonic.”

The following interfaces have no implementation inxml.dom.minidom :

• DOMTimeStamp

• DocumentType (added in Python 2.1)

• DOMImplementation (added in Python 2.1)

• CharacterData

• CDATASection

• Notation

• Entity

• EntityReference

• DocumentFragment

Most of these reflect information in the XML document that is not of general utility to most DOM users.

376 Chapter 13. Structured Markup Processing Tools

13.7 xml.dom.pulldom — Support for building partial DOM trees

New in version 2.0.

xml.dom.pulldom allows building only selected portions of a Document Object Model representation of a docu-
ment from SAX events.

classPullDOM ([documentFactory])
xml.sax.handler.ContentHandler implementation that ...

classDOMEventStream (stream, parser, bufsize)
...

classSAX2DOM([documentFactory])
xml.sax.handler.ContentHandler implementation that ...

parse (stream or string[, parser[, bufsize]])
...

parseString (string[, parser])
...

default bufsize
Default value for thebusizeparameter toparse() . Changed in version 2.1: The value of this variable can be
changed before callingparse() and the new value will take effect.

13.7.1 DOMEventStream Objects

getEvent ()
...

expandNode (node)
...

reset ()
...

13.8 xml.sax — Support for SAX2 parsers

New in version 2.0.

Thexml.sax package provides a number of modules which implement the Simple API for XML (SAX) interface
for Python. The package itself provides the SAX exceptions and the convenience functions which will be most used
by users of the SAX API.

The convenience functions are:

make parser ([parser list])
Create and return a SAXXMLReader object. The first parser found will be used. Ifparser list is provided, it
must be a sequence of strings which name modules that have a function namedcreate parser() . Modules
listed inparser list will be used before modules in the default list of parsers.

parse (filename or stream, handler[, error handler])
Create a SAX parser and use it to parse a document. The document, passed in asfilename or stream, can
be a filename or a file object. Thehandler parameter needs to be a SAXContentHandler instance. If
error handleris given, it must be a SAXErrorHandler instance; if omitted,SAXParseException will
be raised on all errors. There is no return value; all work must be done by thehandlerpassed in.

13.7. xml.dom.pulldom — Support for building partial DOM trees 377

parseString (string, handler[, error handler])
Similar toparse() , but parses from a bufferstring received as a parameter.

A typical SAX application uses three kinds of objects: readers, handlers and input sources. “Reader” in this context is
another term for parser, i.e. some piece of code that reads the bytes or characters from the input source, and produces
a sequence of events. The events then get distributed to the handler objects, i.e. the reader invokes a method on the
handler. A SAX application must therefore obtain a reader object, create or open the input sources, create the handlers,
and connect these objects all together. As the final step of preparation, the reader is called to parse the input. During
parsing, methods on the handler objects are called based on structural and syntactic events from the input data.

For these objects, only the interfaces are relevant; they are normally not instantiated by the application itself. Since
Python does not have an explicit notion of interface, they are formally introduced as classes, but applications may use
implementations which do not inherit from the provided classes. TheInputSource , Locator , Attributes-
Impl , AttributesNSImpl , andXMLReader interfaces are defined in the modulexml.sax.xmlreader . The
handler interfaces are defined inxml.sax.handler . For convenience,InputSource (which is often instantiated
directly) and the handler classes are also available fromxml.sax . These interfaces are described below.

In addition to these classes,xml.sax provides the following exception classes.

exceptionSAXException (msg[, exception])
Encapsulate an XML error or warning. This class can contain basic error or warning information from either the
XML parser or the application: it can be subclassed to provide additional functionality or to add localization.
Note that although the handlers defined in theErrorHandler interface receive instances of this exception, it
is not required to actually raise the exception — it is also useful as a container for information.

When instantiated,msgshould be a human-readable description of the error. The optionalexceptionparameter,
if given, should beNone or an exception that was caught by the parsing code and is being passed along as
information.

This is the base class for the other SAX exception classes.

exceptionSAXParseException (msg, exception, locator)
Subclass ofSAXException raised on parse errors. Instances of this class are passed to the methods of the
SAX ErrorHandler interface to provide information about the parse error. This class supports the SAX
Locator interface as well as theSAXException interface.

exceptionSAXNotRecognizedException (msg[, exception])
Subclass ofSAXException raised when a SAXXMLReader is confronted with an unrecognized feature or
property. SAX applications and extensions may use this class for similar purposes.

exceptionSAXNotSupportedException (msg[, exception])
Subclass ofSAXException raised when a SAXXMLReader is asked to enable a feature that is not supported,
or to set a property to a value that the implementation does not support. SAX applications and extensions may
use this class for similar purposes.

See Also:

SAX: The Simple API for XML
(http://www.megginson.com/SAX/)

This site is the focal point for the definition of the SAX API. It provides a Java implementation and online
documentation. Links to implementations and historical information are also available.

13.8.1 SAXException Objects

TheSAXException exception class supports the following methods:

getMessage ()
Return a human-readable message describing the error condition.

getException ()

378 Chapter 13. Structured Markup Processing Tools

Return an encapsulated exception object, orNone.

13.9 xml.sax.handler — Base classes for SAX handlers

New in version 2.0.

The SAX API defines four kinds of handlers: content handlers, DTD handlers, error handlers, and entity resolvers.
Applications normally only need to implement those interfaces whose events they are interested in; they can implement
the interfaces in a single object or in multiple objects. Handler implementations should inherit from the base classes
provided in the modulexml.sax , so that all methods get default implementations.

classContentHandler ()
This is the main callback interface in SAX, and the one most important to applications. The order of events in
this interface mirrors the order of the information in the document.

classDTDHandler ()
Handle DTD events.

This interface specifies only those DTD events required for basic parsing (unparsed entities and attributes).

classEntityResolver ()
Basic interface for resolving entities. If you create an object implementing this interface, then register the object
with your Parser, the parser will call the method in your object to resolve all external entities.

classErrorHandler ()
Interface used by the parser to present error and warning messages to the application. The methods of this object
control whether errors are immediately converted to exceptions or are handled in some other way.

In addition to these classes,xml.sax.handler provides symbolic constants for the feature and property names.

feature namespaces
Value: "http://xml.org/sax/features/namespaces"
true: Perform Namespace processing (default).
false: Optionally do not perform Namespace processing (implies namespace-prefixes).
access: (parsing) read-only; (not parsing) read/write

feature namespace prefixes
Value: "http://xml.org/sax/features/namespace-prefixes"
true: Report the original prefixed names and attributes used for Namespace declarations.
false: Do not report attributes used for Namespace declarations, and optionally do not report original prefixed
names (default).
access: (parsing) read-only; (not parsing) read/write

feature string interning
Value: "http://xml.org/sax/features/string-interning" true: All element names, prefixes,
attribute names, Namespace URIs, and local names are interned using the built-in intern function.
false: Names are not necessarily interned, although they may be (default).
access: (parsing) read-only; (not parsing) read/write

feature validation
Value: "http://xml.org/sax/features/validation"
true: Report all validation errors (implies external-general-entities and external-parameter-entities).
false: Do not report validation errors.
access: (parsing) read-only; (not parsing) read/write

feature external ges
Value: "http://xml.org/sax/features/external-general-entities"
true: Include all external general (text) entities.

13.9. xml.sax.handler — Base classes for SAX handlers 379

false: Do not include external general entities.
access: (parsing) read-only; (not parsing) read/write

feature external pes
Value: "http://xml.org/sax/features/external-parameter-entities"
true: Include all external parameter entities, including the external DTD subset.
false: Do not include any external parameter entities, even the external DTD subset.
access: (parsing) read-only; (not parsing) read/write

all features
List of all features.

property lexical handler
Value: "http://xml.org/sax/properties/lexical-handler"
data type: xml.sax.sax2lib.LexicalHandler (not supported in Python 2)
description: An optional extension handler for lexical events like comments.
access: read/write

property declaration handler
Value: "http://xml.org/sax/properties/declaration-handler"
data type: xml.sax.sax2lib.DeclHandler (not supported in Python 2)
description: An optional extension handler for DTD-related events other than notations and unparsed entities.
access: read/write

property dom node
Value: "http://xml.org/sax/properties/dom-node"
data type: org.w3c.dom.Node (not supported in Python 2)
description: When parsing, the current DOM node being visited if this is a DOM iterator; when not parsing, the
root DOM node for iteration.
access: (parsing) read-only; (not parsing) read/write

property xml string
Value: "http://xml.org/sax/properties/xml-string"
data type: String
description: The literal string of characters that was the source for the current event.
access: read-only

all properties
List of all known property names.

13.9.1 ContentHandler Objects

Users are expected to subclassContentHandler to support their application. The following methods are called by
the parser on the appropriate events in the input document:

setDocumentLocator (locator)
Called by the parser to give the application a locator for locating the origin of document events.

SAX parsers are strongly encouraged (though not absolutely required) to supply a locator: if it does so, it must
supply the locator to the application by invoking this method before invoking any of the other methods in the
DocumentHandler interface.

The locator allows the application to determine the end position of any document-related event, even if the parser
is not reporting an error. Typically, the application will use this information for reporting its own errors (such as
character content that does not match an application’s business rules). The information returned by the locator
is probably not sufficient for use with a search engine.

Note that the locator will return correct information only during the invocation of the events in this interface.
The application should not attempt to use it at any other time.

380 Chapter 13. Structured Markup Processing Tools

startDocument ()
Receive notification of the beginning of a document.

The SAX parser will invoke this method only once, before any other methods in this interface or in DTDHandler
(except forsetDocumentLocator()).

endDocument ()
Receive notification of the end of a document.

The SAX parser will invoke this method only once, and it will be the last method invoked during the parse. The
parser shall not invoke this method until it has either abandoned parsing (because of an unrecoverable error) or
reached the end of input.

startPrefixMapping (prefix, uri)
Begin the scope of a prefix-URI Namespace mapping.

The information from this event is not necessary for normal Namespace processing: the SAX
XML reader will automatically replace prefixes for element and attribute names when the
http://xml.org/sax/features/namespaces feature is true (the default).

There are cases, however, when applications need to use prefixes in character data or in attribute values, where
they cannot safely be expanded automatically; the start/endPrefixMapping event supplies the information to the
application to expand prefixes in those contexts itself, if necessary.

Note that start/endPrefixMapping events are not guaranteed to be properly nested relative to each-other: all
startPrefixMapping() events will occur before the corresponding startElement event, and allend-
PrefixMapping() events will occur after the correspondingendElement() event, but their order is not
guaranteed.

endPrefixMapping (prefix)
End the scope of a prefix-URI mapping.

SeestartPrefixMapping() for details. This event will always occur after the corresponding endElement
event, but the order of endPrefixMapping events is not otherwise guaranteed.

startElement (name, attrs)
Signals the start of an element in non-namespace mode.

The nameparameter contains the raw XML 1.0 name of the element type as a string and theattrs parameter
holds an instance of theAttributes class containing the attributes of the element.

endElement (name)
Signals the end of an element in non-namespace mode.

Thenameparameter contains the name of the element type, just as with the startElement event.

startElementNS (name, qname, attrs)
Signals the start of an element in namespace mode.

The nameparameter contains the name of the element type as a (uri, localname) tuple, theqnameparameter
the raw XML 1.0 name used in the source document, and theattrs parameter holds an instance of theAt-
tributesNS class containing the attributes of the element.

Parsers may set theqnameparameter toNone, unless thehttp://xml.org/sax/features/namespace-
prefixes feature is activated.

endElementNS (name, qname)
Signals the end of an element in namespace mode.

Thenameparameter contains the name of the element type, just as with the startElementNS event, likewise the
qnameparameter.

characters (content)
Receive notification of character data.

13.9. xml.sax.handler — Base classes for SAX handlers 381

The Parser will call this method to report each chunk of character data. SAX parsers may return all contiguous
character data in a single chunk, or they may split it into several chunks; however, all of the characters in any
single event must come from the same external entity so that the Locator provides useful information.

contentmay be a Unicode string or a byte string; theexpat reader module produces always Unicode strings.

Note: The earlier SAX 1 interface provided by the Python XML Special Interest Group used a more Java-like
interface for this method. Since most parsers used from Python did not take advantage of the older interface,
the simpler signature was chosen to replace it. To convert old code to the new interface, usecontentinstead of
slicing content with the oldoffsetandlengthparameters.

ignorableWhitespace ()
Receive notification of ignorable whitespace in element content.

Validating Parsers must use this method to report each chunk of ignorable whitespace (see the W3C XML 1.0
recommendation, section 2.10): non-validating parsers may also use this method if they are capable of parsing
and using content models.

SAX parsers may return all contiguous whitespace in a single chunk, or they may split it into several chunks;
however, all of the characters in any single event must come from the same external entity, so that the Locator
provides useful information.

processingInstruction (target, data)
Receive notification of a processing instruction.

The Parser will invoke this method once for each processing instruction found: note that processing instructions
may occur before or after the main document element.

A SAX parser should never report an XML declaration (XML 1.0, section 2.8) or a text declaration (XML 1.0,
section 4.3.1) using this method.

skippedEntity (name)
Receive notification of a skipped entity.

The Parser will invoke this method once for each entity skipped. Non-validating processors may
skip entities if they have not seen the declarations (because, for example, the entity was de-
clared in an external DTD subset). All processors may skip external entities, depending on
the values of thehttp://xml.org/sax/features/external-general-entities and the
http://xml.org/sax/features/external-parameter-entities properties.

13.9.2 DTDHandler Objects

DTDHandler instances provide the following methods:

notationDecl (name, publicId, systemId)
Handle a notation declaration event.

unparsedEntityDecl (name, publicId, systemId, ndata)
Handle an unparsed entity declaration event.

13.9.3 EntityResolver Objects

resolveEntity (publicId, systemId)
Resolve the system identifier of an entity and return either the system identifier to read from as a string, or an
InputSource to read from. The default implementation returnssystemId.

13.9.4 ErrorHandler Objects

Objects with this interface are used to receive error and warning information from theXMLReader. If you create an
object that implements this interface, then register the object with yourXMLReader, the parser will call the methods

382 Chapter 13. Structured Markup Processing Tools

in your object to report all warnings and errors. There are three levels of errors available: warnings, (possibly)
recoverable errors, and unrecoverable errors. All methods take aSAXParseException as the only parameter.
Errors and warnings may be converted to an exception by raising the passed-in exception object.

error (exception)
Called when the parser encounters a recoverable error. If this method does not raise an exception, parsing may
continue, but further document information should not be expected by the application. Allowing the parser to
continue may allow additional errors to be discovered in the input document.

fatalError (exception)
Called when the parser encounters an error it cannot recover from; parsing is expected to terminate when this
method returns.

warning (exception)
Called when the parser presents minor warning information to the application. Parsing is expected to continue
when this method returns, and document information will continue to be passed to the application. Raising an
exception in this method will cause parsing to end.

13.10 xml.sax.saxutils — SAX Utilities

New in version 2.0.

The modulexml.sax.saxutils contains a number of classes and functions that are commonly useful when
creating SAX applications, either in direct use, or as base classes.

escape (data[, entities])
Escape &, ¡, and ¿ in a string of data.

You can escape other strings of data by passing a dictionary as the optional entities parameter. The keys and
values must all be strings; each key will be replaced with its corresponding value.

classXMLGenerator ([out[, encoding]])
This class implements theContentHandler interface by writing SAX events back into an XML document.
In other words, using anXMLGenerator as the content handler will reproduce the original document being
parsed.out should be a file-like object which will default tosys.stdout. encodingis the encoding of the output
stream which defaults to’iso-8859-1’ .

classXMLFilterBase (base)
This class is designed to sit between anXMLReader and the client application’s event handlers. By default,
it does nothing but pass requests up to the reader and events on to the handlers unmodified, but subclasses can
override specific methods to modify the event stream or the configuration requests as they pass through.

prepare input source (source[, base])
This function takes an input source and an optional base URL and returns a fully resolvedInputSource
object ready for reading. The input source can be given as a string, a file-like object, or anInputSource
object; parsers will use this function to implement the polymorphicsourceargument to theirparse() method.

13.11 xml.sax.xmlreader — Interface for XML parsers

New in version 2.0.

SAX parsers implement theXMLReader interface. They are implemented in a Python module, which must provide
a functioncreate parser() . This function is invoked byxml.sax.make parser() with no arguments to
create a new parser object.

classXMLReader()
Base class which can be inherited by SAX parsers.

13.10. xml.sax.saxutils — SAX Utilities 383

classIncrementalParser ()
In some cases, it is desirable not to parse an input source at once, but to feed chunks of the document as they get
available. Note that the reader will normally not read the entire file, but read it in chunks as well; stillparse()
won’t return until the entire document is processed. So these interfaces should be used if the blocking behaviour
of parse() is not desirable.

When the parser is instantiated it is ready to begin accepting data from the feed method immediately. After
parsing has been finished with a call to close the reset method must be called to make the parser ready to accept
new data, either from feed or using the parse method.

Note that these methods mustnot be called during parsing, that is, after parse has been called and before it
returns.

By default, the class also implements the parse method of the XMLReader interface using the feed, close and
reset methods of the IncrementalParser interface as a convenience to SAX 2.0 driver writers.

classLocator ()
Interface for associating a SAX event with a document location. A locator object will return valid results only
during calls to DocumentHandler methods; at any other time, the results are unpredictable. If information is not
available, methods may returnNone.

classInputSource ([systemId])
Encapsulation of the information needed by theXMLReader to read entities.

This class may include information about the public identifier, system identifier, byte stream (possibly with
character encoding information) and/or the character stream of an entity.

Applications will create objects of this class for use in theXMLReader.parse() method and for returning
from EntityResolver.resolveEntity.

An InputSource belongs to the application, theXMLReader is not allowed to modifyInputSource
objects passed to it from the application, although it may make copies and modify those.

classAttributesImpl (attrs)
This is a dictionary-like object which represents the element attributes in astartElement() call. In addition
to the most useful dictionary operations, it supports a number of other methods as described below. Objects of
this class should be instantiated by readers;attrs must be a dictionary-like object.

classAttributesNSImpl (attrs, qnames)
Namespace-aware variant of attributes, which will be passed tostartElementNS() . It is derived fromAt-
tributesImpl , but understands attribute names as two-tuples ofnamespaceURIandlocalname. In addition,
it provides a number of methods expecting qualified names as they appear in the original document.

13.11.1 XMLReader Objects

TheXMLReader interface supports the following methods:

parse (source)
Process an input source, producing SAX events. Thesourceobject can be a system identifier (i.e. a string
identifying the input source – typically a file name or an URL), a file-like object, or anInputSource object.
Whenparse() returns, the input is completely processed, and the parser object can be discarded or reset. As
a limitation, the current implementation only accepts byte streams; processing of character streams is for further
study.

getContentHandler ()
Return the currentContentHandler .

setContentHandler (handler)
Set the currentContentHandler . If no ContentHandler is set, content events will be discarded.

getDTDHandler ()
Return the currentDTDHandler .

384 Chapter 13. Structured Markup Processing Tools

setDTDHandler (handler)
Set the currentDTDHandler . If no DTDHandler is set, DTD events will be discarded.

getEntityResolver ()
Return the currentEntityResolver .

setEntityResolver (handler)
Set the currentEntityResolver . If no EntityResolver is set, attempts to resolve an external entity will
result in opening the system identifier for the entity, and fail if it is not available.

getErrorHandler ()
Return the currentErrorHandler .

setErrorHandler (handler)
Set the current error handler. If noErrorHandler is set, errors will be raised as exceptions, and warnings
will be printed.

setLocale (locale)
Allow an application to set the locale for errors and warnings.

SAX parsers are not required to provide localization for errors and warnings; if they cannot support the requested
locale, however, they must throw a SAX exception. Applications may request a locale change in the middle of
a parse.

getFeature (featurename)
Return the current setting for featurefeaturename. If the feature is not recognized,SAXNotRecognizedEx-
ception is raised. The well-known featurenames are listed in the modulexml.sax.handler .

setFeature (featurename, value)
Set thefeaturenameto value. If the feature is not recognized,SAXNotRecognizedException is raised. If
the feature or its setting is not supported by the parser,SAXNotSupportedExceptionis raised.

getProperty (propertyname)
Return the current setting for propertypropertyname. If the property is not recognized, aSAXNotRecog-
nizedException is raised. The well-known propertynames are listed in the modulexml.sax.handler .

setProperty (propertyname, value)
Set thepropertynameto value. If the property is not recognized,SAXNotRecognizedException is raised.
If the property or its setting is not supported by the parser,SAXNotSupportedExceptionis raised.

13.11.2 IncrementalParser Objects

Instances ofIncrementalParser offer the following additional methods:

feed (data)
Process a chunk ofdata.

close ()
Assume the end of the document. That will check well-formedness conditions that can be checked only at the
end, invoke handlers, and may clean up resources allocated during parsing.

reset ()
This method is called after close has been called to reset the parser so that it is ready to parse new documents.
The results of calling parse or feed after close without calling reset are undefined.”””

13.11.3 Locator Objects

Instances ofLocator provide these methods:

13.11. xml.sax.xmlreader — Interface for XML parsers 385

getColumnNumber ()
Return the column number where the current event ends.

getLineNumber ()
Return the line number where the current event ends.

getPublicId ()
Return the public identifier for the current event.

getSystemId ()
Return the system identifier for the current event.

13.11.4 InputSource Objects

setPublicId (id)
Sets the public identifier of thisInputSource .

getPublicId ()
Returns the public identifier of thisInputSource .

setSystemId (id)
Sets the system identifier of thisInputSource .

getSystemId ()
Returns the system identifier of thisInputSource .

setEncoding (encoding)
Sets the character encoding of thisInputSource .

The encoding must be a string acceptable for an XML encoding declaration (see section 4.3.3 of the XML
recommendation).

The encoding attribute of theInputSource is ignored if theInputSource also contains a character stream.

getEncoding ()
Get the character encoding of this InputSource.

setByteStream (bytefile)
Set the byte stream (a Python file-like object which does not perform byte-to-character conversion) for this input
source.

The SAX parser will ignore this if there is also a character stream specified, but it will use a byte stream in
preference to opening a URI connection itself.

If the application knows the character encoding of the byte stream, it should set it with the setEncoding method.

getByteStream ()
Get the byte stream for this input source.

The getEncoding method will return the character encoding for this byte stream, or None if unknown.

setCharacterStream (charfile)
Set the character stream for this input source. (The stream must be a Python 1.6 Unicode-wrapped file-like that
performs conversion to Unicode strings.)

If there is a character stream specified, the SAX parser will ignore any byte stream and will not attempt to open
a URI connection to the system identifier.

getCharacterStream ()
Get the character stream for this input source.

386 Chapter 13. Structured Markup Processing Tools

13.11.5 AttributesImpl Objects

AttributesImpl objects implement a portion of the mapping protocol, and the methodscopy() , get() ,
has key() , items() , keys() , andvalues() . The following methods are also provided:

getLength ()
Return the number of attributes.

getNames ()
Return the names of the attributes.

getType (name)
Returns the type of the attributename, which is normally’CDATA’ .

getValue (name)
Return the value of attributename.

13.11.6 AttributesNSImpl Objects

getValueByQName (name)
Return the value for a qualified name.

getNameByQName(name)
Return the(namespace, localname) pair for a qualifiedname.

getQNameByName(name)
Return the qualified name for a(namespace, localname) pair.

getQNames()
Return the qualified names of all attributes.

13.12 xmllib — A parser for XML documents

Deprecated since release 2.0.Usexml.sax instead. The newer XML package includes full support for XML 1.0.

Changed in version 1.5.2: Added namespace support..

This module defines a classXMLParser which serves as the basis for parsing text files formatted in XML (Extensible
Markup Language).

classXMLParser ()
TheXMLParser class must be instantiated without arguments.1

This class provides the following interface methods and instance variables:

attributes
A mapping of element names to mappings. The latter mapping maps attribute names that are valid for the
element to the default value of the attribute, or if there is no default toNone. The default value is the empty
dictionary. This variable is meant to be overridden, not extended since the default is shared by all instances of
XMLParser .

1Actually, a number of keyword arguments are recognized which influence the parser to accept certain non-standard constructs. The following

keyword arguments are currently recognized. The defaults for all of these is0 (false) except for the last one for which the default is1 (true).

accept unquoted attributes(accept certain attribute values without requiring quotes),accept missing endtag name
(accept end tags that look like</>), map case(map upper case to lower case in tags and attributes),accept utf8
(allow UTF-8 characters in input; this is required according to the XML standard, but Python does not as yet deal
properly with these characters, so this is not the default),translate attribute references(don’t attempt to translate
character and entity references in attribute values).

13.12. xmllib — A parser for XML documents 387

elements
A mapping of element names to tuples. The tuples contain a function for handling the start and end tag re-
spectively of the element, orNone if the methodunknown starttag() or unknown endtag() is to be
called. The default value is the empty dictionary. This variable is meant to be overridden, not extended since
the default is shared by all instances ofXMLParser .

entitydefs
A mapping of entitynames to their values. The default value contains definitions for’lt’ , ’gt’ , ’amp’ ,
’quot’ , and’apos’ .

reset ()
Reset the instance. Loses all unprocessed data. This is called implicitly at the instantiation time.

setnomoretags ()
Stop processing tags. Treat all following input as literal input (CDATA).

setliteral ()
Enter literal mode (CDATA mode). This mode is automatically exited when the close tag matching the last
unclosed open tag is encountered.

feed (data)
Feed some text to the parser. It is processed insofar as it consists of complete tags; incomplete data is buffered
until more data is fed orclose() is called.

close ()
Force processing of all buffered data as if it were followed by an end-of-file mark. This method may be redefined
by a derived class to define additional processing at the end of the input, but the redefined version should always
call close() .

translate references (data)
Translate all entity and character references indataand return the translated string.

getnamespace ()
Return a mapping of namespace abbreviations to namespace URIs that are currently in effect.

handle xml (encoding, standalone)
This method is called when the ‘<?xml ...?> ’ tag is processed. The arguments are the values of the en-
coding and standalone attributes in the tag. Both encoding and standalone are optional. The values passed to
handle xml() default toNone and the string’no’ respectively.

handle doctype (tag, pubid, syslit, data)
This method is called when the ‘<!DOCTYPE...> ’ declaration is processed. The arguments are the tag name
of the root element, the Formal Public Identifier (orNone if not specified), the system identifier, and the unin-
terpreted contents of the internal DTD subset as a string (orNone if not present).

handle starttag (tag, method, attributes)
This method is called to handle start tags for which a start tag handler is defined in the instance variableele-
ments . The tag argument is the name of the tag, and themethodargument is the function (method) which
should be used to support semantic interpretation of the start tag. Theattributesargument is a dictionary
of attributes, the key being thenameand the value being thevalue of the attribute found inside the tag’s
<> brackets. Character and entity references in thevalue have been interpreted. For instance, for the start
tag , this method would be called ashandle starttag(’A’,
self.elements[’A’][0], {’HREF’: ’http://www.cwi.nl/’}) . The base implementation
simply callsmethodwith attributesas the only argument.

handle endtag (tag, method)
This method is called to handle endtags for which an end tag handler is defined in the instance variableele-
ments . The tag argument is the name of the tag, and themethodargument is the function (method) which
should be used to support semantic interpretation of the end tag. For instance, for the endtag , this
method would be called ashandle endtag(’A’, self.elements[’A’][1]) . The base implemen-

388 Chapter 13. Structured Markup Processing Tools

tation simply callsmethod.

handle data (data)
This method is called to process arbitrary data. It is intended to be overridden by a derived class; the base class
implementation does nothing.

handle charref (ref)
This method is called to process a character reference of the form ‘&#ref ; ’. ref can either be a decimal number,
or a hexadecimal number when preceded by an ‘x ’. In the base implementation,ref must be a number in the
range 0-255. It translates the character toASCII and calls the methodhandle data() with the character as
argument. Ifref is invalid or out of range, the methodunknown charref(ref) is called to handle the error.
A subclass must override this method to provide support for character references outside of theASCII range.

handle comment(comment)
This method is called when a comment is encountered. Thecommentargument is a string containing the text
between the ‘<!-- ’ and ‘--> ’ delimiters, but not the delimiters themselves. For example, the comment ‘<!-
-text--> ’ will cause this method to be called with the argument’text’ . The default method does nothing.

handle cdata (data)
This method is called when a CDATA element is encountered. Thedataargument is a string containing the text
between the ‘<![CDATA[’ and ‘]]> ’ delimiters, but not the delimiters themselves. For example, the entity
‘<![CDATA[text]]> ’ will cause this method to be called with the argument’text’ . The default method
does nothing, and is intended to be overridden.

handle proc (name, data)
This method is called when a processing instruction (PI) is encountered. Thenameis the PI target, and thedata
argument is a string containing the text between the PI target and the closing delimiter, but not the delimiter
itself. For example, the instruction ‘<?XML text?> ’ will cause this method to be called with the arguments
’XML’ and’text’ . The default method does nothing. Note that if a document starts with ‘<?xml ..?> ’,
handle xml() is called to handle it.

handle special (data)
This method is called when a declaration is encountered. Thedata argument is a string containing the text
between the ‘<! ’ and ‘>’ delimiters, but not the delimiters themselves. For example, the entity declaration
‘<!ENTITY text> ’ will cause this method to be called with the argument’ENTITY text’ . The default
method does nothing. Note that ‘<!DOCTYPE ...> ’ is handled separately if it is located at the start of the
document.

syntax error (message)
This method is called when a syntax error is encountered. Themessageis a description of what was wrong.
The default method raises aRuntimeError exception. If this method is overridden, it is permissible for
it to return. This method is only called when the error can be recovered from. Unrecoverable errors raise a
RuntimeError without first callingsyntax error() .

unknown starttag (tag, attributes)
This method is called to process an unknown start tag. It is intended to be overridden by a derived class; the
base class implementation does nothing.

unknown endtag (tag)
This method is called to process an unknown end tag. It is intended to be overridden by a derived class; the base
class implementation does nothing.

unknown charref (ref)
This method is called to process unresolvable numeric character references. It is intended to be overridden by a
derived class; the base class implementation does nothing.

unknown entityref (ref)
This method is called to process an unknown entity reference. It is intended to be overridden by a derived class;
the base class implementation callssyntax error() to signal an error.

13.12. xmllib — A parser for XML documents 389

See Also:

Extensible Markup Language (XML) 1.0
(http://www.w3.org/TR/REC-xml)

The XML specification, published by the World Wide Web Consortium (W3C), defines the syntax and processor
requirements for XML. References to additional material on XML, including translations of the specification,
are available athttp://www.w3.org/XML/.

Python and XML Processing
(http://www.python.org/topics/xml/)

The Python XML Topic Guide provides a great deal of information on using XML from Python and links to
other sources of information on XML.

SIG for XML Processing in Python
(http://www.python.org/sigs/xml-sig/)

The Python XML Special Interest Group is developing substantial support for processing XML from Python.

13.12.1 XML Namespaces

This module has support for XML namespaces as defined in the XML Namespaces proposed recommendation.

Tag and attribute names that are defined in an XML namespace are handled as if the name of the tag or
element consisted of the namespace (i.e. the URL that defines the namespace) followed by a space and
the name of the tag or attribute. For instance, the tag<html xmlns=’http://www.w3.org/TR/REC-
html40’> is treated as if the tag name was’http://www.w3.org/TR/REC-html40 html’ , and
the tag <html:a href=’http://frob.com’> inside the above mentioned element is treated as if
the tag name were’http://www.w3.org/TR/REC-html40 a’ and the attribute name as if it were
’http://www.w3.org/TR/REC-html40 href’ .

An older draft of the XML Namespaces proposal is also recognized, but triggers a warning.

See Also:

Namespaces in XML
(http://www.w3.org/TR/REC-xml-names/)

This World-Wide Web Consortium recommendation describes the proper syntax and processing requirements
for namespaces in XML.

390 Chapter 13. Structured Markup Processing Tools

CHAPTER

FOURTEEN

Multimedia Services

The modules described in this chapter implement various algorithms or interfaces that are mainly useful for multimedia
applications. They are available at the discretion of the installation. Here’s an overview:

audioop Manipulate raw audio data.
imageop Manipulate raw image data.
aifc Read and write audio files in AIFF or AIFC format.
sunau Provide an interface to the Sun AU sound format.
wave Provide an interface to the WAV sound format.
chunk Module to read IFF chunks.
colorsys Conversion functions between RGB and other color systems.
rgbimg Read and write image files in “SGI RGB” format (the module isnotSGI specific though!).
imghdr Determine the type of image contained in a file or byte stream.
sndhdr Determine type of a sound file.

14.1 audioop — Manipulate raw audio data

Theaudioop module contains some useful operations on sound fragments. It operates on sound fragments consisting
of signed integer samples 8, 16 or 32 bits wide, stored in Python strings. This is the same format as used by theal
andsunaudiodev modules. All scalar items are integers, unless specified otherwise.

This module provides support for u-LAW and Intel/DVI ADPCM encodings.

A few of the more complicated operations only take 16-bit samples, otherwise the sample size (in bytes) is always a
parameter of the operation.

The module defines the following variables and functions:

exceptionerror
This exception is raised on all errors, such as unknown number of bytes per sample, etc.

add (fragment1, fragment2, width)
Return a fragment which is the addition of the two samples passed as parameters.width is the sample width in
bytes, either1, 2 or 4. Both fragments should have the same length.

adpcm2lin (adpcmfragment, width, state)
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See the description oflin2adpcm() for
details on ADPCM coding. Return a tuple(sample, newstate) where the sample has the width specified in
width.

adpcm32lin (adpcmfragment, width, state)
Decode an alternative 3-bit ADPCM code. Seelin2adpcm3() for details.

avg (fragment, width)
Return the average over all samples in the fragment.

391

avgpp (fragment, width)
Return the average peak-peak value over all samples in the fragment. No filtering is done, so the usefulness of
this routine is questionable.

bias (fragment, width, bias)
Return a fragment that is the original fragment with a bias added to each sample.

cross (fragment, width)
Return the number of zero crossings in the fragment passed as an argument.

findfactor (fragment, reference)
Return a factorF such thatrms(add(fragment, mul(reference, - F))) is minimal, i.e., return the factor
with which you should multiplyreferenceto make it match as well as possible tofragment. The fragments
should both contain 2-byte samples.

The time taken by this routine is proportional tolen(fragment) .

findfit (fragment, reference)
Try to matchreferenceas well as possible to a portion offragment(which should be the longer fragment). This
is (conceptually) done by taking slices out offragment, using findfactor() to compute the best match,
and minimizing the result. The fragments should both contain 2-byte samples. Return a tuple(offset, factor)
whereoffsetis the (integer) offset intofragmentwhere the optimal match started andfactor is the (floating-point)
factor as perfindfactor() .

findmax (fragment, length)
Searchfragmentfor a slice of lengthlengthsamples (not bytes!) with maximum energy, i.e., returni for which
rms(fragment[i*2:(i+length)*2]) is maximal. The fragments should both contain 2-byte samples.

The routine takes time proportional tolen(fragment) .

getsample (fragment, width, index)
Return the value of sampleindexfrom the fragment.

lin2lin (fragment, width, newwidth)
Convert samples between 1-, 2- and 4-byte formats.

lin2adpcm (fragment, width, state)
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an adaptive coding scheme, whereby
each 4 bit number is the difference between one sample and the next, divided by a (varying) step. The Intel/DVI
ADPCM algorithm has been selected for use by the IMA, so it may well become a standard.

stateis a tuple containing the state of the coder. The coder returns a tuple(adpcmfrag, newstate) , and the
newstateshould be passed to the next call oflin2adpcm() . In the initial call,None can be passed as the
state.adpcmfragis the ADPCM coded fragment packed 2 4-bit values per byte.

lin2adpcm3 (fragment, width, state)
This is an alternative ADPCM coder that uses only 3 bits per sample. It is not compatible with the Intel/DVI
ADPCM coder and its output is not packed (due to laziness on the side of the author). Its use is discouraged.

lin2ulaw (fragment, width)
Convert samples in the audio fragment to u-LAW encoding and return this as a Python string. u-LAW is an
audio encoding format whereby you get a dynamic range of about 14 bits using only 8 bit samples. It is used by
the Sun audio hardware, among others.

minmax(fragment, width)
Return a tuple consisting of the minimum and maximum values of all samples in the sound fragment.

max(fragment, width)
Return the maximum of theabsolute valueof all samples in a fragment.

maxpp(fragment, width)
Return the maximum peak-peak value in the sound fragment.

392 Chapter 14. Multimedia Services

mul (fragment, width, factor)
Return a fragment that has all samples in the original fragment multiplied by the floating-point valuefactor.
Overflow is silently ignored.

ratecv (fragment, width, nchannels, inrate, outrate, state[, weightA[, weightB]])
Convert the frame rate of the input fragment.

stateis a tuple containing the state of the converter. The converter returns a tuple(newfragment, newstate) ,
andnewstateshould be passed to the next call ofratecv() .

TheweightAandweightBarguments are parameters for a simple digital filter and default to1 and0 respectively.

reverse (fragment, width)
Reverse the samples in a fragment and returns the modified fragment.

rms (fragment, width)
Return the root-mean-square of the fragment, i.e.√∑

Si
2

n

This is a measure of the power in an audio signal.

tomono (fragment, width, lfactor, rfactor)
Convert a stereo fragment to a mono fragment. The left channel is multiplied bylfactor and the right channel
by rfactor before adding the two channels to give a mono signal.

tostereo (fragment, width, lfactor, rfactor)
Generate a stereo fragment from a mono fragment. Each pair of samples in the stereo fragment are computed
from the mono sample, whereby left channel samples are multiplied bylfactor and right channel samples by
rfactor.

ulaw2lin (fragment, width)
Convert sound fragments in u-LAW encoding to linearly encoded sound fragments. u-LAW encoding always
uses 8 bits samples, sowidth refers only to the sample width of the output fragment here.

Note that operations such asmul() or max() make no distinction between mono and stereo fragments, i.e. all
samples are treated equal. If this is a problem the stereo fragment should be split into two mono fragments first and
recombined later. Here is an example of how to do that:

def mul_stereo(sample, width, lfactor, rfactor):
lsample = audioop.tomono(sample, width, 1, 0)
rsample = audioop.tomono(sample, width, 0, 1)
lsample = audioop.mul(sample, width, lfactor)
rsample = audioop.mul(sample, width, rfactor)
lsample = audioop.tostereo(lsample, width, 1, 0)
rsample = audioop.tostereo(rsample, width, 0, 1)
return audioop.add(lsample, rsample, width)

If you use the ADPCM coder to build network packets and you want your protocol to be stateless (i.e. to be able to
tolerate packet loss) you should not only transmit the data but also the state. Note that you should send theinitial state
(the one you passed tolin2adpcm()) along to the decoder, not the final state (as returned by the coder). If you want
to usestruct.struct() to store the state in binary you can code the first element (the predicted value) in 16 bits
and the second (the delta index) in 8.

The ADPCM coders have never been tried against other ADPCM coders, only against themselves. It could well be
that I misinterpreted the standards in which case they will not be interoperable with the respective standards.

The find*() routines might look a bit funny at first sight. They are primarily meant to do echo cancellation. A
reasonably fast way to do this is to pick the most energetic piece of the output sample, locate that in the input sample

14.1. audioop — Manipulate raw audio data 393

and subtract the whole output sample from the input sample:

def echocancel(outputdata, inputdata):
pos = audioop.findmax(outputdata, 800) # one tenth second
out_test = outputdata[pos*2:]
in_test = inputdata[pos*2:]
ipos, factor = audioop.findfit(in_test, out_test)
Optional (for better cancellation):
factor = audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],
out_test)
prefill = ’\0’*(pos+ipos)*2
postfill = ’\0’*(len(inputdata)-len(prefill)-len(outputdata))
outputdata = prefill + audioop.mul(outputdata,2,-factor) + postfill
return audioop.add(inputdata, outputdata, 2)

14.2 imageop — Manipulate raw image data

The imageop module contains some useful operations on images. It operates on images consisting of 8 or 32 bit
pixels stored in Python strings. This is the same format as used bygl.lrectwrite() and theimgfile module.

The module defines the following variables and functions:

exceptionerror
This exception is raised on all errors, such as unknown number of bits per pixel, etc.

crop (image, psize, width, height, x0, y0, x1, y1)
Return the selected part ofimage, which should bywidth by heightin size and consist of pixels ofpsizebytes.
x0, y0, x1 andy1 are like thegl.lrectread() parameters, i.e. the boundary is included in the new image.
The new boundaries need not be inside the picture. Pixels that fall outside the old image will have their value
set to zero. Ifx0 is bigger thanx1 the new image is mirrored. The same holds for the y coordinates.

scale (image, psize, width, height, newwidth, newheight)
Returnimagescaled to sizenewwidthby newheight. No interpolation is done, scaling is done by simple-minded
pixel duplication or removal. Therefore, computer-generated images or dithered images will not look nice after
scaling.

tovideo (image, psize, width, height)
Run a vertical low-pass filter over an image. It does so by computing each destination pixel as the average of
two vertically-aligned source pixels. The main use of this routine is to forestall excessive flicker if the image is
displayed on a video device that uses interlacing, hence the name.

grey2mono (image, width, height, threshold)
Convert a 8-bit deep greyscale image to a 1-bit deep image by thresholding all the pixels. The resulting image
is tightly packed and is probably only useful as an argument tomono2grey() .

dither2mono (image, width, height)
Convert an 8-bit greyscale image to a 1-bit monochrome image using a (simple-minded) dithering algorithm.

mono2grey (image, width, height, p0, p1)
Convert a 1-bit monochrome image to an 8 bit greyscale or color image. All pixels that are zero-valued on
input get valuep0 on output and all one-value input pixels get valuep1 on output. To convert a monochrome
black-and-white image to greyscale pass the values0 and255 respectively.

grey2grey4 (image, width, height)
Convert an 8-bit greyscale image to a 4-bit greyscale image without dithering.

394 Chapter 14. Multimedia Services

grey2grey2 (image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image without dithering.

dither2grey2 (image, width, height)
Convert an 8-bit greyscale image to a 2-bit greyscale image with dithering. As fordither2mono() , the
dithering algorithm is currently very simple.

grey42grey (image, width, height)
Convert a 4-bit greyscale image to an 8-bit greyscale image.

grey22grey (image, width, height)
Convert a 2-bit greyscale image to an 8-bit greyscale image.

14.3 aifc — Read and write AIFF and AIFC files

This module provides support for reading and writing AIFF and AIFF-C files. AIFF is Audio Interchange File Format,
a format for storing digital audio samples in a file. AIFF-C is a newer version of the format that includes the ability to
compress the audio data.

Caveat: Some operations may only work under IRIX; these will raiseImportError when attempting to import the
cl module, which is only available on IRIX.

Audio files have a number of parameters that describe the audio data. The sampling rate or frame rate is the number of
times per second the sound is sampled. The number of channels indicate if the audio is mono, stereo, or quadro. Each
frame consists of one sample per channel. The sample size is the size in bytes of each sample. Thus a frame consists
of nchannels*samplesizebytes, and a second’s worth of audio consists ofnchannels*samplesize* frameratebytes.

For example, CD quality audio has a sample size of two bytes (16 bits), uses two channels (stereo) and has a frame rate
of 44,100 frames/second. This gives a frame size of 4 bytes (2*2), and a second’s worth occupies 2*2*44100 bytes,
i.e. 176,400 bytes.

Moduleaifc defines the following function:

open (file[, mode])
Open an AIFF or AIFF-C file and return an object instance with methods that are described below. The argument
file is either a string naming a file or a file object.modemust be’r’ or ’rb’ when the file must be opened for
reading, or’w’ or ’wb’ when the file must be opened for writing. If omitted,file.mode is used if it exists,
otherwise’rb’ is used. When used for writing, the file object should be seekable, unless you know ahead of
time how many samples you are going to write in total and usewriteframesraw() andsetnframes() .

Objects returned byopen() when a file is opened for reading have the following methods:

getnchannels ()
Return the number of audio channels (1 for mono, 2 for stereo).

getsampwidth ()
Return the size in bytes of individual samples.

getframerate ()
Return the sampling rate (number of audio frames per second).

getnframes ()
Return the number of audio frames in the file.

getcomptype ()
Return a four-character string describing the type of compression used in the audio file. For AIFF files, the
returned value is’NONE’ .

getcompname ()
Return a human-readable description of the type of compression used in the audio file. For AIFF files, the

14.3. aifc — Read and write AIFF and AIFC files 395

returned value is’not compressed’ .

getparams ()
Return a tuple consisting of all of the above values in the above order.

getmarkers ()
Return a list of markers in the audio file. A marker consists of a tuple of three elements. The first is the mark
ID (an integer), the second is the mark position in frames from the beginning of the data (an integer), the third
is the name of the mark (a string).

getmark (id)
Return the tuple as described ingetmarkers() for the mark with the givenid.

readframes (nframes)
Read and return the nextnframesframes from the audio file. The returned data is a string containing for each
frame the uncompressed samples of all channels.

rewind ()
Rewind the read pointer. The nextreadframes() will start from the beginning.

setpos (pos)
Seek to the specified frame number.

tell ()
Return the current frame number.

close ()
Close the AIFF file. After calling this method, the object can no longer be used.

Objects returned byopen() when a file is opened for writing have all the above methods, except forreadframes()
andsetpos() . In addition the following methods exist. Theget*() methods can only be called after the corre-
spondingset*() methods have been called. Before the firstwriteframes() or writeframesraw() , all
parameters except for the number of frames must be filled in.

aiff ()
Create an AIFF file. The default is that an AIFF-C file is created, unless the name of the file ends in’.aiff’
in which case the default is an AIFF file.

aifc ()
Create an AIFF-C file. The default is that an AIFF-C file is created, unless the name of the file ends in’.aiff’
in which case the default is an AIFF file.

setnchannels (nchannels)
Specify the number of channels in the audio file.

setsampwidth (width)
Specify the size in bytes of audio samples.

setframerate (rate)
Specify the sampling frequency in frames per second.

setnframes (nframes)
Specify the number of frames that are to be written to the audio file. If this parameter is not set, or not set
correctly, the file needs to support seeking.

setcomptype (type, name)
Specify the compression type. If not specified, the audio data will not be compressed. In AIFF files, compression
is not possible. The name parameter should be a human-readable description of the compression type, the type
parameter should be a four-character string. Currently the following compression types are supported: NONE,
ULAW, ALAW, G722.

setparams (nchannels, sampwidth, framerate, comptype, compname)
Set all the above parameters at once. The argument is a tuple consisting of the various parameters. This means

396 Chapter 14. Multimedia Services

that it is possible to use the result of agetparams() call as argument tosetparams() .

setmark (id, pos, name)
Add a mark with the given id (larger than 0), and the given name at the given position. This method can be
called at any time beforeclose() .

tell ()
Return the current write position in the output file. Useful in combination withsetmark() .

writeframes (data)
Write data to the output file. This method can only be called after the audio file parameters have been set.

writeframesraw (data)
Like writeframes() , except that the header of the audio file is not updated.

close ()
Close the AIFF file. The header of the file is updated to reflect the actual size of the audio data. After calling
this method, the object can no longer be used.

14.4 sunau — Read and write Sun AU files

Thesunau module provides a convenient interface to the Sun AU sound format. Note that this module is interface-
compatible with the modulesaifc andwave.

An audio file consists of a header followed by the data. The fields of the header are:

Field Contents
magic word The four bytes ‘.snd ’.
header size Size of the header, including info, in bytes.
data size Physical size of the data, in bytes.
encoding Indicates how the audio samples are encoded.
sample rate The sampling rate.
of channels The number of channels in the samples.
info ASCII string giving a description of the audio file (padded with null bytes).

Apart from the info field, all header fields are 4 bytes in size. They are all 32-bit unsigned integers encoded in
big-endian byte order.

Thesunau module defines the following functions:

open (file, mode)
If file is a string, open the file by that name, otherwise treat it as a seekable file-like object.modecan be any of

’r’ Read only mode.

’w’ Write only mode.

Note that it does not allow read/write files.

A modeof ’r’ returns aAU read object, while amodeof ’w’ or ’wb’ returns aAU write object.

openfp (file, mode)
A synonym foropen , maintained for backwards compatibility.

Thesunau module defines the following exception:

exceptionError
An error raised when something is impossible because of Sun AU specs or implementation deficiency.

Thesunau module defines the following data items:

14.4. sunau — Read and write Sun AU files 397

AUDIO FILE MAGIC
An integer every valid Sun AU file begins with, stored in big-endian form. This is the string ‘.snd ’ interpreted
as an integer.

AUDIO FILE ENCODINGMULAW8
AUDIO FILE ENCODINGLINEAR 8
AUDIO FILE ENCODINGLINEAR 16
AUDIO FILE ENCODINGLINEAR 24
AUDIO FILE ENCODINGLINEAR 32
AUDIO FILE ENCODINGALAW 8

Values of the encoding field from the AU header which are supported by this module.

AUDIO FILE ENCODINGFLOAT
AUDIO FILE ENCODINGDOUBLE
AUDIO FILE ENCODINGADPCMG721
AUDIO FILE ENCODINGADPCMG722
AUDIO FILE ENCODINGADPCMG723 3
AUDIO FILE ENCODINGADPCMG723 5

Additional known values of the encoding field from the AU header, but which are not supported by this module.

14.4.1 AU read Objects

AU read objects, as returned byopen() above, have the following methods:

close ()
Close the stream, and make the instance unusable. (This is called automatically on deletion.)

getnchannels ()
Returns number of audio channels (1 for mone, 2 for stereo).

getsampwidth ()
Returns sample width in bytes.

getframerate ()
Returns sampling frequency.

getnframes ()
Returns number of audio frames.

getcomptype ()
Returns compression type. Supported compression types are’ULAW’ , ’ALAW’ and’NONE’ .

getcompname ()
Human-readable version ofgetcomptype() . The supported types have the respective names’CCITT
G.711 u-law’ , ’CCITT G.711 A-law’ and’not compressed’ .

getparams ()
Returns a tuple(nchannels, sampwidth, framerate, nframes, comptype, compname) , equivalent to out-
put of theget*() methods.

readframes (n)
Reads and returns at mostn frames of audio, as a string of bytes. The data will be returned in linear format. If
the original data is in u-LAW format, it will be converted.

rewind ()
Rewind the file pointer to the beginning of the audio stream.

The following two methods define a term “position” which is compatible between them, and is otherwise implemen-
tation dependent.

398 Chapter 14. Multimedia Services

setpos (pos)
Set the file pointer to the specified position. Only values returned fromtell() should be used forpos.

tell ()
Return current file pointer position. Note that the returned value has nothing to do with the actual position in the
file.

The following two functions are defined for compatibility with theaifc , and don’t do anything interesting.

getmarkers ()
ReturnsNone.

getmark (id)
Raise an error.

14.4.2 AU write Objects

AU write objects, as returned byopen() above, have the following methods:

setnchannels (n)
Set the number of channels.

setsampwidth (n)
Set the sample width (in bytes.)

setframerate (n)
Set the frame rate.

setnframes (n)
Set the number of frames. This can be later changed, when and if more frames are written.

setcomptype (type, name)
Set the compression type and description. Only’NONE’ and’ULAW’ are supported on output.

setparams (tuple)
The tuple should be(nchannels, sampwidth, framerate, nframes, comptype, compname) , with values
valid for theset*() methods. Set all parameters.

tell ()
Return current position in the file, with the same disclaimer for theAU read.tell() and
AU read.setpos() methods.

writeframesraw (data)
Write audio frames, without correctingnframes.

writeframes (data)
Write audio frames and make surenframesis correct.

close ()
Make surenframesis correct, and close the file.

This method is called upon deletion.

Note that it is invalid to set any parameters after callingwriteframes() or writeframesraw() .

14.5 wave — Read and write WAV files

The wave module provides a convenient interface to the WAV sound format. It does not support compres-
sion/decompression, but it does support mono/stereo.

Thewave module defines the following function and exception:

14.5. wave — Read and write WAV files 399

open (file[, mode])
If file is a string, open the file by that name, other treat it as a seekable file-like object.modecan be any of

’r’ , ’rb’ Read only mode.

’w’ , ’wb’ Write only mode.

Note that it does not allow read/write WAV files.

A modeof ’r’ or ’rb’ returns aWave read object, while amodeof ’w’ or ’wb’ returns aWave write
object. Ifmodeis omitted and a file-like object is passed asfile, file.mode is used as the default value formode
(the ‘b’ flag is still added if necessary).

openfp (file, mode)
A synonym foropen() , maintained for backwards compatibility.

exceptionError
An error raised when something is impossible because it violates the WAV specification or hits an implementa-
tion deficiency.

14.5.1 Wave read Objects

Wave read objects, as returned byopen() , have the following methods:

close ()
Close the stream, and make the instance unusable. This is called automatically on object collection.

getnchannels ()
Returns number of audio channels (1 for mono,2 for stereo).

getsampwidth ()
Returns sample width in bytes.

getframerate ()
Returns sampling frequency.

getnframes ()
Returns number of audio frames.

getcomptype ()
Returns compression type (’NONE’ is the only supported type).

getcompname ()
Human-readable version ofgetcomptype() . Usually’not compressed’ parallels’NONE’ .

getparams ()
Returns a tuple(nchannels, sampwidth, framerate, nframes, comptype, compname) , equivalent to out-
put of theget*() methods.

readframes (n)
Reads and returns at mostn frames of audio, as a string of bytes.

rewind ()
Rewind the file pointer to the beginning of the audio stream.

The following two methods are defined for compatibility with theaifc module, and don’t do anything interesting.

getmarkers ()
ReturnsNone.

getmark (id)
Raise an error.

400 Chapter 14. Multimedia Services

The following two methods define a term “position” which is compatible between them, and is otherwise implemen-
tation dependent.

setpos (pos)
Set the file pointer to the specified position.

tell ()
Return current file pointer position.

14.5.2 Wave write Objects

Wave write objects, as returned byopen() , have the following methods:

close ()
Make surenframesis correct, and close the file. This method is called upon deletion.

setnchannels (n)
Set the number of channels.

setsampwidth (n)
Set the sample width ton bytes.

setframerate (n)
Set the frame rate ton.

setnframes (n)
Set the number of frames ton. This will be changed later if more frames are written.

setcomptype (type, name)
Set the compression type and description.

setparams (tuple)
The tuple should be(nchannels, sampwidth, framerate, nframes, comptype, compname) , with values
valid for theset*() methods. Sets all parameters.

tell ()
Return current position in the file, with the same disclaimer for theWave read.tell() and
Wave read.setpos() methods.

writeframesraw (data)
Write audio frames, without correctingnframes.

writeframes (data)
Write audio frames and make surenframesis correct.

Note that it is invalid to set any parameters after callingwriteframes() or writeframesraw() , and any
attempt to do so will raisewave.Error .

14.6 chunk — Read IFF chunked data

This module provides an interface for reading files that use EA IFF 85 chunks.1 This format is used in at least the
Audio Interchange File Format (AIFF/AIFF-C) and the Real Media File Format (RMFF). The WAVE audio file format
is closely related and can also be read using this module.

A chunk has the following structure:
1“EA IFF 85” Standard for Interchange Format Files, Jerry Morrison, Electronic Arts, January 1985.

14.6. chunk — Read IFF chunked data 401

Offset Length Contents
0 4 Chunk ID
4 4 Size of chunk in big-endian byte order, not including the header
8 n Data bytes, wheren is the size given in the preceding field

8 + n 0 or 1 Pad byte needed ifn is odd and chunk alignment is used

The ID is a 4-byte string which identifies the type of chunk.

The size field (a 32-bit value, encoded using big-endian byte order) gives the size of the chunk data, not including the
8-byte header.

Usually an IFF-type file consists of one or more chunks. The proposed usage of theChunk class defined here is to
instantiate an instance at the start of each chunk and read from the instance until it reaches the end, after which a new
instance can be instantiated. At the end of the file, creating a new instance will fail with aEOFError exception.

classChunk (file[, align, bigendian, inclheader])
Class which represents a chunk. Thefile argument is expected to be a file-like object. An instance of this class
is specifically allowed. The only method that is needed isread() . If the methodsseek() andtell() are
present and don’t raise an exception, they are also used. If these methods are present and raise an exception,
they are expected to not have altered the object. If the optional argumentalign is true, chunks are assumed to
be aligned on 2-byte boundaries. Ifalign is false, no alignment is assumed. The default value is true. If the
optional argumentbigendianis false, the chunk size is assumed to be in little-endian order. This is needed for
WAVE audio files. The default value is true. If the optional argumentinclheaderis true, the size given in the
chunk header includes the size of the header. The default value is false.

A Chunk object supports the following methods:

getname ()
Returns the name (ID) of the chunk. This is the first 4 bytes of the chunk.

getsize ()
Returns the size of the chunk.

close ()
Close and skip to the end of the chunk. This does not close the underlying file.

The remaining methods will raiseIOError if called after theclose() method has been called.

isatty ()
Returns0.

seek (pos[, whence])
Set the chunk’s current position. Thewhenceargument is optional and defaults to0 (absolute file positioning);
other values are1 (seek relative to the current position) and2 (seek relative to the file’s end). There is no return
value. If the underlying file does not allow seek, only forward seeks are allowed.

tell ()
Return the current position into the chunk.

read ([size])
Read at mostsizebytes from the chunk (less if the read hits the end of the chunk before obtainingsizebytes).
If the sizeargument is negative or omitted, read all data until the end of the chunk. The bytes are returned as a
string object. An empty string is returned when the end of the chunk is encountered immediately.

skip ()
Skip to the end of the chunk. All further calls toread() for the chunk will return’’ . If you are not interested
in the contents of the chunk, this method should be called so that the file points to the start of the next chunk.

14.7 colorsys — Conversions between color systems

402 Chapter 14. Multimedia Services

Thecolorsys module defines bidirectional conversions of color values between colors expressed in the RGB (Red
Green Blue) color space used in computer monitors and three other coordinate systems: YIQ, HLS (Hue Lightness
Saturation) and HSV (Hue Saturation Value). Coordinates in all of these color spaces are floating point values. In the
YIQ space, the Y coordinate is between 0 and 1, but the I and Q coordinates can be positive or negative. In all other
spaces, the coordinates are all between 0 and 1.

More information about color spaces can be found athttp://www.inforamp.net/%7epoynton/ColorFAQ.html.

Thecolorsys module defines the following functions:

rgb to yiq (r, g, b)
Convert the color from RGB coordinates to YIQ coordinates.

yiq to rgb (y, i, q)
Convert the color from YIQ coordinates to RGB coordinates.

rgb to hls (r, g, b)
Convert the color from RGB coordinates to HLS coordinates.

hls to rgb (h, l, s)
Convert the color from HLS coordinates to RGB coordinates.

rgb to hsv (r, g, b)
Convert the color from RGB coordinates to HSV coordinates.

hsv to rgb (h, s, v)
Convert the color from HSV coordinates to RGB coordinates.

Example:

>>> import colorsys
>>> colorsys.rgb_to_hsv(.3, .4, .2)
(0.25, 0.5, 0.4)
>>> colorsys.hsv_to_rgb(0.25, 0.5, 0.4)
(0.3, 0.4, 0.2)

14.8 rgbimg — Read and write “SGI RGB” files

The rgbimg module allows Python programs to access SGI imglib image files (also known as ‘.rgb’ files). The
module is far from complete, but is provided anyway since the functionality that there is enough in some cases.
Currently, colormap files are not supported.

The module defines the following variables and functions:

exceptionerror
This exception is raised on all errors, such as unsupported file type, etc.

sizeofimage (file)
This function returns a tuple(x, y) wherex andy are the size of the image in pixels. Only 4 byte RGBA
pixels, 3 byte RGB pixels, and 1 byte greyscale pixels are currently supported.

longimagedata (file)
This function reads and decodes the image on the specified file, and returns it as a Python string. The string
has 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format is suitable to pass to
gl.lrectwrite() , for instance.

longstoimage (data, x, y, z, file)
This function writes the RGBA data indata to image filefile. x andy give the size of the image.z is 1 if the

14.8. rgbimg — Read and write “SGI RGB” files 403

saved image should be 1 byte greyscale, 3 if the saved image should be 3 byte RGB data, or 4 if the saved images
should be 4 byte RGBA data. The input data always contains 4 bytes per pixel. These are the formats returned
by gl.lrectread() .

ttob (flag)
This function sets a global flag which defines whether the scan lines of the image are read or written from bottom
to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is one, compatible with X). The default
is zero.

14.9 imghdr — Determine the type of an image

The imghdr module determines the type of image contained in a file or byte stream.

The imghdr module defines the following function:

what (filename[, h])
Tests the image data contained in the file named byfilename, and returns a string describing the image type. If
optionalh is provided, thefilenameis ignored andh is assumed to contain the byte stream to test.

The following image types are recognized, as listed below with the return value fromwhat() :

Value Image format
’rgb’ SGI ImgLib Files
’gif’ GIF 87a and 89a Files
’pbm’ Portable Bitmap Files
’pgm’ Portable Graymap Files
’ppm’ Portable Pixmap Files
’tiff’ TIFF Files
’rast’ Sun Raster Files
’xbm’ X Bitmap Files
’jpeg’ JPEG data in JFIF format
’bmp’ BMP files
’png’ Portable Network Graphics

You can extend the list of file typesimghdr can recognize by appending to this variable:

tests
A list of functions performing the individual tests. Each function takes two arguments: the byte-stream and an
open file-like object. Whenwhat() is called with a byte-stream, the file-like object will beNone.

The test function should return a string describing the image type if the test succeeded, orNone if it failed.

Example:

>>> import imghdr
>>> imghdr.what(’/tmp/bass.gif’)
’gif’

14.10 sndhdr — Determine type of sound file

Thesndhdr provides utility functions which attempt to determine the type of sound data which is in a file. When these
functions are able to determine what type of sound data is stored in a file, they return a tuple(type, sampling rate,

404 Chapter 14. Multimedia Services

channels, frames, bits per sample) . The value fortype indicates the data type and will be one of the strings
’aifc’ , ’aiff’ , ’au’ , ’hcom’ , ’sndr’ , ’sndt’ , ’voc’ , ’wav’ , ’8svx’ , ’sb’ , ’ub’ , or ’ul’ . The
sampling ratewill be either the actual value or0 if unknown or difficult to decode. Similarly,channelswill be either
the number of channels or0 if it cannot be determined or if the value is difficult to decode. The value forframeswill
be either the number of frames or-1 . The last item in the tuple,bits per sample, will either be the sample size in
bits or ’A’ for A-LAW or ’U’ for u-LAW.

what (filename)
Determines the type of sound data stored in the filefilenameusingwhathdr() . If it succeeds, returns a tuple
as described above, otherwiseNone is returned.

whathdr (filename)
Determines the type of sound data stored in a file based on the file header. The name of the file is given by
filename. This function returns a tuple as described above on success, orNone.

14.10. sndhdr — Determine type of sound file 405

406

CHAPTER

FIFTEEN

Cryptographic Services

The modules described in this chapter implement various algorithms of a cryptographic nature. They are available at
the discretion of the installation. Here’s an overview:

md5 RSA’s MD5 message digest algorithm.
sha NIST’s secure hash algorithm, SHA.
mpz Interface to the GNU MP library for arbitrary precision arithmetic.
rotor Enigma-like encryption and decryption.

Hardcore cypherpunks will probably find the cryptographic modules written by Andrew Kuchling of further interest;
the package adds built-in modules for DES and IDEA encryption, provides a Python module for reading and decrypting
PGP files, and then some. These modules are not distributed with Python but available separately. See the URL
http://starship.python.net/crew/amk/python/code/crypto.html or send email toamk1@bigfoot.com for more information.

15.1 md5— MD5 message digest algorithm

This module implements the interface to RSA’s MD5 message digest algorithm (see also Internet RFC 1321). Its
use is quite straightforward: usenew() to create an md5 object. You can now feed this object with arbitrary strings
using theupdate() method, and at any point you can ask it for thedigest(a strong kind of 128-bit checksum, a.k.a.
“fingerprint”) of the concatenation of the strings fed to it so far using thedigest() method.

For example, to obtain the digest of the string’Nobody inspects the spammish repetition’ :

>>> import md5
>>> m = md5.new()
>>> m.update("Nobody inspects")
>>> m.update(" the spammish repetition")
>>> m.digest()
’\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9’

More condensed:

>>> md5.new("Nobody inspects the spammish repetition").digest()
’\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9’

new([arg])
Return a new md5 object. Ifarg is present, the method callupdate(arg) is made.

md5([arg])

407

For backward compatibility reasons, this is an alternative name for thenew() function.

An md5 object has the following methods:

update (arg)
Update the md5 object with the stringarg. Repeated calls are equivalent to a single call with the concatenation
of all the arguments, i.e.m.update(a); m.update(b) is equivalent tom.update(a+b) .

digest ()
Return the digest of the strings passed to theupdate() method so far. This is a 16-byte string which may
contain non-ASCII characters, including null bytes.

hexdigest ()
Like digest() except the digest is returned as a string of length 32, containing only hexadecimal digits. This
may be used to exchange the value safely in email or other non-binary environments.

copy ()
Return a copy (“clone”) of the md5 object. This can be used to efficiently compute the digests of strings that
share a common initial substring.

See Also:

Modulesha (section 15.2):
Similar module implementing the Secure Hash Algorithm (SHA). The SHA algorithm is considered a more
secure hash.

15.2 sha — SHA message digest algorithm

This module implements the interface to NIST’s secure hash algorithm, known as SHA. It is used in the same way as
themd5module: usenew() to create an sha object, then feed this object with arbitrary strings using theupdate()
method, and at any point you can ask it for thedigestof the concatenation of the strings fed to it so far. SHA digests
are 160 bits instead of MD5’s 128 bits.

new([string])
Return a new sha object. Ifstring is present, the method callupdate(string) is made.

The following values are provided as constants in the module and as attributes of the sha objects returned bynew() :

blocksize
Size of the blocks fed into the hash function; this is always1. This size is used to allow an arbitrary string to be
hashed.

digestsize
The size of the resulting digest in bytes. This is always20 .

An sha object has the same methods as md5 objects:

update (arg)
Update the sha object with the stringarg. Repeated calls are equivalent to a single call with the concatenation
of all the arguments, i.e.m.update(a); m.update(b) is equivalent tom.update(a+b) .

digest ()
Return the digest of the strings passed to theupdate() method so far. This is a 20-byte string which may
contain non-ASCII characters, including null bytes.

hexdigest ()
Like digest() except the digest is returned as a string of length 40, containing only hexadecimal digits. This
may be used to exchange the value safely in email or other non-binary environments.

copy ()
Return a copy (“clone”) of the sha object. This can be used to efficiently compute the digests of strings that

408 Chapter 15. Cryptographic Services

share a common initial substring.

See Also:

Secure Hash Standard
(http://csrc.nist.gov/fips/fip180-1.txt)

The Secure Hash Algorithm is defined by NIST document FIPS PUB 180-1:Secure Hash Standard, pub-
lished in April of 1995. It is available online as plain text (at least one diagram was omitted) and as PDF at
http://csrc.nist.gov/fips/fip180-1.pdf.

15.3 mpz — GNU arbitrary magnitude integers

This is an optional module. It is only available when Python is configured to include it, which requires that the GNU
MP software is installed.

This module implements the interface to part of the GNU MP library, which defines arbitrary precision integer and
rational number arithmetic routines. Only the interfaces to theinteger(mpz *()) routines are provided. If not stated
otherwise, the description in the GNU MP documentation can be applied.

Support for rational numbers can be implemented in Python. For an example, see theRat module, provided as
‘Demos/classes/Rat.py’ in the Python source distribution.

In general,mpz-numbers can be used just like other standard Python numbers, e.g., you can use the built-in operators
like +, * , etc., as well as the standard built-in functions likeabs() , int() , . . . ,divmod() , pow() . Please note:
the bitwise-xoroperation has been implemented as a bunch ofands, inverts andors, because the library lacks an
mpz xor() function, and I didn’t need one.

You create an mpz-number by calling the functionmpz() (see below for an exact description). An mpz-number is
printed like this:mpz(value) .

mpz(value)
Create a new mpz-number.valuecan be an integer, a long, another mpz-number, or even a string. If it is a string,
it is interpreted as an array of radix-256 digits, least significant digit first, resulting in a positive number. See
also thebinary() method, described below.

MPZType
The type of the objects returned bympz() and most other functions in this module.

A number ofextra functions are defined in this module. Non mpz-arguments are converted to mpz-values first, and
the functions return mpz-numbers.

powm(base, exponent, modulus)
Returnpow(base, exponent) % modulus. If exponent== 0, returnmpz(1) . In contrast to the C library
function, this version can handle negative exponents.

gcd (op1, op2)
Return the greatest common divisor ofop1andop2.

gcdext (a, b)
Return a tuple(g, s, t) , such thata* s + b* t == g == gcd(a, b) .

sqrt (op)
Return the square root ofop. The result is rounded towards zero.

sqrtrem (op)
Return a tuple(root, remainder) , such thatroot* root + remainder == op.

divm (numerator, denominator, modulus)
Returns a numberq such thatq * denominator % modulus == numerator. One could also implement this
function in Python, usinggcdext() .

15.3. mpz — GNU arbitrary magnitude integers 409

An mpz-number has one method:

binary ()
Convert this mpz-number to a binary string, where the number has been stored as an array of radix-256 digits,
least significant digit first.

The mpz-number must have a value greater than or equal to zero, otherwiseValueError will be raised.

15.4 rotor — Enigma-like encryption and decryption

This module implements a rotor-based encryption algorithm, contributed by Lance Ellinghouse. The design is derived
from the Enigma device, a machine used during World War II to encipher messages. A rotor is simply a permutation.
For example, if the character ‘A’ is the origin of the rotor, then a given rotor might map ‘A’ to ‘L’, ‘B’ to ‘Z’, ‘C’ to ‘G’,
and so on. To encrypt, we choose several different rotors, and set the origins of the rotors to known positions; their
initial position is the ciphering key. To encipher a character, we permute the original character by the first rotor, and
then apply the second rotor’s permutation to the result. We continue until we’ve applied all the rotors; the resulting
character is our ciphertext. We then change the origin of the final rotor by one position, from ‘A’ to ‘B’; if the final rotor
has made a complete revolution, then we rotate the next-to-last rotor by one position, and apply the same procedure
recursively. In other words, after enciphering one character, we advance the rotors in the same fashion as a car’s
odometer. Decoding works in the same way, except we reverse the permutations and apply them in the opposite order.

The available functions in this module are:

newrotor (key[, numrotors])
Return a rotor object.keyis a string containing the encryption key for the object; it can contain arbitrary binary
data. The key will be used to randomly generate the rotor permutations and their initial positions.numrotorsis
the number of rotor permutations in the returned object; if it is omitted, a default value of 6 will be used.

Rotor objects have the following methods:

setkey (key)
Sets the rotor’s key tokey.

encrypt (plaintext)
Reset the rotor object to its initial state and encryptplaintext, returning a string containing the ciphertext. The
ciphertext is always the same length as the original plaintext.

encryptmore (plaintext)
Encryptplaintextwithout resetting the rotor object, and return a string containing the ciphertext.

decrypt (ciphertext)
Reset the rotor object to its initial state and decryptciphertext, returning a string containing the plaintext. The
plaintext string will always be the same length as the ciphertext.

decryptmore (ciphertext)
Decryptciphertextwithout resetting the rotor object, and return a string containing the plaintext.

An example usage:

410 Chapter 15. Cryptographic Services

>>> import rotor
>>> rt = rotor.newrotor(’key’, 12)
>>> rt.encrypt(’bar’)
’\xab4\xf3’
>>> rt.encryptmore(’bar’)
’\xef\xfd$’
>>> rt.encrypt(’bar’)
’\xab4\xf3’
>>> rt.decrypt(’\xab4\xf3’)
’bar’
>>> rt.decryptmore(’\xef\xfd$’)
’bar’
>>> rt.decrypt(’\xef\xfd$’)
’l(\xcd’
>>> del rt

The module’s code is not an exact simulation of the original Enigma device; it implements the rotor encryption
scheme differently from the original. The most important difference is that in the original Enigma, there were only 5
or 6 different rotors in existence, and they were applied twice to each character; the cipher key was the order in which
they were placed in the machine. The Pythonrotor module uses the supplied key to initialize a random number
generator; the rotor permutations and their initial positions are then randomly generated. The original device only
enciphered the letters of the alphabet, while this module can handle any 8-bit binary data; it also produces binary
output. This module can also operate with an arbitrary number of rotors.

The original Enigma cipher was broken in 1944. The version implemented here is probably a good deal more difficult
to crack (especially if you use many rotors), but it won’t be impossible for a truly skillful and determined attacker
to break the cipher. So if you want to keep the NSA out of your files, this rotor cipher may well be unsafe, but for
discouraging casual snooping through your files, it will probably be just fine, and may be somewhat safer than using
the UNIX crypt command.

15.4. rotor — Enigma-like encryption and decryption 411

412

CHAPTER

SIXTEEN

Restricted Execution

In general, Python programs have complete access to the underlying operating system throug the various functions
and classes, For example, a Python program can open any file for reading and writing by using theopen() built-in
function (provided the underlying OS gives you permission!). This is exactly what you want for most applications.

There exists a class of applications for which this “openness” is inappropriate. Take Grail: a web browser that accepts
“applets,” snippets of Python code, from anywhere on the Internet for execution on the local system. This can be used
to improve the user interface of forms, for instance. Since the originator of the code is unknown, it is obvious that it
cannot be trusted with the full resources of the local machine.

Restricted executionis the basic framework in Python that allows for the segregation of trusted and untrusted code. It
is based on the notion that trusted Python code (asupervisor) can create a “padded cell’ (or environment) with limited
permissions, and run the untrusted code within this cell. The untrusted code cannot break out of its cell, and can
only interact with sensitive system resources through interfaces defined and managed by the trusted code. The term
“restricted execution” is favored over “safe-Python” since true safety is hard to define, and is determined by the way
the restricted environment is created. Note that the restricted environments can be nested, with inner cells creating
subcells of lesser, but never greater, privilege.

An interesting aspect of Python’s restricted execution model is that the interfaces presented to untrusted code usually
have the same names as those presented to trusted code. Therefore no special interfaces need to be learned to write
code designed to run in a restricted environment. And because the exact nature of the padded cell is determined by
the supervisor, different restrictions can be imposed, depending on the application. For example, it might be deemed
“safe” for untrusted code to read any file within a specified directory, but never to write a file. In this case, the
supervisor may redefine the built-inopen() function so that it raises an exception whenever themodeparameter is
’w’ . It might also perform achroot() -like operation on thefilenameparameter, such that root is always relative
to some safe “sandbox” area of the filesystem. In this case, the untrusted code would still see an built-inopen()
function in its environment, with the same calling interface. The semantics would be identical too, withIOError s
being raised when the supervisor determined that an unallowable parameter is being used.

The Python run-time determines whether a particular code block is executing in restricted execution mode based on the
identity of the builtins object in its global variables: if this is (the dictionary of) the standardbuiltin
module, the code is deemed to be unrestricted, else it is deemed to be restricted.

Python code executing in restricted mode faces a number of limitations that are designed to prevent it from escaping
from the padded cell. For instance, the function object attributefunc globals and the class and instance object
attribute dict are unavailable.

Two modules provide the framework for setting up restricted execution environments:

rexec Basic restricted execution framework.
Bastion Providing restricted access to objects.

See Also:

Andrew Kuchling, “Restricted Execution HOWTO.” Available online athttp://www.python.org/doc/howto/rexec/.

413

Grail, an Internet browser written in Python, is available athttp://grail.cnri.reston.va.us/grail/. More information on the
use of Python’s restricted execution mode in Grail is available on the Web site.

16.1 rexec — Restricted execution framework

This module contains theRExec class, which supportsr eval() , r execfile() , r exec() , and
r import() methods, which are restricted versions of the standard Python functionseval() , execfile()
and theexec andimport statements. Code executed in this restricted environment will only have access to modules
and functions that are deemed safe; you can subclassRExec to add or remove capabilities as desired.

Note:TheRExec class can prevent code from performing unsafe operations like reading or writing disk files, or using
TCP/IP sockets. However, it does not protect against code using extremely large amounts of memory or CPU time.

classRExec([hooks[, verbose]])
Returns an instance of theRExec class.

hooksis an instance of theRHooks class or a subclass of it. If it is omitted orNone, the defaultRHooks class
is instantiated. Whenever therexec module searches for a module (even a built-in one) or reads a module’s
code, it doesn’t actually go out to the file system itself. Rather, it calls methods of anRHooks instance that was
passed to or created by its constructor. (Actually, theRExec object doesn’t make these calls — they are made
by a module loader object that’s part of theRExec object. This allows another level of flexibility, e.g. using
packages.)

By providing an alternateRHooks object, we can control the file system accesses made to import a module,
without changing the actual algorithm that controls the order in which those accesses are made. For instance, we
could substitute anRHooks object that passes all filesystem requests to a file server elsewhere, via some RPC
mechanism such as ILU. Grail’s applet loader uses this to support importing applets from a URL for a directory.

If verboseis true, additional debugging output may be sent to standard output.

It is important to be aware that code running in a restricted environment can still call thesys.exit() function.
To disallow restricted code from exiting the interpreter, always protect calls that cause restricted code to run with
a try /except statement that catches theSystemExit exception. Removing thesys.exit() function from
the restricted environment is not sufficient — the restricted code could still useraise SystemExit . Removing
SystemExit is not a reasonable option; some library code makes use of this and would break were it not available.

See Also:

Grail Home Page
(http://grail.sourceforge.net/)

Grail is a Web browser written entirely in Python. It uses therexec module as a foundation for supporting
Python applets, and can be used as an example usage of this module.

16.1.1 RExec Objects

RExec instances support the following methods:

r eval (code)
codemust either be a string containing a Python expression, or a compiled code object, which will be evaluated
in the restricted environment’s main module. The value of the expression or code object will be returned.

r exec (code)
codemust either be a string containing one or more lines of Python code, or a compiled code object, which will
be executed in the restricted environment’smain module.

r execfile (filename)
Execute the Python code contained in the filefilenamein the restricted environment’s main module.

414 Chapter 16. Restricted Execution

Methods whose names begin with ‘s ’ are similar to the functions beginning with ‘r ’, but the code will be granted
access to restricted versions of the standard I/O streamssys.stdin , sys.stderr , andsys.stdout .

s eval (code)
codemust be a string containing a Python expression, which will be evaluated in the restricted environment.

s exec (code)
codemust be a string containing one or more lines of Python code, which will be executed in the restricted
environment.

s execfile (code)
Execute the Python code contained in the filefilenamein the restricted environment.

RExec objects must also support various methods which will be implicitly called by code executing in the restricted
environment. Overriding these methods in a subclass is used to change the policies enforced by a restricted environ-
ment.

r import (modulename[, globals[, locals[, fromlist]]])
Import the modulemodulename, raising anImportError exception if the module is considered unsafe.

r open (filename[, mode[, bufsize]])
Method called whenopen() is called in the restricted environment. The arguments are identical to those of
open() , and a file object (or a class instance compatible with file objects) should be returned.RExec’s default
behaviour is allow opening any file for reading, but forbidding any attempt to write a file. See the example below
for an implementation of a less restrictiver open() .

r reload (module)
Reload the module objectmodule, re-parsing and re-initializing it.

r unload (module)
Unload the module objectmodule(i.e., remove it from the restricted environment’ssys.modules dictionary).

And their equivalents with access to restricted standard I/O streams:

s import (modulename[, globals[, locals[, fromlist]]])
Import the modulemodulename, raising anImportError exception if the module is considered unsafe.

s reload (module)
Reload the module objectmodule, re-parsing and re-initializing it.

s unload (module)
Unload the module objectmodule.

16.1.2 Defining restricted environments

The RExec class has the following class attributes, which are used by theinit () method. Changing them
on an existing instance won’t have any effect; instead, create a subclass ofRExec and assign them new values in the
class definition. Instances of the new class will then use those new values. All these attributes are tuples of strings.

nok builtin names
Contains the names of built-in functions which willnot be available to programs running in the restricted envi-
ronment. The value forRExec is (’open’, ’reload’, ’ import ’) . (This gives the exceptions,
because by far the majority of built-in functions are harmless. A subclass that wants to override this variable
should probably start with the value from the base class and concatenate additional forbidden functions — when
new dangerous built-in functions are added to Python, they will also be added to this module.)

ok builtin modules
Contains the names of built-in modules which can be safely imported. The value forRExec is (’au-
dioop’, ’array’, ’binascii’, ’cmath’, ’errno’, ’imageop’, ’marshal’,
’math’, ’md5’, ’operator’, ’parser’, ’regex’, ’rotor’, ’select’, ’strop’,

16.1. rexec — Restricted execution framework 415

’struct’, ’time’) . A similar remark about overriding this variable applies — use the value from the
base class as a starting point.

ok path
Contains the directories which will be searched when animport is performed in the restricted environment.
The value forRExec is the same assys.path (at the time the module is loaded) for unrestricted code.

ok posix names
Contains the names of the functions in theos module which will be available to programs running in the
restricted environment. The value forRExec is (’error’, ’fstat’, ’listdir’, ’lstat’,
’readlink’, ’stat’, ’times’, ’uname’, ’getpid’, ’getppid’, ’getcwd’, ’ge-
tuid’, ’getgid’, ’geteuid’, ’getegid’) .

ok sys names
Contains the names of the functions and variables in thesys module which will be available to programs run-
ning in the restricted environment. The value forRExec is (’ps1’, ’ps2’, ’copyright’, ’ver-
sion’, ’platform’, ’exit’, ’maxint’) .

16.1.3 An example

Let us say that we want a slightly more relaxed policy than the standardRExec class. For example, if we’re willing
to allow files in ‘/tmp’ to be written, we can subclass theRExec class:

class TmpWriterRExec(rexec.RExec):
def r_open(self, file, mode=’r’, buf=-1):

if mode in (’r’, ’rb’):
pass

elif mode in (’w’, ’wb’, ’a’, ’ab’):
check filename : must begin with /tmp/
if file[:5]!=’/tmp/’:

raise IOError, "can’t write outside /tmp"
elif (string.find(file, ’/../’) >= 0 or

file[:3] == ’../’ or file[-3:] == ’/..’):
raise IOError, "’..’ in filename forbidden"

else: raise IOError, "Illegal open() mode"
return open(file, mode, buf)

Notice that the above code will occasionally forbid a perfectly valid filename; for example, code in the restricted
environment won’t be able to open a file called ‘/tmp/foo/../bar’. To fix this, ther open() method would have to
simplify the filename to ‘/tmp/bar’, which would require splitting apart the filename and performing various operations
on it. In cases where security is at stake, it may be preferable to write simple code which is sometimes overly restrictive,
instead of more general code that is also more complex and may harbor a subtle security hole.

16.2 Bastion — Restricting access to objects

According to the dictionary, a bastion is “a fortified area or position”, or “something that is considered a stronghold.”
It’s a suitable name for this module, which provides a way to forbid access to certain attributes of an object. It must
always be used with therexec module, in order to allow restricted-mode programs access to certain safe attributes
of an object, while denying access to other, unsafe attributes.

Bastion (object[, filter[, name[, class]]])
Protect the objectobject, returning a bastion for the object. Any attempt to access one of the object’s attributes
will have to be approved by thefilter function; if the access is denied anAttributeError exception will be
raised.

416 Chapter 16. Restricted Execution

If present,filter must be a function that accepts a string containing an attribute name, and returns true if access
to that attribute will be permitted; iffilter returns false, the access is denied. The default filter denies access to
any function beginning with an underscore (‘’). The bastion’s string representation will be ‘<Bastion for
name>’ if a value fornameis provided; otherwise, ‘repr(object) ’ will be used.

class, if present, should be a subclass ofBastionClass ; see the code in ‘bastion.py’ for the details. Overrid-
ing the defaultBastionClass will rarely be required.

classBastionClass (getfunc, name)
Class which actually implements bastion objects. This is the default class used byBastion() . Thegetfunc
parameter is a function which returns the value of an attribute which should be exposed to the restricted execution
environment when called with the name of the attribute as the only parameter.nameis used to construct the
repr() of theBastionClass instance.

16.2. Bastion — Restricting access to objects 417

418

CHAPTER

SEVENTEEN

Python Language Services

Python provides a number of modules to assist in working with the Python language. These module support tokenizing,
parsing, syntax analysis, bytecode disassembly, and various other facilities.

These modules include:

parser Access parse trees for Python source code.
symbol Constants representing internal nodes of the parse tree.
token Constants representing terminal nodes of the parse tree.
keyword Test whether a string is a keyword in Python.
tokenize Lexical scanner for Python source code.
tabnanny Tool for detecting white space related problems in Python source files in a directory tree.
pyclbr Supports information extraction for a Python class browser.
py compile Compile Python source files to byte-code files.
compileall Tools for byte-compiling all Python source files in a directory tree.
dis Disassembler for Python byte code.

17.1 parser — Access Python parse trees

Theparser module provides an interface to Python’s internal parser and byte-code compiler. The primary purpose
for this interface is to allow Python code to edit the parse tree of a Python expression and create executable code from
this. This is better than trying to parse and modify an arbitrary Python code fragment as a string because parsing is
performed in a manner identical to the code forming the application. It is also faster.

There are a few things to note about this module which are important to making use of the data structures created.
This is not a tutorial on editing the parse trees for Python code, but some examples of using theparser module are
presented.

Most importantly, a good understanding of the Python grammar processed by the internal parser is required. For
full information on the language syntax, refer to thePython Language Reference. The parser itself is created from
a grammar specification defined in the file ‘Grammar/Grammar’ in the standard Python distribution. The parse trees
stored in the AST objects created by this module are the actual output from the internal parser when created by
the expr() or suite() functions, described below. The AST objects created bysequence2ast() faithfully
simulate those structures. Be aware that the values of the sequences which are considered “correct” will vary from one
version of Python to another as the formal grammar for the language is revised. However, transporting code from one
Python version to another as source text will always allow correct parse trees to be created in the target version, with
the only restriction being that migrating to an older version of the interpreter will not support more recent language
constructs. The parse trees are not typically compatible from one version to another, whereas source code has always
been forward-compatible.

Each element of the sequences returned byast2list() or ast2tuple() has a simple form. Sequences rep-
resenting non-terminal elements in the grammar always have a length greater than one. The first element is an in-
teger which identifies a production in the grammar. These integers are given symbolic names in the C header file

419

‘ Include/graminit.h’ and the Python modulesymbol . Each additional element of the sequence represents a compo-
nent of the production as recognized in the input string: these are always sequences which have the same form as the
parent. An important aspect of this structure which should be noted is that keywords used to identify the parent node
type, such as the keywordif in an if stmt , are included in the node tree without any special treatment. For exam-
ple, theif keyword is represented by the tuple(1, ’if’) , where1 is the numeric value associated with allNAME
tokens, including variable and function names defined by the user. In an alternate form returned when line number
information is requested, the same token might be represented as(1, ’if’, 12) , where the12 represents the line
number at which the terminal symbol was found.

Terminal elements are represented in much the same way, but without any child elements and the addition of the
source text which was identified. The example of theif keyword above is representative. The various types of
terminal symbols are defined in the C header file ‘Include/token.h’ and the Python moduletoken .

The AST objects are not required to support the functionality of this module, but are provided for three purposes:
to allow an application to amortize the cost of processing complex parse trees, to provide a parse tree representation
which conserves memory space when compared to the Python list or tuple representation, and to ease the creation of
additional modules in C which manipulate parse trees. A simple “wrapper” class may be created in Python to hide the
use of AST objects.

Theparser module defines functions for a few distinct purposes. The most important purposes are to create AST
objects and to convert AST objects to other representations such as parse trees and compiled code objects, but there
are also functions which serve to query the type of parse tree represented by an AST object.

See Also:

Modulesymbol (section 17.2):
Useful constants representing internal nodes of the parse tree.

Moduletoken (section 17.3):
Useful constants representing leaf nodes of the parse tree and functions for testing node values.

17.1.1 Creating AST Objects

AST objects may be created from source code or from a parse tree. When creating an AST object from source,
different functions are used to create the’eval’ and’exec’ forms.

expr (source)
Theexpr() function parses the parametersourceas if it were an input to ‘compile(source, ’file.py’,
’eval’) ’. If the parse succeeds, an AST object is created to hold the internal parse tree representation,
otherwise an appropriate exception is thrown.

suite (source)
The suite() function parses the parametersource as if it were an input to ‘compile(source,
’file.py’, ’exec’) ’. If the parse succeeds, an AST object is created to hold the internal parse tree
representation, otherwise an appropriate exception is thrown.

sequence2ast (sequence)
This function accepts a parse tree represented as a sequence and builds an internal representation if possible.
If it can validate that the tree conforms to the Python grammar and all nodes are valid node types in the host
version of Python, an AST object is created from the internal representation and returned to the called. If there is
a problem creating the internal representation, or if the tree cannot be validated, aParserError exception is
thrown. An AST object created this way should not be assumed to compile correctly; normal exceptions thrown
by compilation may still be initiated when the AST object is passed tocompileast() . This may indicate
problems not related to syntax (such as aMemoryError exception), but may also be due to constructs such as
the result of parsingdel f(0) , which escapes the Python parser but is checked by the bytecode compiler.

Sequences representing terminal tokens may be represented as either two-element lists of the form(1,
’name’) or as three-element lists of the form(1, ’name’, 56) . If the third element is present, it is
assumed to be a valid line number. The line number may be specified for any subset of the terminal symbols in

420 Chapter 17. Python Language Services

the input tree.

tuple2ast (sequence)
This is the same function assequence2ast() . This entry point is maintained for backward compatibility.

17.1.2 Converting AST Objects

AST objects, regardless of the input used to create them, may be converted to parse trees represented as list- or tuple-
trees, or may be compiled into executable code objects. Parse trees may be extracted with or without line numbering
information.

ast2list (ast[, line info])
This function accepts an AST object from the caller inastand returns a Python list representing the equivalent
parse tree. The resulting list representation can be used for inspection or the creation of a new parse tree in list
form. This function does not fail so long as memory is available to build the list representation. If the parse
tree will only be used for inspection,ast2tuple() should be used instead to reduce memory consumption
and fragmentation. When the list representation is required, this function is significantly faster than retrieving a
tuple representation and converting that to nested lists.

If line info is true, line number information will be included for all terminal tokens as a third element of the
list representing the token. Note that the line number provided specifies the line on which the tokenends. This
information is omitted if the flag is false or omitted.

ast2tuple (ast[, line info])
This function accepts an AST object from the caller inastand returns a Python tuple representing the equivalent
parse tree. Other than returning a tuple instead of a list, this function is identical toast2list() .

If line info is true, line number information will be included for all terminal tokens as a third element of the list
representing the token. This information is omitted if the flag is false or omitted.

compileast (ast[, filename = ’<ast>’])
The Python byte compiler can be invoked on an AST object to produce code objects which can be used as
part of anexec statement or a call to the built-ineval() function. This function provides the interface to
the compiler, passing the internal parse tree fromast to the parser, using the source file name specified by the
filenameparameter. The default value supplied forfilenameindicates that the source was an AST object.

Compiling an AST object may result in exceptions related to compilation; an example would be aSyntaxEr-
ror caused by the parse tree fordel f(0) : this statement is considered legal within the formal grammar for
Python but is not a legal language construct. TheSyntaxError raised for this condition is actually generated
by the Python byte-compiler normally, which is why it can be raised at this point by theparser module. Most
causes of compilation failure can be diagnosed programmatically by inspection of the parse tree.

17.1.3 Queries on AST Objects

Two functions are provided which allow an application to determine if an AST was created as an expression or a suite.
Neither of these functions can be used to determine if an AST was created from source code viaexpr() or suite()
or from a parse tree viasequence2ast() .

isexpr (ast)
Whenastrepresents an’eval’ form, this function returns true, otherwise it returns false. This is useful, since
code objects normally cannot be queried for this information using existing built-in functions. Note that the
code objects created bycompileast() cannot be queried like this either, and are identical to those created
by the built-incompile() function.

issuite (ast)
This function mirrorsisexpr() in that it reports whether an AST object represents an’exec’ form, com-
monly known as a “suite.” It is not safe to assume that this function is equivalent to ‘not isexpr(ast) ’, as
additional syntactic fragments may be supported in the future.

17.1. parser — Access Python parse trees 421

17.1.4 Exceptions and Error Handling

The parser module defines a single exception, but may also pass other built-in exceptions from other portions of the
Python runtime environment. See each function for information about the exceptions it can raise.

exceptionParserError
Exception raised when a failure occurs within the parser module. This is generally produced for validation
failures rather than the built inSyntaxError thrown during normal parsing. The exception argument is either
a string describing the reason of the failure or a tuple containing a sequence causing the failure from a parse
tree passed tosequence2ast() and an explanatory string. Calls tosequence2ast() need to be able to
handle either type of exception, while calls to other functions in the module will only need to be aware of the
simple string values.

Note that the functionscompileast() , expr() , andsuite() may throw exceptions which are normally thrown
by the parsing and compilation process. These include the built in exceptionsMemoryError , OverflowError ,
SyntaxError , andSystemError . In these cases, these exceptions carry all the meaning normally associated
with them. Refer to the descriptions of each function for detailed information.

17.1.5 AST Objects

Ordered and equality comparisons are supported between AST objects. Pickling of AST objects (using thepickle
module) is also supported.

ASTType
The type of the objects returned byexpr() , suite() andsequence2ast() .

AST objects have the following methods:

compile ([filename])
Same ascompileast(ast, filename) .

isexpr ()
Same asisexpr(ast) .

issuite ()
Same asissuite(ast) .

tolist ([line info])
Same asast2list(ast, line info) .

totuple ([line info])
Same asast2tuple(ast, line info) .

17.1.6 Examples

The parser modules allows operations to be performed on the parse tree of Python source code before the bytecode
is generated, and provides for inspection of the parse tree for information gathering purposes. Two examples are
presented. The simple example demonstrates emulation of thecompile() built-in function and the complex example
shows the use of a parse tree for information discovery.

Emulation of compile()

While many useful operations may take place between parsing and bytecode generation, the simplest operation is to
do nothing. For this purpose, using theparser module to produce an intermediate data structure is equivalent to the
code

422 Chapter 17. Python Language Services

>>> code = compile(’a + 5’, ’file.py’, ’eval’)
>>> a = 5
>>> eval(code)
10

The equivalent operation using theparser module is somewhat longer, and allows the intermediate internal parse
tree to be retained as an AST object:

>>> import parser
>>> ast = parser.expr(’a + 5’)
>>> code = ast.compile(’file.py’)
>>> a = 5
>>> eval(code)
10

An application which needs both AST and code objects can package this code into readily available functions:

import parser

def load_suite(source_string):
ast = parser.suite(source_string)
return ast, ast.compile()

def load_expression(source_string):
ast = parser.expr(source_string)
return ast, ast.compile()

Information Discovery

Some applications benefit from direct access to the parse tree. The remainder of this section demonstrates how the
parse tree provides access to module documentation defined in docstrings without requiring that the code being exam-
ined be loaded into a running interpreter viaimport . This can be very useful for performing analyses of untrusted
code.

Generally, the example will demonstrate how the parse tree may be traversed to distill interesting information. Two
functions and a set of classes are developed which provide programmatic access to high level function and class
definitions provided by a module. The classes extract information from the parse tree and provide access to the
information at a useful semantic level, one function provides a simple low-level pattern matching capability, and the
other function defines a high-level interface to the classes by handling file operations on behalf of the caller. All source
files mentioned here which are not part of the Python installation are located in the ‘Demo/parser/’ directory of the
distribution.

The dynamic nature of Python allows the programmer a great deal of flexibility, but most modules need only a limited
measure of this when defining classes, functions, and methods. In this example, the only definitions that will be
considered are those which are defined in the top level of their context, e.g., a function defined by adef statement at
column zero of a module, but not a function defined within a branch of anif ... else construct, though there are
some good reasons for doing so in some situations. Nesting of definitions will be handled by the code developed in
the example.

To construct the upper-level extraction methods, we need to know what the parse tree structure looks like and how
much of it we actually need to be concerned about. Python uses a moderately deep parse tree so there are a large

17.1. parser — Access Python parse trees 423

number of intermediate nodes. It is important to read and understand the formal grammar used by Python. This is
specified in the file ‘Grammar/Grammar’ in the distribution. Consider the simplest case of interest when searching for
docstrings: a module consisting of a docstring and nothing else. (See file ‘docstring.py’.)

"""Some documentation.
"""

Using the interpreter to take a look at the parse tree, we find a bewildering mass of numbers and parentheses, with the
documentation buried deep in nested tuples.

>>> import parser
>>> import pprint
>>> ast = parser.suite(open(’docstring.py’).read())
>>> tup = ast.totuple()
>>> pprint.pprint(tup)
(257,

(264,
(265,

(266,
(267,

(307,
(287,

(288,
(289,

(290,
(292,

(293,
(294,

(295,
(296,

(297,
(298,

(299,
(300, (3, ’"""Some documentation.\n"""’))))))))))))))))),

(4, ’’))),
(4, ’’),
(0, ’’))

The numbers at the first element of each node in the tree are the node types; they map directly to terminal and non-
terminal symbols in the grammar. Unfortunately, they are represented as integers in the internal representation, and
the Python structures generated do not change that. However, thesymbol and token modules provide symbolic
names for the node types and dictionaries which map from the integers to the symbolic names for the node types.

In the output presented above, the outermost tuple contains four elements: the integer257 and three additional tuples.
Node type257 has the symbolic namefile input . Each of these inner tuples contains an integer as the first ele-
ment; these integers,264 , 4, and0, represent the node typesstmt , NEWLINE, andENDMARKER, respectively. Note
that these values may change depending on the version of Python you are using; consult ‘symbol.py’ and ‘token.py’ for
details of the mapping. It should be fairly clear that the outermost node is related primarily to the input source rather
than the contents of the file, and may be disregarded for the moment. Thestmt node is much more interesting. In
particular, all docstrings are found in subtrees which are formed exactly as this node is formed, with the only difference
being the string itself. The association between the docstring in a similar tree and the defined entity (class, function,
or module) which it describes is given by the position of the docstring subtree within the tree defining the described
structure.

By replacing the actual docstring with something to signify a variable component of the tree, we allow a simple

424 Chapter 17. Python Language Services

pattern matching approach to check any given subtree for equivalence to the general pattern for docstrings. Since the
example demonstrates information extraction, we can safely require that the tree be in tuple form rather than list form,
allowing a simple variable representation to be[’variable name’] . A simple recursive function can implement
the pattern matching, returning a boolean and a dictionary of variable name to value mappings. (See file ‘example.py’.)

from types import ListType, TupleType

def match(pattern, data, vars=None):
if vars is None:

vars = {}
if type(pattern) is ListType:

vars[pattern[0]] = data
return 1, vars

if type(pattern) is not TupleType:
return (pattern == data), vars

if len(data) != len(pattern):
return 0, vars

for pattern, data in map(None, pattern, data):
same, vars = match(pattern, data, vars)
if not same:

break
return same, vars

Using this simple representation for syntactic variables and the symbolic node types, the pattern for the candidate
docstring subtrees becomes fairly readable. (See file ‘example.py’.)

import symbol
import token

DOCSTRING_STMT_PATTERN = (
symbol.stmt,
(symbol.simple_stmt,

(symbol.small_stmt,
(symbol.expr_stmt,

(symbol.testlist,
(symbol.test,

(symbol.and_test,
(symbol.not_test,

(symbol.comparison,
(symbol.expr,

(symbol.xor_expr,
(symbol.and_expr,

(symbol.shift_expr,
(symbol.arith_expr,

(symbol.term,
(symbol.factor,

(symbol.power,
(symbol.atom,

(token.STRING, [’docstring’])
)))))))))))))))),

(token.NEWLINE, ’’)
))

Using thematch() function with this pattern, extracting the module docstring from the parse tree created previously
is easy:

17.1. parser — Access Python parse trees 425

>>> found, vars = match(DOCSTRING_STMT_PATTERN, tup[1])
>>> found
1
>>> vars
{’docstring’: ’"""Some documentation.\n"""’}

Once specific data can be extracted from a location where it is expected, the question of where information can be
expected needs to be answered. When dealing with docstrings, the answer is fairly simple: the docstring is the first
stmt node in a code block (file input or suite node types). A module consists of a singlefile input node,
and class and function definitions each contain exactly onesuite node. Classes and functions are readily identified
as subtrees of code block nodes which start with(stmt, (compound stmt, (classdef, ... or (stmt,
(compound stmt, (funcdef, Note that these subtrees cannot be matched bymatch() since it does
not support multiple sibling nodes to match without regard to number. A more elaborate matching function could be
used to overcome this limitation, but this is sufficient for the example.

Given the ability to determine whether a statement might be a docstring and extract the actual string from the statement,
some work needs to be performed to walk the parse tree for an entire module and extract information about the names
defined in each context of the module and associate any docstrings with the names. The code to perform this work is
not complicated, but bears some explanation.

The public interface to the classes is straightforward and should probably be somewhat more flexible. Each “major”
block of the module is described by an object providing several methods for inquiry and a constructor which accepts
at least the subtree of the complete parse tree which it represents. TheModuleInfo constructor accepts an optional
nameparameter since it cannot otherwise determine the name of the module.

The public classes includeClassInfo , FunctionInfo , and ModuleInfo . All objects provide the meth-
ods get name() , get docstring() , get class names() , andget class info() . The Class-
Info objects supportget method names() and get method info() while the other classes provide
get function names() andget function info() .

Within each of the forms of code block that the public classes represent, most of the required information is in the
same form and is accessed in the same way, with classes having the distinction that functions defined at the top level
are referred to as “methods.” Since the difference in nomenclature reflects a real semantic distinction from functions
defined outside of a class, the implementation needs to maintain the distinction. Hence, most of the functionality of
the public classes can be implemented in a common base class,SuiteInfoBase , with the accessors for function
and method information provided elsewhere. Note that there is only one class which represents function and method
information; this parallels the use of thedef statement to define both types of elements.

Most of the accessor functions are declared inSuiteInfoBase and do not need to be overridden by subclasses.
More importantly, the extraction of most information from a parse tree is handled through a method called by the
SuiteInfoBase constructor. The example code for most of the classes is clear when read alongside the formal
grammar, but the method which recursively creates new information objects requires further examination. Here is the
relevant part of theSuiteInfoBase definition from ‘example.py’:

426 Chapter 17. Python Language Services

class SuiteInfoBase:
_docstring = ’’
_name = ’’

def __init__(self, tree = None):
self._class_info = {}
self._function_info = {}
if tree:

self._extract_info(tree)

def _extract_info(self, tree):
extract docstring
if len(tree) == 2:

found, vars = match(DOCSTRING_STMT_PATTERN[1], tree[1])
else:

found, vars = match(DOCSTRING_STMT_PATTERN, tree[3])
if found:

self._docstring = eval(vars[’docstring’])
discover inner definitions
for node in tree[1:]:

found, vars = match(COMPOUND_STMT_PATTERN, node)
if found:

cstmt = vars[’compound’]
if cstmt[0] == symbol.funcdef:

name = cstmt[2][1]
self._function_info[name] = FunctionInfo(cstmt)

elif cstmt[0] == symbol.classdef:
name = cstmt[2][1]
self._class_info[name] = ClassInfo(cstmt)

After initializing some internal state, the constructor calls theextract info() method. This method performs
the bulk of the information extraction which takes place in the entire example. The extraction has two distinct phases:
the location of the docstring for the parse tree passed in, and the discovery of additional definitions within the code
block represented by the parse tree.

The initial if test determines whether the nested suite is of the “short form” or the “long form.” The short form is
used when the code block is on the same line as the definition of the code block, as in

def square(x): "Square an argument."; return x ** 2

while the long form uses an indented block and allows nested definitions:

def make_power(exp):
"Make a function that raises an argument to the exponent ‘exp’."
def raiser(x, y=exp):

return x ** y
return raiser

When the short form is used, the code block may contain a docstring as the first, and possibly only,small stmt
element. The extraction of such a docstring is slightly different and requires only a portion of the complete pattern used
in the more common case. As implemented, the docstring will only be found if there is only onesmall stmt node
in thesimple stmt node. Since most functions and methods which use the short form do not provide a docstring,
this may be considered sufficient. The extraction of the docstring proceeds using thematch() function as described

17.1. parser — Access Python parse trees 427

above, and the value of the docstring is stored as an attribute of theSuiteInfoBase object.

After docstring extraction, a simple definition discovery algorithm operates on thestmt nodes of thesuite node.
The special case of the short form is not tested; since there are nostmt nodes in the short form, the algorithm will
silently skip the singlesimple stmt node and correctly not discover any nested definitions.

Each statement in the code block is categorized as a class definition, function or method definition, or something else.
For the definition statements, the name of the element defined is extracted and a representation object appropriate to
the definition is created with the defining subtree passed as an argument to the constructor. The representation objects
are stored in instance variables and may be retrieved by name using the appropriate accessor methods.

The public classes provide any accessors required which are more specific than those provided by theSuiteIn-
foBase class, but the real extraction algorithm remains common to all forms of code blocks. A high-level function
can be used to extract the complete set of information from a source file. (See file ‘example.py’.)

def get_docs(fileName):
import os
import parser

source = open(fileName).read()
basename = os.path.basename(os.path.splitext(fileName)[0])
ast = parser.suite(source)
return ModuleInfo(ast.totuple(), basename)

This provides an easy-to-use interface to the documentation of a module. If information is required which is not
extracted by the code of this example, the code may be extended at clearly defined points to provide additional capa-
bilities.

17.2 symbol — Constants used with Python parse trees

This module provides constants which represent the numeric values of internal nodes of the parse tree. Unlike most
Python constants, these use lower-case names. Refer to the file ‘Grammar/Grammar’ in the Python distribution for the
definitions of the names in the context of the language grammar. The specific numeric values which the names map to
may change between Python versions.

This module also provides one additional data object:

sym name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

See Also:

Moduleparser (section 17.1):
The second example for theparser module shows how to use thesymbol module.

17.3 token — Constants used with Python parse trees

This module provides constants which represent the numeric values of leaf nodes of the parse tree (terminal tokens).
Refer to the file ‘Grammar/Grammar’ in the Python distribution for the definitions of the names in the context of the
language grammar. The specific numeric values which the names map to may change between Python versions.

This module also provides one data object and some functions. The functions mirror definitions in the Python C header
files.

428 Chapter 17. Python Language Services

tok name
Dictionary mapping the numeric values of the constants defined in this module back to name strings, allowing
more human-readable representation of parse trees to be generated.

ISTERMINAL(x)
Return true for terminal token values.

ISNONTERMINAL(x)
Return true for non-terminal token values.

ISEOF(x)
Return true ifx is the marker indicating the end of input.

See Also:

Moduleparser (section 17.1):
The second example for theparser module shows how to use thesymbol module.

17.4 keyword — Testing for Python keywords

This module allows a Python program to determine if a string is a keyword. A single function is provided:

iskeyword (s)
Return true ifs is a Python keyword.

17.5 tokenize — Tokenizer for Python source

The tokenize module provides a lexical scanner for Python source code, implemented in Python. The scanner
in this module returns comments as tokens as well, making it useful for implementing “pretty-printers,” including
colorizers for on-screen displays.

The scanner is exposed by a single function:

tokenize (readline[, tokeneater])
The tokenize() function accepts two parameters: one representing the input stream, and one providing an
output mechanism fortokenize() .

The first parameter,readline, must be a callable object which provides the same interface as thereadline()
method of built-in file objects (see section 2.1.7). Each call to the function should return one line of input as a
string.

The second parameter,tokeneater, must also be a callable object. It is called with five parameters: the token
type, the token string, a tuple(srow, scol) specifying the row and column where the token begins in the
source, a tuple(erow, ecol) giving the ending position of the token, and the line on which the token was
found. The line passed is thelogical line; continuation lines are included.

All constants from thetoken module are also exported fromtokenize , as are two additional token type values that
might be passed to thetokeneaterfunction bytokenize() :

COMMENT
Token value used to indicate a comment.

NL
Token value used to indicate a non-terminating newline. The NEWLINE token indicates the end of a logical
line of Python code; NL tokens are generated when a logical line of code is continued over multiple physical
lines.

17.4. keyword — Testing for Python keywords 429

17.6 tabnanny — Detection of ambiguous indentation

For the time being this module is intended to be called as a script. However it is possible to import it into an IDE and
use the functioncheck() described below.

Warning: The API provided by this module is likely to change in future releases; such changes may not be backward
compatible.

check (file or dir)
If file or dir is a directory and not a symbolic link, then recursively descend the directory tree named by
file or dir, checking all ‘.py’ files along the way. Iffile or dir is an ordinary Python source file, it is checked
for whitespace related problems. The diagnostic messages are written to standard output using the print state-
ment.

verbose
Flag indicating whether to print verbose messages. This is set to true by the-v option if called as a script.

filename only
Flag indicating whether to print only the filenames of files containing whitespace related problems. This is set
to true by the-q option if called as a script.

exceptionNannyNag
Raised bytokeneater() if detecting an ambiguous indent. Captured and handled incheck() .

tokeneater (type, token, start, end, line)
This function is used bycheck() as a callback parameter to the functiontokenize.tokenize() .

See Also:

Moduletokenize (section 17.5):
Lexical scanner for Python source code.

17.7 pyclbr — Python class browser support

Thepyclbr can be used to determine some limited information about the classes and methods defined in a module.
The information provided is sufficient to implement a traditional three-pane class browser. The information is extracted
from the source code rather than from an imported module, so this module is safe to use with untrusted source code.
This restriction makes it impossible to use this module with modules not implemented in Python, including many
standard and optional extension modules.

readmodule (module[, path])
Read a module and return a dictionary mapping class names to class descriptor objects. The parametermodule
should be the name of a module as a string; it may be the name of a module within a package. Thepathparameter
should be a sequence, and is used to augment the value ofsys.path , which is used to locate module source
code.

17.7.1 Class Descriptor Objects

The class descriptor objects used as values in the dictionary returned byreadmodule() provide the following data
members:

module
The name of the module defining the class described by the class descriptor.

name
The name of the class.

430 Chapter 17. Python Language Services

super
A list of class descriptors which describe the immediate base classes of the class being described. Classes which
are named as superclasses but which are not discoverable byreadmodule() are listed as a string with the
class name instead of class descriptors.

methods
A dictionary mapping method names to line numbers.

file
Name of the file containing the class statement defining the class.

lineno
The line number of the class statement within the file named byfile .

17.8 py compile — Compile Python source files

Thepy compile module provides a single function to generate a byte-code file from a source file.

Though not often needed, this function can be useful when installing modules for shared use, especially if some of the
users may not have permission to write the byte-code cache files in the directory containing the source code.

compile (file[, cfile[, dfile]])
Compile a source file to byte-code and write out the byte-code cache file. The source code is loaded from the
file namefile. The byte-code is written tocfile, which defaults tofile + ’c’ (’o’ if optimization is enabled in
the current interpreter). Ifdfile is specified, it is used as the name of the source file in error messages instead of
file.

See Also:

Modulecompileall (section 17.9):
Utilities to compile all Python source files in a directory tree.

17.9 compileall — Byte-compile Python libraries

This module provides some utility functions to support installing Python libraries. These functions compile Python
source files in a directory tree, allowing users without permission to write to the libraries to take advantage of cached
byte-code files.

The source file for this module may also be used as a script to compile Python sources in directories named on the
command line or insys.path .

compile dir (dir[, maxlevels[, ddir[, force]]])
Recursively descend the directory tree named bydir, compiling all ‘.py’ files along the way. Themaxlevels
parameter is used to limit the depth of the recursion; it defaults to10 . If ddir is given, it is used as the base path
from which the filenames used in error messages will be generated. Ifforce is true, modules are re-compiled
even if the timestamps are up to date.

compile path ([skip curdir[, maxlevels[, force]]])
Byte-compile all the ‘.py’ files found alongsys.path . If skip curdir is true (the default), the current di-
rectory is not included in the search. Themaxlevelsand force parameters default to0 and are passed to the
compile dir() function.

See Also:

Modulepy compile (section 17.8):
Byte-compile a single source file.

17.8. py compile — Compile Python source files 431

17.10 dis — Disassembler for Python byte code

Thedis module supports the analysis of Python byte code by disassembling it. Since there is no Python assembler,
this module defines the Python assembly language. The Python byte code which this module takes as an input is
defined in the file ‘Include/opcode.h’ and used by the compiler and the interpreter.

Example: Given the functionmyfunc :

def myfunc(alist):
return len(alist)

the following command can be used to get the disassembly ofmyfunc() :

>>> dis.dis(myfunc)
0 SET_LINENO 1

3 SET_LINENO 2
6 LOAD_GLOBAL 0 (len)
9 LOAD_FAST 0 (alist)

12 CALL_FUNCTION 1
15 RETURN_VALUE
16 LOAD_CONST 0 (None)
19 RETURN_VALUE

Thedis module defines the following functions and constants:

dis ([bytesource])
Disassemble thebytesourceobject.bytesourcecan denote either a class, a method, a function, or a code object.
For a class, it disassembles all methods. For a single code sequence, it prints one line per byte code instruction.
If no object is provided, it disassembles the last traceback.

distb ([tb])
Disassembles the top-of-stack function of a traceback, using the last traceback if none was passed. The instruc-
tion causing the exception is indicated.

disassemble (code[, lasti])
Disassembles a code object, indicating the last instruction iflasti was provided. The output is divided in the
following columns:

1.the current instruction, indicated as ‘--> ’,

2.a labelled instruction, indicated with ‘>>’,

3.the address of the instruction,

4.the operation code name,

5.operation parameters, and

6.interpretation of the parameters in parentheses.

The parameter interpretation recognizes local and global variable names, constant values, branch targets, and
compare operators.

disco (code[, lasti])
A synonym for disassemble. It is more convenient to type, and kept for compatibility with earlier Python
releases.

432 Chapter 17. Python Language Services

opname
Sequence of operation names, indexable using the byte code.

cmp op
Sequence of all compare operation names.

hasconst
Sequence of byte codes that have a constant parameter.

hasname
Sequence of byte codes that access an attribute by name.

hasjrel
Sequence of byte codes that have a relative jump target.

hasjabs
Sequence of byte codes that have an absolute jump target.

haslocal
Sequence of byte codes that access a local variable.

hascompare
Sequence of byte codes of boolean operations.

17.10.1 Python Byte Code Instructions

The Python compiler currently generates the following byte code instructions.

STOP CODE
Indicates end-of-code to the compiler, not used by the interpreter.

POP TOP
Removes the top-of-stack (TOS) item.

ROT TWO
Swaps the two top-most stack items.

ROT THREE
Lifts second and third stack item one position up, moves top down to position three.

ROT FOUR
Lifts second, third and forth stack item one position up, moves top down to position four.

DUP TOP
Duplicates the reference on top of the stack.

Unary Operations take the top of the stack, apply the operation, and push the result back on the stack.

UNARYPOSITIVE
ImplementsTOS = +TOS.

UNARYNEGATIVE
ImplementsTOS = -TOS.

UNARYNOT
ImplementsTOS = not TOS.

UNARYCONVERT
ImplementsTOS = ‘TOS‘ .

UNARYINVERT
ImplementsTOS = ˜TOS.

17.10. dis — Disassembler for Python byte code 433

Binary operations remove the top of the stack (TOS) and the second top-most stack item (TOS1) from the stack. They
perform the operation, and put the result back on the stack.

BINARY POWER
ImplementsTOS = TOS1 ** TOS.

BINARY MULTIPLY
ImplementsTOS = TOS1 * TOS.

BINARY DIVIDE
ImplementsTOS = TOS1 / TOS.

BINARY MODULO
ImplementsTOS = TOS1 % TOS.

BINARY ADD
ImplementsTOS = TOS1 + TOS.

BINARY SUBTRACT
ImplementsTOS = TOS1 - TOS.

BINARY SUBSCR
ImplementsTOS = TOS1[TOS].

BINARY LSHIFT
ImplementsTOS = TOS1 << TOS.

BINARY RSHIFT
ImplementsTOS = TOS1 >> TOS.

BINARY AND
ImplementsTOS = TOS1 & TOS.

BINARY XOR
ImplementsTOS = TOS1 ˆ TOS.

BINARY OR
ImplementsTOS = TOS1 | TOS.

In-place operations are like binary operations, in that they remove TOS and TOS1, and push the result back on the
stack, but the operation is done in-place when TOS1 supports it, and the resulting TOS may be (but does not have to
be) the original TOS1.

INPLACE POWER
Implements in-placeTOS = TOS1 ** TOS.

INPLACE MULTIPLY
Implements in-placeTOS = TOS1 * TOS.

INPLACE DIVIDE
Implements in-placeTOS = TOS1 / TOS.

INPLACE MODULO
Implements in-placeTOS = TOS1 % TOS.

INPLACE ADD
Implements in-placeTOS = TOS1 + TOS.

INPLACE SUBTRACT
Implements in-placeTOS = TOS1 - TOS.

INPLACE LSHIFT
Implements in-placeTOS = TOS1 << TOS.

INPLACE RSHIFT

434 Chapter 17. Python Language Services

Implements in-placeTOS = TOS1 >> TOS.

INPLACE AND
Implements in-placeTOS = TOS1 & TOS.

INPLACE XOR
Implements in-placeTOS = TOS1 ˆ TOS.

INPLACE OR
Implements in-placeTOS = TOS1 | TOS.

The slice opcodes take up to three parameters.

SLICE+0
ImplementsTOS = TOS[:] .

SLICE+1
ImplementsTOS = TOS1[TOS:] .

SLICE+2
ImplementsTOS = TOS1[:TOS1] .

SLICE+3
ImplementsTOS = TOS2[TOS1:TOS].

Slice assignment needs even an additional parameter. As any statement, they put nothing on the stack.

STORE SLICE+0
ImplementsTOS[:] = TOS1 .

STORE SLICE+1
ImplementsTOS1[TOS:] = TOS2 .

STORE SLICE+2
ImplementsTOS1[:TOS] = TOS2 .

STORE SLICE+3
ImplementsTOS2[TOS1:TOS] = TOS3 .

DELETE SLICE+0
Implementsdel TOS[:] .

DELETE SLICE+1
Implementsdel TOS1[TOS:] .

DELETE SLICE+2
Implementsdel TOS1[:TOS] .

DELETE SLICE+3
Implementsdel TOS2[TOS1:TOS] .

STORE SUBSCR
ImplementsTOS1[TOS] = TOS2.

DELETE SUBSCR
Implementsdel TOS1[TOS] .

PRINT EXPR
Implements the expression statement for the interactive mode. TOS is removed from the stack and printed. In
non-interactive mode, an expression statement is terminated withPOP STACK.

PRINT ITEM
Prints TOS to the file-like object bound tosys.stdout . There is one such instruction for each item in the
print statement.

17.10. dis — Disassembler for Python byte code 435

PRINT ITEM TO
Like PRINT ITEM, but prints the item second from TOS to the file-like object at TOS. This is used by the
extended print statement.

PRINT NEWLINE
Prints a new line onsys.stdout . This is generated as the last operation of aprint statement, unless the
statement ends with a comma.

PRINT NEWLINE TO
Like PRINT NEWLINE, but prints the new line on the file-like object on the TOS. This is used by the extended
print statement.

BREAK LOOP
Terminates a loop due to abreak statement.

LOAD LOCALS
Pushes a reference to the locals of the current scope on the stack. This is used in the code for a class definition:
After the class body is evaluated, the locals are passed to the class definition.

RETURNVALUE
Returns with TOS to the caller of the function.

IMPORT STAR
Loads all symbols not starting with ‘’ directly from the module TOS to the local namespace. The module is
popped after loading all names. This opcode implementsfrom module import * .

EXEC STMT
Implementsexec TOS2,TOS1,TOS . The compiler fills missing optional parameters withNone.

POP BLOCK
Removes one block from the block stack. Per frame, there is a stack of blocks, denoting nested loops, try
statements, and such.

END FINALLY
Terminates afinally clause. The interpreter recalls whether the exception has to be re-raised, or whether the
function returns, and continues with the outer-next block.

BUILD CLASS
Creates a new class object. TOS is the methods dictionary, TOS1 the tuple of the names of the base classes, and
TOS2 the class name.

All of the following opcodes expect arguments. An argument is two bytes, with the more significant byte last.

STORE NAME namei
Implementsname = TOS. nameiis the index ofnamein the attributeco names of the code object. The
compiler tries to useSTORE LOCALor STORE GLOBALif possible.

DELETE NAME namei
Implementsdel name , wherenameiis the index intoco names attribute of the code object.

UNPACKSEQUENCE count
Unpacks TOS intocountindividual values, which are put onto the stack right-to-left.

DUP TOPX count
Duplicatecountitems, keeping them in the same order. Due to implementation limits,countshould be between
1 and 5 inclusive.

STORE ATTR namei
ImplementsTOS.name = TOS1, wherenameiis the index of name inco names.

DELETE ATTR namei
Implementsdel TOS.name , usingnameias index intoco names.

436 Chapter 17. Python Language Services

STORE GLOBAL namei
Works asSTORE NAME, but stores the name as a global.

DELETE GLOBAL namei
Works asDELETE NAME, but deletes a global name.

LOAD CONST consti
Pushes ‘co consts[consti] ’ onto the stack.

LOAD NAME namei
Pushes the value associated with ‘co names[namei] ’ onto the stack.

BUILD TUPLE count
Creates a tuple consumingcountitems from the stack, and pushes the resulting tuple onto the stack.

BUILD LIST count
Works asBUILD TUPLE, but creates a list.

BUILD MAP zero
Pushes a new empty dictionary object onto the stack. The argument is ignored and set to zero by the compiler.

LOAD ATTR namei
Replaces TOS withgetattr(TOS, co names[namei] .

COMPAREOP opname
Performs a boolean operation. The operation name can be found incmp op[opname] .

IMPORT NAME namei
Imports the moduleco names[namei] . The module object is pushed onto the stack. The current namespace
is not affected: for a proper import statement, a subsequentSTORE FAST instruction modifies the namespace.

IMPORT FROM namei
Loads the attributeco names[namei] from the module found in TOS. The resulting object is pushed onto the
stack, to be subsequently stored by aSTORE FAST instruction.

JUMP FORWARDdelta
Increments byte code counter bydelta.

JUMP IF TRUE delta
If TOS is true, increment the byte code counter bydelta. TOS is left on the stack.

JUMP IF FALSE delta
If TOS is false, increment the byte code counter bydelta. TOS is not changed.

JUMP ABSOLUTE target
Set byte code counter totarget.

FOR LOOP delta
Iterate over a sequence. TOS is the current index, TOS1 the sequence. First, the next element is computed. If the
sequence is exhausted, increment byte code counter bydelta. Otherwise, push the sequence, the incremented
counter, and the current item onto the stack.

LOAD GLOBAL namei
Loads the global namedco names[namei] onto the stack.

SETUP LOOP delta
Pushes a block for a loop onto the block stack. The block spans from the current instruction with a size ofdelta
bytes.

SETUP EXCEPT delta
Pushes a try block from a try-except clause onto the block stack.deltapoints to the first except block.

SETUP FINALLY delta
Pushes a try block from a try-except clause onto the block stack.deltapoints to the finally block.

17.10. dis — Disassembler for Python byte code 437

LOAD FAST var num
Pushes a reference to the localco varnames[var num] onto the stack.

STORE FAST var num
Stores TOS into the localco varnames[var num] .

DELETE FAST var num
Deletes localco varnames[var num] .

LOAD CLOSURE i
Pushes a reference to the cell contained in sloti of the cell and free variable storage. The name of the vari-
able isco cellvars[i] if i is less than the length ofco cellvars. Otherwise it isco freevars[i -
len(co cellvars)] .

LOAD DEREF i
Loads the cell contained in sloti of the cell and free variable storage. Pushes a reference to the object the cell
contains on the stack.

STORE DEREF i
Stores TOS into the cell contained in sloti of the cell and free variable storage.

SET LINENO lineno
Sets the current line number tolineno.

RAISE VARARGS argc
Raises an exception.argc indicates the number of parameters to the raise statement, ranging from 0 to 3. The
handler will find the traceback as TOS2, the parameter as TOS1, and the exception as TOS.

CALL FUNCTION argc
Calls a function. The low byte ofargc indicates the number of positional parameters, the high byte the number of
keyword parameters. On the stack, the opcode finds the keyword parameters first. For each keyword argument,
the value is on top of the key. Below the keyword parameters, the positional parameters are on the stack, with
the right-most parameter on top. Below the parameters, the function object to call is on the stack.

MAKE FUNCTION argc
Pushes a new function object on the stack. TOS is the code associated with the function. The function object is
defined to haveargcdefault parameters, which are found below TOS.

MAKE CLOSURE argc
Creates a new function object, sets itsfunc closureslot, and pushes it on the stack. TOS is the code associated
with the function. If the code object has N free variables, the next N items on the stack are the cells for these
variables. The function also hasargcdefault parameters, where are found before the cells.

BUILD SLICE argc
Pushes a slice object on the stack.argc must be 2 or 3. If it is 2,slice(TOS1, TOS) is pushed; if it is 3,
slice(TOS2, TOS1, TOS) is pushed. See theslice() built-in function for more information.

EXTENDEDARG ext
Prefixes any opcode which has an argument too big to fit into the default two bytes.ext holds two additional
bytes which, taken together with the subsequent opcode’s argument, comprise a four-byte argument,extbeing
the two most-significant bytes.

CALL FUNCTION VAR argc
Calls a function.argc is interpreted as inCALL FUNCTION. The top element on the stack contains the variable
argument list, followed by keyword and positional arguments.

CALL FUNCTION KW argc
Calls a function.argc is interpreted as inCALL FUNCTION. The top element on the stack contains the keyword
arguments dictionary, followed by explicit keyword and positional arguments.

CALL FUNCTION VAR KW argc
Calls a function.argc is interpreted as inCALL FUNCTION. The top element on the stack contains the keyword

438 Chapter 17. Python Language Services

arguments dictionary, followed by the variable-arguments tuple, followed by explicit keyword and positional
arguments.

17.10. dis — Disassembler for Python byte code 439

440

CHAPTER

EIGHTEEN

SGI IRIX Specific Services

The modules described in this chapter provide interfaces to features that are unique to SGI’s IRIX operating system
(versions 4 and 5).

al Audio functions on the SGI.
AL Constants used with theal module.
cd Interface to the CD-ROM on Silicon Graphics systems.
fl FORMS library interface for GUI applications.
FL Constants used with thefl module.
flp Functions for loading stored FORMS designs.
fm Font Managerinterface for SGI workstations.
gl Functions from the Silicon GraphicsGraphics Library.
DEVICE Constants used with thegl module.
GL Constants used with thegl module.
imgfile Support for SGI imglib files.
jpeg Read and write image files in compressed JPEG format.

18.1 al — Audio functions on the SGI

This module provides access to the audio facilities of the SGI Indy and Indigo workstations. See section 3A of the
IRIX man pages for details. You’ll need to read those man pages to understand what these functions do! Some of the
functions are not available in IRIX releases before 4.0.5. Again, see the manual to check whether a specific function
is available on your platform.

All functions and methods defined in this module are equivalent to the C functions with ‘AL’ prefixed to their name.

Symbolic constants from the C header file<audio.h> are defined in the standard moduleAL, see below.

Warning: the current version of the audio library may dump core when bad argument values are passed rather than
returning an error status. Unfortunately, since the precise circumstances under which this may happen are undocu-
mented and hard to check, the Python interface can provide no protection against this kind of problems. (One example
is specifying an excessive queue size — there is no documented upper limit.)

The module defines the following functions:

openport (name, direction[, config])
The name and direction arguments are strings. The optionalconfigargument is a configuration object as returned
by newconfig() . The return value is anaudio port object; methods of audio port objects are described below.

newconfig ()
The return value is a newaudio configuration object; methods of audio configuration objects are described
below.

queryparams (device)

441

The device argument is an integer. The return value is a list of integers containing the data returned byAL-
queryparams() .

getparams (device, list)
The deviceargument is an integer. The list argument is a list such as returned byqueryparams() ; it is
modified in place (!).

setparams (device, list)
Thedeviceargument is an integer. Thelist argument is a list such as returned byqueryparams() .

18.1.1 Configuration Objects

Configuration objects (returned bynewconfig() have the following methods:

getqueuesize ()
Return the queue size.

setqueuesize (size)
Set the queue size.

getwidth ()
Get the sample width.

setwidth (width)
Set the sample width.

getchannels ()
Get the channel count.

setchannels (nchannels)
Set the channel count.

getsampfmt ()
Get the sample format.

setsampfmt (sampfmt)
Set the sample format.

getfloatmax ()
Get the maximum value for floating sample formats.

setfloatmax (floatmax)
Set the maximum value for floating sample formats.

18.1.2 Port Objects

Port objects, as returned byopenport() , have the following methods:

closeport ()
Close the port.

getfd ()
Return the file descriptor as an int.

getfilled ()
Return the number of filled samples.

getfillable ()
Return the number of fillable samples.

readsamps (nsamples)

442 Chapter 18. SGI IRIX Specific Services

Read a number of samples from the queue, blocking if necessary. Return the data as a string containing the raw
data, (e.g., 2 bytes per sample in big-endian byte order (high byte, low byte) if you have set the sample width to
2 bytes).

writesamps (samples)
Write samples into the queue, blocking if necessary. The samples are encoded as described for theread-
samps() return value.

getfillpoint ()
Return the ‘fill point’.

setfillpoint (fillpoint)
Set the ‘fill point’.

getconfig ()
Return a configuration object containing the current configuration of the port.

setconfig (config)
Set the configuration from the argument, a configuration object.

getstatus (list)
Get status information on last error.

18.2 AL — Constants used with the al module

This module defines symbolic constants needed to use the built-in moduleal (see above); they are equivalent to those
defined in the C header file<audio.h> except that the name prefix ‘AL ’ is omitted. Read the module source for a
complete list of the defined names. Suggested use:

import al
from AL import *

18.3 cd — CD-ROM access on SGI systems

This module provides an interface to the Silicon Graphics CD library. It is available only on Silicon Graphics systems.

The way the library works is as follows. A program opens the CD-ROM device withopen() and creates a parser to
parse the data from the CD withcreateparser() . The object returned byopen() can be used to read data from
the CD, but also to get status information for the CD-ROM device, and to get information about the CD, such as the
table of contents. Data from the CD is passed to the parser, which parses the frames, and calls any callback functions
that have previously been added.

An audio CD is divided intotracksor programs(the terms are used interchangeably). Tracks can be subdivided into
indices. An audio CD contains atable of contentswhich gives the starts of the tracks on the CD. Index 0 is usually the
pause before the start of a track. The start of the track as given by the table of contents is normally the start of index 1.

Positions on a CD can be represented in two ways. Either a frame number or a tuple of three values, minutes, seconds
and frames. Most functions use the latter representation. Positions can be both relative to the beginning of the CD,
and to the beginning of the track.

Modulecd defines the following functions and constants:

createparser ()
Create and return an opaque parser object. The methods of the parser object are described below.

18.2. AL — Constants used with the al module 443

msftoframe (minutes, seconds, frames)
Converts a(minutes, seconds, frames) triple representing time in absolute time code into the corresponding
CD frame number.

open ([device[, mode]])
Open the CD-ROM device. The return value is an opaque player object; methods of the player object are
described below. The device is the name of the SCSI device file, e.g.’/dev/scsi/sc0d4l0’ , or None.
If omitted orNone, the hardware inventory is consulted to locate a CD-ROM drive. Themode, if not omited,
should be the string’r’ .

The module defines the following variables:

exceptionerror
Exception raised on various errors.

DATASIZE
The size of one frame’s worth of audio data. This is the size of the audio data as passed to the callback of type
audio .

BLOCKSIZE
The size of one uninterpreted frame of audio data.

The following variables are states as returned bygetstatus() :

READY
The drive is ready for operation loaded with an audio CD.

NODISC
The drive does not have a CD loaded.

CDROM
The drive is loaded with a CD-ROM. Subsequent play or read operations will return I/O errors.

ERROR
An error occurred while trying to read the disc or its table of contents.

PLAYING
The drive is in CD player mode playing an audio CD through its audio jacks.

PAUSED
The drive is in CD layer mode with play paused.

STILL
The equivalent ofPAUSEDon older (non 3301) model Toshiba CD-ROM drives. Such drives have never been
shipped by SGI.

audio
pnum
index
ptime
atime
catalog
ident
control

Integer constants describing the various types of parser callbacks that can be set by theaddcallback()
method of CD parser objects (see below).

18.3.1 Player Objects

Player objects (returned byopen()) have the following methods:

444 Chapter 18. SGI IRIX Specific Services

allowremoval ()
Unlocks the eject button on the CD-ROM drive permitting the user to eject the caddy if desired.

bestreadsize ()
Returns the best value to use for thenum framesparameter of thereadda() method. Best is defined as the
value that permits a continuous flow of data from the CD-ROM drive.

close ()
Frees the resources associated with the player object. After callingclose() , the methods of the object should
no longer be used.

eject ()
Ejects the caddy from the CD-ROM drive.

getstatus ()
Returns information pertaining to the current state of the CD-ROM drive. The returned information is a tuple
with the following values:state, track, rtime, atime, ttime, first, last, scsi audio, cur block. rtime is the time
relative to the start of the current track;atimeis the time relative to the beginning of the disc;ttime is the total
time on the disc. For more information on the meaning of the values, see the man pageCDgetstatus(3dm). The
value ofstateis one of the following:ERROR, NODISC, READY, PLAYING, PAUSED, STILL , or CDROM.

gettrackinfo (track)
Returns information about the specified track. The returned information is a tuple consisting of two elements,
the start time of the track and the duration of the track.

msftoblock (min, sec, frame)
Converts a minutes, seconds, frames triple representing a time in absolute time code into the corresponding logi-
cal block number for the given CD-ROM drive. You should usemsftoframe() rather thanmsftoblock()
for comparing times. The logical block number differs from the frame number by an offset required by certain
CD-ROM drives.

play (start, play)
Starts playback of an audio CD in the CD-ROM drive at the specified track. The audio output appears on the
CD-ROM drive’s headphone and audio jacks (if fitted). Play stops at the end of the disc.start is the number of
the track at which to start playing the CD; ifplay is 0, the CD will be set to an initial paused state. The method
togglepause() can then be used to commence play.

playabs (minutes, seconds, frames, play)
Like play() , except that the start is given in minutes, seconds, and frames instead of a track number.

playtrack (start, play)
Like play() , except that playing stops at the end of the track.

playtrackabs (track, minutes, seconds, frames, play)
Like play() , except that playing begins at the specified absolute time and ends at the end of the specified
track.

preventremoval ()
Locks the eject button on the CD-ROM drive thus preventing the user from arbitrarily ejecting the caddy.

readda (num frames)
Reads the specified number of frames from an audio CD mounted in the CD-ROM drive. The return value is a
string representing the audio frames. This string can be passed unaltered to theparseframe() method of the
parser object.

seek (minutes, seconds, frames)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to an absolute time code location specified inminutes, seconds, andframes. The return value is the
logical block number to which the pointer has been set.

seekblock (block)

18.3. cd — CD-ROM access on SGI systems 445

Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to the specified logical block number. The return value is the logical block number to which the
pointer has been set.

seektrack (track)
Sets the pointer that indicates the starting point of the next read of digital audio data from a CD-ROM. The
pointer is set to the specified track. The return value is the logical block number to which the pointer has been
set.

stop ()
Stops the current playing operation.

togglepause ()
Pauses the CD if it is playing, and makes it play if it is paused.

18.3.2 Parser Objects

Parser objects (returned bycreateparser()) have the following methods:

addcallback (type, func, arg)
Adds a callback for the parser. The parser has callbacks for eight different types of data in the digital audio
data stream. Constants for these types are defined at thecd module level (see above). The callback is called
as follows:func(arg, type, data) , wherearg is the user supplied argument,typeis the particular type of
callback, anddata is the data returned for thistypeof callback. The type of the data depends on thetypeof
callback as follows:

Type Value
audio String which can be passed unmodified toal.writesamps() .
pnum Integer giving the program (track) number.
index Integer giving the index number.
ptime Tuple consisting of the program time in minutes, seconds, and frames.
atime Tuple consisting of the absolute time in minutes, seconds, and frames.
catalog String of 13 characters, giving the catalog number of the CD.
ident String of 12 characters, giving the ISRC identification number of the

recording. The string consists of two characters country code, three char-
acters owner code, two characters giving the year, and five characters
giving a serial number.

control Integer giving the control bits from the CD subcode data

deleteparser ()
Deletes the parser and frees the memory it was using. The object should not be used after this call. This call is
done automatically when the last reference to the object is removed.

parseframe (frame)
Parses one or more frames of digital audio data from a CD such as returned byreadda() . It determines which
subcodes are present in the data. If these subcodes have changed since the last frame, thenparseframe()
executes a callback of the appropriate type passing to it the subcode data found in the frame. Unlike the C
function, more than one frame of digital audio data can be passed to this method.

removecallback (type)
Removes the callback for the giventype.

resetparser ()
Resets the fields of the parser used for tracking subcodes to an initial state.resetparser() should be called
after the disc has been changed.

446 Chapter 18. SGI IRIX Specific Services

18.4 fl — FORMS library interface for GUI applications

This module provides an interface to the FORMS Library by Mark Overmars. The source for the library can be
retrieved by anonymous ftp from host ‘ftp.cs.ruu.nl ’, directory ‘SGI/FORMS’. It was last tested with version
2.0b.

Most functions are literal translations of their C equivalents, dropping the initial ‘fl ’ from their name. Constants
used by the library are defined in moduleFL described below.

The creation of objects is a little different in Python than in C: instead of the ‘current form’ maintained by the library
to which new FORMS objects are added, all functions that add a FORMS object to a form are methods of the Python
object representing the form. Consequently, there are no Python equivalents for the C functionsfl addto form()
andfl end form() , and the equivalent offl bgn form() is calledfl.make form() .

Watch out for the somewhat confusing terminology: FORMS uses the wordobject for the buttons, sliders etc. that
you can place in a form. In Python, ‘object’ means any value. The Python interface to FORMS introduces two new
Python object types: form objects (representing an entire form) and FORMS objects (representing one button, slider
etc.). Hopefully this isn’t too confusing.

There are no ‘free objects’ in the Python interface to FORMS, nor is there an easy way to add object classes written
in Python. The FORMS interface to GL event handling is available, though, so you can mix FORMS with pure GL
windows.

Please note: importing fl implies a call to the GL functionforeground() and to the FORMS routine
fl init() .

18.4.1 Functions Defined in Module fl

Module fl defines the following functions. For more information about what they do, see the description of the
equivalent C function in the FORMS documentation:

make form (type, width, height)
Create a form with given type, width and height. This returns aformobject, whose methods are described below.

do forms ()
The standard FORMS main loop. Returns a Python object representing the FORMS object needing interaction,
or the special valueFL.EVENT.

check forms ()
Check for FORMS events. Returns whatdo forms() above returns, orNone if there is no event that imme-
diately needs interaction.

set event call back (function)
Set the event callback function.

set graphics mode(rgbmode, doublebuffering)
Set the graphics modes.

get rgbmode ()
Return the current rgb mode. This is the value of the C global variablefl rgbmode .

show message (str1, str2, str3)
Show a dialog box with a three-line message and an OK button.

show question (str1, str2, str3)
Show a dialog box with a three-line message and YES and NO buttons. It returns1 if the user pressed YES,0
if NO.

show choice (str1, str2, str3, but1[, but2[, but3]])
Show a dialog box with a three-line message and up to three buttons. It returns the number of the button clicked

18.4. fl — FORMS library interface for GUI applications 447

by the user (1, 2 or 3).

show input (prompt, default)
Show a dialog box with a one-line prompt message and text field in which the user can enter a string. The second
argument is the default input string. It returns the string value as edited by the user.

show file selector (message, directory, pattern, default)
Show a dialog box in which the user can select a file. It returns the absolute filename selected by the user, or
None if the user presses Cancel.

get directory ()
get pattern ()
get filename ()

These functions return the directory, pattern and filename (the tail part only) selected by the user in the last
show file selector() call.

qdevice (dev)
unqdevice (dev)
isqueued (dev)
qtest ()
qread ()
qreset ()
qenter (dev, val)
get mouse()
tie (button, valuator1, valuator2)

These functions are the FORMS interfaces to the corresponding GL functions. Use these if you want to handle
some GL events yourself when usingfl.do events() . When a GL event is detected that FORMS cannot
handle,fl.do forms() returns the special valueFL.EVENT and you should callfl.qread() to read the
event from the queue. Don’t use the equivalent GL functions!

color ()
mapcolor ()
getmcolor ()

See the description in the FORMS documentation offl color() , fl mapcolor() and
fl getmcolor() .

18.4.2 Form Objects

Form objects (returned bymake form() above) have the following methods. Each method corresponds to a C
function whose name is prefixed with ‘fl ’; and whose first argument is a form pointer; please refer to the official
FORMS documentation for descriptions.

All the add *() methods return a Python object representing the FORMS object. Methods of FORMS objects are
described below. Most kinds of FORMS object also have some methods specific to that kind; these methods are listed
here.

show form (placement, bordertype, name)
Show the form.

hide form ()
Hide the form.

redraw form ()
Redraw the form.

set form position (x, y)
Set the form’s position.

448 Chapter 18. SGI IRIX Specific Services

freeze form ()
Freeze the form.

unfreeze form ()
Unfreeze the form.

activate form ()
Activate the form.

deactivate form ()
Deactivate the form.

bgn group ()
Begin a new group of objects; return a group object.

end group ()
End the current group of objects.

find first ()
Find the first object in the form.

find last ()
Find the last object in the form.

add box (type, x, y, w, h, name)
Add a box object to the form. No extra methods.

add text (type, x, y, w, h, name)
Add a text object to the form. No extra methods.

add clock (type, x, y, w, h, name)
Add a clock object to the form.
Method:get clock() .

add button (type, x, y, w, h, name)
Add a button object to the form.
Methods:get button() , set button() .

add lightbutton (type, x, y, w, h, name)
Add a lightbutton object to the form.
Methods:get button() , set button() .

add roundbutton (type, x, y, w, h, name)
Add a roundbutton object to the form.
Methods:get button() , set button() .

add slider (type, x, y, w, h, name)
Add a slider object to the form.
Methods:set slider value() , get slider value() , set slider bounds() ,
get slider bounds() , set slider return() , set slider size() ,
set slider precision() , set slider step() .

add valslider (type, x, y, w, h, name)
Add a valslider object to the form.
Methods:set slider value() , get slider value() , set slider bounds() ,
get slider bounds() , set slider return() , set slider size() ,
set slider precision() , set slider step() .

add dial (type, x, y, w, h, name)
Add a dial object to the form.
Methods:set dial value() , get dial value() , set dial bounds() ,
get dial bounds() .

18.4. fl — FORMS library interface for GUI applications 449

add positioner (type, x, y, w, h, name)
Add a positioner object to the form.
Methods:set positioner xvalue() , set positioner yvalue() ,
set positioner xbounds() , set positioner ybounds() , get positioner xvalue() ,
get positioner yvalue() , get positioner xbounds() , get positioner ybounds() .

add counter (type, x, y, w, h, name)
Add a counter object to the form.
Methods:set counter value() , get counter value() , set counter bounds() ,
set counter step() , set counter precision() , set counter return() .

add input (type, x, y, w, h, name)
Add a input object to the form.
Methods:set input() , get input() , set input color() , set input return() .

add menu(type, x, y, w, h, name)
Add a menu object to the form.
Methods:set menu() , get menu() , addto menu() .

add choice (type, x, y, w, h, name)
Add a choice object to the form.
Methods:set choice() , get choice() , clear choice() , addto choice() ,
replace choice() , delete choice() , get choice text() , set choice fontsize() ,
set choice fontstyle() .

add browser (type, x, y, w, h, name)
Add a browser object to the form.
Methods:set browser topline() , clear browser() , add browser line() ,
addto browser() , insert browser line() , delete browser line() ,
replace browser line() , get browser line() , load browser() ,
get browser maxline() , select browser line() , deselect browser line() ,
deselect browser() , isselected browser line() , get browser() ,
set browser fontsize() , set browser fontstyle() , set browser specialkey() .

add timer (type, x, y, w, h, name)
Add a timer object to the form.
Methods:set timer() , get timer() .

Form objects have the following data attributes; see the FORMS documentation:

Name C Type Meaning
window int (read-only) GL window id
w float form width
h float form height
x float form x origin
y float form y origin
deactivated int nonzero if form is deactivated
visible int nonzero if form is visible
frozen int nonzero if form is frozen
doublebuf int nonzero if double buffering on

18.4.3 FORMS Objects

Besides methods specific to particular kinds of FORMS objects, all FORMS objects also have the following methods:

set call back (function, argument)
Set the object’s callback function and argument. When the object needs interaction, the callback function will be

450 Chapter 18. SGI IRIX Specific Services

called with two arguments: the object, and the callback argument. (FORMS objects without a callback function
are returned byfl.do forms() or fl.check forms() when they need interaction.) Call this method
without arguments to remove the callback function.

delete object ()
Delete the object.

show object ()
Show the object.

hide object ()
Hide the object.

redraw object ()
Redraw the object.

freeze object ()
Freeze the object.

unfreeze object ()
Unfreeze the object.

FORMS objects have these data attributes; see the FORMS documentation:

Name C Type Meaning
objclass int (read-only) object class
type int (read-only) object type
boxtype int box type
x float x origin
y float y origin
w float width
h float height
col1 int primary color
col2 int secondary color
align int alignment
lcol int label color
lsize float label font size
label string label string
lstyle int label style
pushed int (read-only) (see FORMS docs)
focus int (read-only) (see FORMS docs)
belowmouse int (read-only) (see FORMS docs)
frozen int (read-only) (see FORMS docs)
active int (read-only) (see FORMS docs)
input int (read-only) (see FORMS docs)
visible int (read-only) (see FORMS docs)
radio int (read-only) (see FORMS docs)
automatic int (read-only) (see FORMS docs)

18.5 FL — Constants used with the fl module

This module defines symbolic constants needed to use the built-in modulefl (see above); they are equivalent to those
defined in the C header file<forms.h> except that the name prefix ‘FL ’ is omitted. Read the module source for a
complete list of the defined names. Suggested use:

18.5. FL — Constants used with the fl module 451

import fl
from FL import *

18.6 flp — Functions for loading stored FORMS designs

This module defines functions that can read form definitions created by the ‘form designer’ (fdesign) program that
comes with the FORMS library (see modulefl above).

For now, see the file ‘flp.doc’ in the Python library source directory for a description.

XXX A complete description should be inserted here!

18.7 fm — Font Manager interface

This module provides access to the IRISFont Managerlibrary. It is available only on Silicon Graphics machines.
See also:4Sight User’s Guide, section 1, chapter 5: “Using the IRIS Font Manager.”

This is not yet a full interface to the IRIS Font Manager. Among the unsupported features are: matrix operations; cache
operations; character operations (use string operations instead); some details of font info; individual glyph metrics;
and printer matching.

It supports the following operations:

init ()
Initialization function. Callsfminit() . It is normally not necessary to call this function, since it is called
automatically the first time thefm module is imported.

findfont (fontname)
Return a font handle object. Callsfmfindfont(fontname) .

enumerate ()
Returns a list of available font names. This is an interface tofmenumerate() .

prstr (string)
Render a string using the current font (see thesetfont() font handle method below). Callsfm-
prstr(string) .

setpath (string)
Sets the font search path. Callsfmsetpath(string) . (XXX Does not work!?!)

fontpath ()
Returns the current font search path.

Font handle objects support the following operations:

scalefont (factor)
Returns a handle for a scaled version of this font. Callsfmscalefont(fh, factor) .

setfont ()
Makes this font the current font. Note: the effect is undone silently when the font handle object is deleted. Calls
fmsetfont(fh) .

getfontname ()
Returns this font’s name. Callsfmgetfontname(fh) .

getcomment ()
Returns the comment string associated with this font. Raises an exception if there is none. Callsfmgetcom-

452 Chapter 18. SGI IRIX Specific Services

ment(fh) .

getfontinfo ()
Returns a tuple giving some pertinent data about this font. This is an interface tofmgetfontinfo() . The
returned tuple contains the following numbers:(printermatched, fixed width, xorig, yorig, xsize, ysize, height,
nglyphs) .

getstrwidth (string)
Returns the width, in pixels, ofstringwhen drawn in this font. Callsfmgetstrwidth(fh, string) .

18.8 gl — Graphics Library interface

This module provides access to the Silicon GraphicsGraphics Library. It is available only on Silicon Graphics
machines.

Warning: Some illegal calls to the GL library cause the Python interpreter to dump core. In particular, the use of most
GL calls is unsafe before the first window is opened.

The module is too large to document here in its entirety, but the following should help you to get started. The parameter
conventions for the C functions are translated to Python as follows:

• All (short, long, unsigned) int values are represented by Python integers.

• All float and double values are represented by Python floating point numbers. In most cases, Python integers
are also allowed.

• All arrays are represented by one-dimensional Python lists. In most cases, tuples are also allowed.

• All string and character arguments are represented by Python strings, for instance,winopen(’Hi There!’)
androtate(900, ’z’) .

• All (short, long, unsigned) integer arguments or return values that are only used to specify the length of an array
argument are omitted. For example, the C call

lmdef(deftype, index, np, props)

is translated to Python as

lmdef(deftype, index, props)

• Output arguments are omitted from the argument list; they are transmitted as function return values instead. If
more than one value must be returned, the return value is a tuple. If the C function has both a regular return
value (that is not omitted because of the previous rule) and an output argument, the return value comes first in
the tuple. Examples: the C call

getmcolor(i, &red, &green, &blue)

is translated to Python as

red, green, blue = getmcolor(i)

18.8. gl — Graphics Library interface 453

The following functions are non-standard or have special argument conventions:

varray (argument)
Equivalent to but faster than a number ofv3d() calls. Theargumentis a list (or tuple) of points. Each point
must be a tuple of coordinates(x, y, z) or (x, y) . The points may be 2- or 3-dimensional but must all have
the same dimension. Float and int values may be mixed however. The points are always converted to 3D double
precision points by assumingz = 0.0 if necessary (as indicated in the man page), and for each pointv3d()
is called.

nvarray ()
Equivalent to but faster than a number ofn3f andv3f calls. The argument is an array (list or tuple) of pairs
of normals and points. Each pair is a tuple of a point and a normal for that point. Each point or normal must be
a tuple of coordinates(x, y, z) . Three coordinates must be given. Float and int values may be mixed. For
each pair,n3f() is called for the normal, and thenv3f() is called for the point.

vnarray ()
Similar tonvarray() but the pairs have the point first and the normal second.

nurbssurface (s k, t k, ctl, s ord, t ord, type)
Defines a nurbs surface. The dimensions ofctl[][] are computed as follows:[len(s k) - s ord] ,
[len(t k) - t ord] .

nurbscurve (knots, ctlpoints, order, type)
Defines a nurbs curve. The length of ctlpoints islen(knots) - order.

pwlcurve (points, type)
Defines a piecewise-linear curve.pointsis a list of points.typemust beN ST.

pick (n)
select (n)

The only argument to these functions specifies the desired size of the pick or select buffer.

endpick ()
endselect ()

These functions have no arguments. They return a list of integers representing the used part of the pick/select
buffer. No method is provided to detect buffer overrun.

Here is a tiny but complete example GL program in Python:

454 Chapter 18. SGI IRIX Specific Services

import gl, GL, time

def main():
gl.foreground()
gl.prefposition(500, 900, 500, 900)
w = gl.winopen(’CrissCross’)
gl.ortho2(0.0, 400.0, 0.0, 400.0)
gl.color(GL.WHITE)
gl.clear()
gl.color(GL.RED)
gl.bgnline()
gl.v2f(0.0, 0.0)
gl.v2f(400.0, 400.0)
gl.endline()
gl.bgnline()
gl.v2f(400.0, 0.0)
gl.v2f(0.0, 400.0)
gl.endline()
time.sleep(5)

main()

See Also:

An interface to OpenGL is also available; see information about David Ascher’sPyOpenGL online at
http://starship.python.net/crew/da/PyOpenGL/. This may be a better option if support for SGI hardware from before
about 1996 is not required.

18.9 DEVICE — Constants used with the gl module

This modules defines the constants used by the Silicon GraphicsGraphics Librarythat C programmers find in the
header file<gl/device.h> . Read the module source file for details.

18.10 GL — Constants used with the gl module

This module contains constants used by the Silicon GraphicsGraphics Libraryfrom the C header file<gl/gl.h> .
Read the module source file for details.

18.11 imgfile — Support for SGI imglib files

The imgfile module allows Python programs to access SGI imglib image files (also known as ‘.rgb’ files). The
module is far from complete, but is provided anyway since the functionality that there is is enough in some cases.
Currently, colormap files are not supported.

The module defines the following variables and functions:

exceptionerror
This exception is raised on all errors, such as unsupported file type, etc.

getsizes (file)
This function returns a tuple(x, y, z) wherex andy are the size of the image in pixels andz is the number

18.9. DEVICE — Constants used with the gl module 455

of bytes per pixel. Only 3 byte RGB pixels and 1 byte greyscale pixels are currently supported.

read (file)
This function reads and decodes the image on the specified file, and returns it as a Python string. The string has
either 1 byte greyscale pixels or 4 byte RGBA pixels. The bottom left pixel is the first in the string. This format
is suitable to pass togl.lrectwrite() , for instance.

readscaled (file, x, y, filter[, blur])
This function is identical to read but it returns an image that is scaled to the givenx andy sizes. If thefilter and
blur parameters are omitted scaling is done by simply dropping or duplicating pixels, so the result will be less
than perfect, especially for computer-generated images.

Alternatively, you can specify a filter to use to smoothen the image after scaling. The filter forms supported are
’impulse’ , ’box’ , ’triangle’ , ’quadratic’ and ’gaussian’ . If a filter is specifiedblur is an
optional parameter specifying the blurriness of the filter. It defaults to1.0 .

readscaled() makes no attempt to keep the aspect ratio correct, so that is the users’ responsibility.

ttob (flag)
This function sets a global flag which defines whether the scan lines of the image are read or written from bottom
to top (flag is zero, compatible with SGI GL) or from top to bottom(flag is one, compatible with X). The default
is zero.

write (file, data, x, y, z)
This function writes the RGB or greyscale data indata to image filefile. x andy give the size of the image,z is
1 for 1 byte greyscale images or 3 for RGB images (which are stored as 4 byte values of which only the lower
three bytes are used). These are the formats returned bygl.lrectread() .

18.12 jpeg — Read and write JPEG files

The modulejpeg provides access to the jpeg compressor and decompressor written by the Independent JPEG Group
(IJG). JPEG is a standard for compressing pictures; it is defined in ISO 10918. For details on JPEG or the Independent
JPEG Group software refer to the JPEG standard or the documentation provided with the software.

A portable interface to JPEG image files is available with the Python Imaging Library (PIL) by Fredrik Lundh. Infor-
mation on PIL is available athttp://www.pythonware.com/products/pil/.

The jpeg module defines an exception and some functions.

exceptionerror
Exception raised bycompress() anddecompress() in case of errors.

compress (data, w, h, b)
Treat data as a pixmap of widthw and heighth, with b bytes per pixel. The data is in SGI GL order, so the first
pixel is in the lower-left corner. This means thatgl.lrectread() return data can immediately be passed to
compress() . Currently only 1 byte and 4 byte pixels are allowed, the former being treated as greyscale and
the latter as RGB color.compress() returns a string that contains the compressed picture, in JFIF format.

decompress (data)
Data is a string containing a picture in JFIF format. It returns a tuple(data, width, height, bytesperpixel) .
Again, the data is suitable to pass togl.lrectwrite() .

setoption (name, value)
Set various options. Subsequentcompress() anddecompress() calls will use these options. The follow-
ing options are available:

456 Chapter 18. SGI IRIX Specific Services

Option Effect
’forcegray’ Force output to be grayscale, even if input is RGB.
’quality’ Set the quality of the compressed image to a value be-

tween0 and 100 (default is75). This only affects
compression.

’optimize’ Perform Huffman table optimization. Takes longer,
but results in smaller compressed image. This only
affects compression.

’smooth’ Perform inter-block smoothing on uncompressed im-
age. Only useful for low-quality images. This only
affects decompression.

See Also:

JPEG Still Image Data Compression Standard
The canonical reference for the JPEG image format, by Pennebaker and Mitchell.

Information Technology - Digital Compression and Coding of Continuous-tone Still Images - Requirements and Guidelines
(http://www.w3.org/Graphics/JPEG/itu-t81.pdf)

The ISO standard for JPEG is also published as ITU T.81. This is available online in PDF form.

18.12. jpeg — Read and write JPEG files 457

458

CHAPTER

NINETEEN

SunOS Specific Services

The modules described in this chapter provide interfaces to features that are unique to the SunOS operating system
(versions 4 and 5; the latter is also known as Solaris version 2).

19.1 sunaudiodev — Access to Sun audio hardware

This module allows you to access the Sun audio interface. The Sun audio hardware is capable of recording and playing
back audio data in u-LAW format with a sample rate of 8K per second. A full description can be found in theaudio(7I)
manual page.

The moduleSUNAUDIODEVdefines constants which may be used with this module.

This module defines the following variables and functions:

exceptionerror
This exception is raised on all errors. The argument is a string describing what went wrong.

open (mode)
This function opens the audio device and returns a Sun audio device object. This object can then be used to do
I/O on. Themodeparameter is one of’r’ for record-only access,’w’ for play-only access,’rw’ for both and
’control’ for access to the control device. Since only one process is allowed to have the recorder or player
open at the same time it is a good idea to open the device only for the activity needed. Seeaudio(7I) for details.

As per the manpage, this module first looks in the environment variableAUDIODEVfor the base audio device
filename. If not found, it falls back to ‘/dev/audio’. The control device is calculated by appending “ctl” to the
base audio device.

19.1.1 Audio Device Objects

The audio device objects are returned byopen() define the following methods (exceptcontrol objects which only
providegetinfo() , setinfo() , fileno() , anddrain()):

close ()
This method explicitly closes the device. It is useful in situations where deleting the object does not immediately
close it since there are other references to it. A closed device should not be used again.

fileno ()
Returns the file descriptor associated with the device. This can be used to set upSIGPOLL notification, as
described below.

drain ()
This method waits until all pending output is processed and then returns. Calling this method is often not
necessary: destroying the object will automatically close the audio device and this will do an implicit drain.

459

flush ()
This method discards all pending output. It can be used avoid the slow response to a user’s stop request (due to
buffering of up to one second of sound).

getinfo ()
This method retrieves status information like input and output volume, etc. and returns it in the form of an
audio status object. This object has no methods but it contains a number of attributes describing the current
device status. The names and meanings of the attributes are described in<sun/audioio.h> and in the
audio(7I) manual page. Member names are slightly different from their C counterparts: a status object is only
a single structure. Members of theplay substructure have ‘o ’ prepended to their name and members of the
record structure have ‘i ’. So, the C memberplay.sample rate is accessed aso sample rate ,
record.gain asi gain andmonitor gain plainly asmonitor gain .

ibufcount ()
This method returns the number of samples that are buffered on the recording side, i.e. the program will not
block on aread() call of so many samples.

obufcount ()
This method returns the number of samples buffered on the playback side. Unfortunately, this number cannot
be used to determine a number of samples that can be written without blocking since the kernel output queue
length seems to be variable.

read (size)
This method readssizesamples from the audio input and returns them as a Python string. The function blocks
until enough data is available.

setinfo (status)
This method sets the audio device status parameters. Thestatusparameter is an device status object as returned
by getinfo() and possibly modified by the program.

write (samples)
Write is passed a Python string containing audio samples to be played. If there is enough buffer space free it
will immediately return, otherwise it will block.

The audio device supports asynchronous notification of various events, through the SIGPOLL signal. Here’s an exam-
ple of how you might enable this in Python:

def handle_sigpoll(signum, frame):
print ’I got a SIGPOLL update’

import fcntl, signal, STROPTS

signal.signal(signal.SIGPOLL, handle_sigpoll)
fcntl.ioctl(audio_obj.fileno(), STROPTS.I_SETSIG, STROPTS.S_MSG)

19.2 SUNAUDIODEV— Constants used with sunaudiodev

This is a companion module tosunaudiodev which defines useful symbolic constants likeMIN GAIN,
MAX GAIN, SPEAKER, etc. The names of the constants are the same names as used in the C include file
<sun/audioio.h> , with the leading string ‘AUDIO ’ stripped.

460 Chapter 19. SunOS Specific Services

CHAPTER

TWENTY

MS Windows Specific Services

This chapter describes modules that are only available on MS Windows platforms.

msvcrt Miscellaneous useful routines from the MS VC++ runtime.
winreg Routines and objects for manipulating the Windows registry.

winsound Access to the sound-playing machinery for Windows.

20.1 msvcrt – Useful routines from the MS VC++ runtime

These functions provide access to some useful capabilities on Windows platforms. Some higher-level modules use
these functions to build the Windows implementations of their services. For example, thegetpass module uses this
in the implementation of thegetpass() function.

Further documentation on these functions can be found in the Platform API documentation.

20.1.1 File Operations

locking (fd, mode, nbytes)
Lock part of a file based on file descriptorfd from the C runtime. RaisesIOError on failure. The locked
region of the file extends from the current file position fornbytesbytes, and may continue beyond the end of the
file. modemust be one of theLK * constants listed below. Multiple regions in a file may be locked at the same
time, but may not overlap. Adjacent regions are not merged; they must be unlocked individually.

LK LOCK
LK RLCK

Locks the specified bytes. If the bytes cannot be locked, the program immediately tries again after 1 second. If,
after 10 attempts, the bytes cannot be locked,IOError is raised.

LK NBLCK
LK NBRLCK

Locks the specified bytes. If the bytes cannot be locked,IOError is raised.

LK UNLCK
Unlocks the specified bytes, which must have been previously locked.

setmode (fd, flags)
Set the line-end translation mode for the file descriptorfd. To set it to text mode,flagsshould beos.O TEXT;
for binary, it should beos.O BINARY.

open osfhandle (handle, flags)
Create a C runtime file descriptor from the file handlehandle. Theflagsparameter should be a bit-wise OR of
os.O APPEND, os.O RDONLY, andos.O TEXT. The returned file descriptor may be used as a parameter
to os.fdopen() to create a file object.

461

get osfhandle (fd)
Return the file handle for the file descriptorfd. RaisesIOError if fd is not recognized.

20.1.2 Console I/O

kbhit ()
Return true if a keypress is waiting to be read.

getch ()
Read a keypress and return the resulting character. Nothing is echoed to the console. This call will block if a
keypress is not already available, but will not wait forEnter to be pressed. If the pressed key was a special
function key, this will return’\000’ or ’\xe0’ ; the next call will return the keycode. TheControl-C
keypress cannot be read with this function.

getche ()
Similar togetch() , but the keypress will be echoed if it represents a printable character.

putch (char)
Print the characterchar to the console without buffering.

ungetch (char)
Cause the characterchar to be “pushed back” into the console buffer; it will be the next character read by
getch() or getche() .

20.1.3 Other Functions

heapmin ()
Force themalloc() heap to clean itself up and return unused blocks to the operating system. This only works
on Windows NT. On failure, this raisesIOError .

20.2 winreg – Windows registry access

New in version 2.0.

These functions expose the Windows registry API to Python. Instead of using an integer as the registry handle, a
handle object is used to ensure that the handles are closed correctly, even if the programmer neglects to explicitly close
them.

This module exposes a very low-level interface to the Windows registry; it is expected that in the future a newwinreg
module will be created offering a higher-level interface to the registry API.

This module offers the following functions:

CloseKey (hkey)
Closes a previously opened registry key. The hkey argument specifies a previously opened key.

Note that ifhkeyis not closed using this method, (or thehandle.Close() closed when thehkeyobject is
destroyed by Python.

ConnectRegistry (computer name, key)
Establishes a connection to a predefined registry handle on another computer, and returns ahandle object

computer nameis the name of the remote computer, of the form ‘\\computername ’. If None, the local
computer is used.

keyis the predefined handle to connect to.

The return value is the handle of the opened key. If the function fails, anEnvironmentError exception is
raised.

462 Chapter 20. MS Windows Specific Services

CreateKey (key, subkey)
Creates or opens the specified key, returning ahandle object

keyis an already open key, or one of the predefinedHKEY * constants.

sub keyis a string that names the key this method opens or creates.

If key is one of the predefined keys,sub keymay beNone. In that case, the handle returned is the same key
handle passed in to the function.

If the key already exists, this function opens the existing key

The return value is the handle of the opened key. If the function fails, anEnvironmentError exception is
raised.

DeleteKey (key, subkey)
Deletes the specified key.

keyis an already open key, or any one of the predefinedHKEY * constants.

sub key is a string that must be a subkey of the key identified by thekeyparameter. This value must not be
None, and the key may not have subkeys.

This method can not delete keys with subkeys.

If the method succeeds, the entire key, including all of its values, is removed. If the method fails, anEnviron-
mentError exception is raised.

DeleteValue (key, value)
Removes a named value from a registry key.

keyis an already open key, or one of the predefinedHKEY * constants.

valueis a string that identifies the value to remove.

EnumKey(key, index)
Enumerates subkeys of an open registry key, returning a string.

keyis an already open key, or any one of the predefinedHKEY * constants.

indexis an integer that identifies the index of the key to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly until an
EnvironmentError exception is raised, indicating, no more values are available.

EnumValue (key, index)
Enumerates values of an open registry key, returning a tuple.

keyis an already open key, or any one of the predefinedHKEY * constants.

indexis an integer that identifies the index of the value to retrieve.

The function retrieves the name of one subkey each time it is called. It is typically called repeatedly, until an
EnvironmentError exception is raised, indicating no more values.

The result is a tuple of 3 items:

Index Meaning
0 A string that identifies the value name
1 An object that holds the value data, and whose type

depends on the underlying registry type
2 An integer that identifies the type of the value data

FlushKey (key)
Writes all the attributes of a key to the registry.

keyis an already open key, or one of the predefinedHKEY * constants.

It is not necessary to call RegFlushKey to change a key. Registry changes are flushed to disk by the registry
using its lazy flusher. Registry changes are also flushed to disk at system shutdown. UnlikeCloseKey() , the

20.2. winreg – Windows registry access 463

FlushKey() method returns only when all the data has been written to the registry. An application should
only callFlushKey() if it requires absolute certainty that registry changes are on disk.

If you don’t know whether aFlushKey() call is required, it probably isn’t.

RegLoadKey (key, subkey, file name)
Creates a subkey under the specified key and stores registration information from a specified file into that subkey.

keyis an already open key, or any of the predefinedHKEY * constants.

sub keyis a string that identifies the subkey to load

file name is the name of the file to load registry data from. This file must have been created with the
SaveKey() function. Under the file allocation table (FAT) file system, the filename may not have an ex-
tension.

A call to LoadKey() fails if the calling process does not have theSE RESTOREPRIVILEGE privilege. Note
that privileges are different than permissions - see the Win32 documentation for more details.

If key is a handle returned byConnectRegistry() , then the path specified infileNameis relative to the
remote computer.

The Win32 documentation implieskeymust be in theHKEY USERor HKEY LOCAL MACHINEtree. This
may or may not be true.

OpenKey(key, subkey[, res = 0][, sam = KEY READ])
Opens the specified key, returning ahandle object

keyis an already open key, or any one of the predefinedHKEY * constants.

sub keyis a string that identifies the subkey to open

res is a reserved integer, and must be zero. The default is zero.

samis an integer that specifies an access mask that describes the desired security access for the key. Default is
KEY READ

The result is a new handle to the specified key

If the function fails,EnvironmentError is raised.

OpenKeyEx()
The functionality ofOpenKeyEx() is provided viaOpenKey() , by the use of default arguments.

QueryInfoKey (key)
Returns information about a key, as a tuple.

keyis an already open key, or one of the predefinedHKEY * constants.

The result is a tuple of 3 items:

Index Meaning
0 An integer giving the number of sub keys this key has.
1 An integer giving the number of values this key has.
2 A long integer giving when the key was last modi-

fied (if available) as 100’s of nanoseconds since Jan
1, 1600.

QueryValue (key, subkey)
Retrieves the unnamed value for a key, as a string

keyis an already open key, or one of the predefinedHKEY * constants.

sub key is a string that holds the name of the subkey with which the value is associated. If this parameter is
None or empty, the function retrieves the value set by theSetValue() method for the key identified bykey.

Values in the registry have name, type, and data components. This method retrieves the data for a key’s first
value that has a NULL name. But the underlying API call doesn’t return the type, Lame Lame Lame, DO NOT
USE THIS!!!

464 Chapter 20. MS Windows Specific Services

QueryValueEx (key, valuename)
Retrieves the type and data for a specified value name associated with an open registry key.

keyis an already open key, or one of the predefinedHKEY * constants.

value nameis a string indicating the value to query.

The result is a tuple of 2 items:

Index Meaning
0 The value of the registry item.
1 An integer giving the registry type for this value.

SaveKey (key, file name)
Saves the specified key, and all its subkeys to the specified file.

keyis an already open key, or one of the predefinedHKEY * constants.

file nameis the name of the file to save registry data to. This file cannot already exist. If this filename includes
an extension, it cannot be used on file allocation table (FAT) file systems by theLoadKey() , ReplaceKey()
or RestoreKey() methods.

If keyrepresents a key on a remote computer, the path described byfile nameis relative to the remote computer.
The caller of this method must possess theSeBackupPrivilege security privilege. Note that privileges are
different than permissions - see the Win32 documentation for more details.

This function passes NULL forsecurity attributesto the API.

SetValue (key, subkey, type, value)
Associates a value with a specified key.

keyis an already open key, or one of the predefinedHKEY * constants.

sub keyis a string that names the subkey with which the value is associated.

typeis an integer that specifies the type of the data. Currently this must beREG SZ, meaning only strings are
supported. Use theSetValueEx() function for support for other data types.

valueis a string that specifies the new value.

If the key specified by thesub keyparameter does not exist, the SetValue function creates it.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as files
with the filenames stored in the configuration registry. This helps the registry perform efficiently.

The key identified by thekeyparameter must have been opened withKEY SET VALUEaccess.

SetValueEx (key, valuename, reserved, type, value)
Stores data in the value field of an open registry key.

keyis an already open key, or one of the predefinedHKEY * constants.

sub keyis a string that names the subkey with which the value is associated.

typeis an integer that specifies the type of the data. This should be one of the following constants defined in this
module:

20.2. winreg – Windows registry access 465

Constant Meaning
REG BINARY Binary data in any form.
REG DWORD A 32-bit number.
REG DWORDLITTLE ENDIAN A 32-bit number in little-endian format.
REG DWORDBIG ENDIAN A 32-bit number in big-endian format.
REG EXPANDSZ Null-terminated string containing references to envi-

ronment variables (‘%PATH%’).
REG LINK A Unicode symbolic link.
REG MULTI SZ A sequence of null-terminated strings, terminated by

two null characters. (Python handles this termination
automatically.)

REG NONE No defined value type.
REG RESOURCELIST A device-driver resource list.
REG SZ A null-terminated string.

reservedcan be anything - zero is always passed to the API.

valueis a string that specifies the new value.

This method can also set additional value and type information for the specified key. The key identified by the
key parameter must have been opened withKEY SET VALUEaccess.

To open the key, use theCreateKeyEx() or OpenKey() methods.

Value lengths are limited by available memory. Long values (more than 2048 bytes) should be stored as files
with the filenames stored in the configuration registry. This helps the registry perform efficiently.

20.2.1 Registry Handle Objects

This object wraps a Windows HKEY object, automatically closing it when the object is destroyed. To guarantee
cleanup, you can call either theClose() method on the object, or theCloseKey() function.

All registry functions in this module return one of these objects.

All registry functions in this module which accept a handle object also accept an integer, however, use of the handle
object is encouraged.

Handle objects provide semantics fornonzero () - thus

if handle:
print "Yes"

will print Yes if the handle is currently valid (i.e., has not been closed or detached).

The object also support comparison semantics, so handle objects will compare true if they both reference the same
underlying Windows handle value.

Handle objects can be converted to an integer (eg, using the builtinint() function, in which case the underlying
Windows handle value is returned. You can also use theDetach() method to return the integer handle, and also
disconnect the Windows handle from the handle object.

Close ()
Closes the underlying Windows handle.

If the handle is already closed, no error is raised.

Detach ()
Detaches the Windows handle from the handle object.

The result is an integer (or long on 64 bit Windows) that holds the value of the handle before it is detached. If
the handle is already detached or closed, this will return zero.

466 Chapter 20. MS Windows Specific Services

After calling this function, the handle is effectively invalidated, but the handle is not closed. You would call this
function when you need the underlying Win32 handle to exist beyond the lifetime of the handle object.

20.3 winsound — Sound-playing interface for Windows

New in version 1.5.2.

The winsound module provides access to the basic sound-playing machinery provided by Windows platforms. It
includes two functions and several constants.

Beep(frequency, duration)
Beep the PC’s speaker. Thefrequencyparameter specifies frequency, in hertz, of the sound, and must be in the
range 37 through 32,767. Thedurationparameter specifies the number of milliseconds the sound should last.
If the system is not able to beep the speaker,RuntimeError is raised.Note: Under Windows 95 and 98, the
WindowsBeep() function exists but is useless (it ignores its arguments). In that case Python simulates it via
direct port manipulation (added in version 2.1). It’s unknown whether that will work on all systems. New in
version 1.6.

PlaySound (sound, flags)
Call the underlyingPlaySound() function from the Platform API. Thesoundparameter may be a filename,
audio data as a string, orNone. Its interpretation depends on the value offlags, which can be a bit-wise ORed
combination of the constants described below. If the system indicates an error,RuntimeError is raised.

SND FILENAME
Thesoundparameter is the name of a WAV file. Do not use withSND ALIAS .

SND ALIAS
Thesoundparameter is a sound association name from the registry. If the registry contains no such name, play
the system default sound unlessSND NODEFAULTis also specified. If no default sound is registered, raise
RuntimeError . Do not use withSND FILENAME.

All Win32 systems support at least the following; most systems support many more:

PlaySound() name Corresponding Control Panel Sound name
’SystemAsterisk’ Asterisk
’SystemExclamation’ Exclamation
’SystemExit’ Exit Windows
’SystemHand’ Critical Stop
’SystemQuestion’ Question

For example:

import winsound
Play Windows exit sound.
winsound.PlaySound("SystemExit", winsound.SND_ALIAS)

Probably play Windows default sound, if any is registered (because
"*" probably isn’t the registered name of any sound).
winsound.PlaySound("*", winsound.SND_ALIAS)

SND LOOP
Play the sound repeatedly. TheSND ASYNCflag must also be used to avoid blocking. Cannot be used with
SND MEMORY.

SND MEMORY
Thesoundparameter toPlaySound() is a memory image of a WAV file, as a string.

Note: This module does not support playing from a memory image asynchronously, so a combination of this
flag andSND ASYNCwill raiseRuntimeError .

20.3. winsound — Sound-playing interface for Windows 467

SND PURGE
Stop playing all instances of the specified sound.

SND ASYNC
Return immediately, allowing sounds to play asynchronously.

SND NODEFAULT
If the specified sound cannot be found, do not play the system default sound.

SND NOSTOP
Do not interrupt sounds currently playing.

SND NOWAIT
Return immediately if the sound driver is busy.

468 Chapter 20. MS Windows Specific Services

APPENDIX

A

Undocumented Modules

Here’s a quick listing of modules that are currently undocumented, but that should be documented. Feel free to
contribute documentation for them! (Send via email topython-docs@python.org.)

The idea and original contents for this chapter were taken from a posting by Fredrik Lundh; the specific contents of
this chapter have been substantially revised.

A.1 Frameworks

Frameworks tend to be harder to document, but are well worth the effort spent.

Tkinter — Interface to Tcl/Tk for graphical user interfaces; Fredrik Lundh is working on this one! SeeAn Intro-
duction to Tkinterat http://www.pythonware.com/library.htm for on-line reference material.

Tkdnd — Drag-and-drop support forTkinter .

turtle — Turtle graphics in a Tk window.

test — Regression testing framework. This is used for the Python regression test, but is useful for other Python
libraries as well. This is a package rather than a single module.

A.2 Miscellaneous useful utilities

Some of these are very old and/or not very robust; marked with “hmm.”

bdb — A generic Python debugger base class (used by pdb).

ihooks — Import hook support (forrexec ; may become obsolete).

A.3 Platform specific modules

These modules are used to implement theos.path module, and are not documented beyond this mention. There’s
little need to document these.

dospath — Implementation ofos.path on MS-DOS.

ntpath — Implementation onos.path on Win32, Win64, WinCE, and OS/2 platforms.

posixpath — Implementation onos.path on POSIX.

469

A.4 Multimedia

audiodev — Platform-independent API for playing audio data.

sunaudio — Interpret Sun audio headers (may become obsolete or a tool/demo).

toaiff — Convert ”arbitrary” sound files to AIFF files; should probably become a tool or demo. Requires the
external programsox.

A.5 Obsolete

These modules are not normally available for import; additional work must be done to make them available.

Those which are written in Python will be installed into the directory ‘lib-old/’ installed as part of the standard library.
To use these, the directory must be added tosys.path , possibly using PYTHONPATH.

Obsolete extension modules written in C are not built by default. Under UNIX , these must be enabled by uncomment-
ing the appropriate lines in ‘Modules/Setup’ in the build tree and either rebuilding Python if the modules are statically
linked, or building and installing the shared object if using dynamically-loaded extensions.

addpack — Alternate approach to packages. Use the built-in package support instead.

cmp — File comparison function. Use the newerfilecmp instead.

cmpcache — Caching version of the obsoletecmp module. Use the newerfilecmp instead.

codehack — Extract function name or line number from a function code object (these are now accessible as at-
tributes:co.co name, func.func name, co.co firstlineno).

dircmp — Class to build directory diff tools on (may become a demo or tool).Deprecated since release 2.0.The
filecmp module replacesdircmp .

dump — Print python code that reconstructs a variable.

fmt — Text formatting abstractions (too slow).

lockfile — Wrapper around FCNTL file locking (usefcntl.lockf() /flock() instead; seefcntl).

newdir — Newdir() function (the standarddir() is now just as good).

Para — Helper forfmt .

poly — Polynomials.

regex — Emacs-style regular expression support; may still be used in some old code (extension module). Refer to
thePython 1.6 Documentationfor documentation.

regsub — Regular expression based string replacement utilities, for use withregex (extension module). Refer to
thePython 1.6 Documentationfor documentation.

tb — Print tracebacks, with a dump of local variables (usepdb.pm() or traceback instead).

timing — Measure time intervals to high resolution (usetime.clock() instead). (This is an extension module.)

tzparse — Parse a timezone specification (unfinished; may disappear in the future, and does not work when the
TZ environment variable is not set).

util — Useful functions that don’t fit elsewhere.

whatsound — Recognize sound files; usesndhdr instead.

470 Appendix A. Undocumented Modules

zmod — Compute properties of mathematical “fields.”

The following modules are obsolete, but are likely to re-surface as tools or scripts:

find — Find files matching pattern in directory tree.

grep — grep implementation in Python.

packmail — Create a self-unpacking UNIX shell archive.

The following modules were documented in previous versions of this manual, but are now considered obsolete. The
source for the documentation is still available as part of the documentation source archive.

ni — Import modules in “packages.” Basic package support is now built in. The built-in support is very similar to
what is provided in this module.

rand — Old interface to the random number generator.

soundex — Algorithm for collapsing names which sound similar to a shared key. The specific algorithm doesn’t
seem to match any published algorithm. (This is an extension module.)

A.6 SGI-specific Extension modules

The following are SGI specific, and may be out of touch with the current version of reality.

cl — Interface to the SGI compression library.

sv — Interface to the “simple video” board on SGI Indigo (obsolete hardware).

A.6. SGI-specific Extension modules 471

472

APPENDIX

B

Reporting Bugs

Python is a mature programming language which has established a reputation for stability. In order to maintain this
reputation, the developers would like to know of any deficiencies you find in Python or its documentation.

All bug reports should be submitted via the Python Bug Tracker on SourceForge
(http://sourceforge.net/bugs/?group id=5470). The bug tracker offers a Web form which allows pertinent infor-
mation to be entered and submitted to the developers.

Before submitting a report, please log into SourceForge if you are a member; this will make it possible for the devel-
opers to contact you for additional information if needed. If you are not a SourceForge member but would not mind
the developers contacting you, you may include your email address in your bug description. In this case, please realize
that the information is publically available and cannot be protected.

The first step in filing a report is to determine whether the problem has already been reported. The advantage in doing
so, aside from saving the developers time, is that you learn what has been done to fix it; it may be that the problem has
already been fixed for the next release, or additional information is needed (in which case you are welcome to provide
it if you can!). To do this, search the bug database using the search box near the bottom of the page.

If the problem you’re reporting is not already in the bug tracker, go back to the Python Bug Tracker
(http://sourceforge.net/bugs/?group id=5470). Select the “Submit a Bug” link at the top of the page to open the bug
reporting form.

The submission form has a number of fields. The only fields that are required are the “Summary” and “Details” fields.
For the summary, enter avery short description of the problem; less than ten words is good. In the Details field,
describe the problem in detail, including what you expected to happen and what did happen. Be sure to include the
version of Python you used, whether any extension modules were involved, and what hardware and software platform
you were using (including version information as appropriate).

The only other field that you may want to set is the “Category” field, which allows you to place the bug report into a
broad category (such as “Documentation” or “Library”).

Each bug report will be assigned to a developer who will determine what needs to be done to correct the problem. If
you have a SourceForge account and logged in to report the problem, you will receive an update each time action is
taken on the bug.

See Also:

How to Report Bugs Effectively
(http://www-mice.cs.ucl.ac.uk/multimedia/software/documentation/ReportingBugs.html)

Article which goes into some detail about how to create a useful bug report. This describes what kind of
information is useful and why it is useful.

Bug Writing Guidelines
(http://www.mozilla.org/quality/bug-writing-guidelines.html)

Information about writing a good bug report. Some of this is specific to the Mozilla project, but describes
general good practices.

473

474

MODULE INDEX

Symbols
builtin , 75
main , 75

winreg , 462

A
aifc , 395
AL, 443
al , 441
anydbm, 225
array , 125
asyncore , 323
atexit , 40
audioop , 391

B
base64 , 345
BaseHTTPServer , 315
Bastion , 416
binascii , 339
binhex , 338
bisect , 124
bsddb , 228

C
calendar , 131
cd , 443
cgi , 277
CGIHTTPServer , 318
chunk , 401
cmath , 119
cmd, 132
code , 67
codecs , 95
codeop , 69
colorsys , 402
commands, 255
compileall , 431
ConfigParser , 127
Cookie , 319
copy , 60

copy reg , 59
cPickle , 59
crypt , 242
cStringIO , 95
curses , 163
curses.ascii , 179
curses.panel , 182
curses.textpad , 178
curses.wrapper , 179

D
dbhash , 226
dbm, 243
DEVICE, 455
difflib , 90
dircache , 151
dis , 432
dl , 242
doctest , 101
dumbdbm, 226

E
errno , 185
exceptions , 16

F
fcntl , 247
filecmp , 154
fileinput , 129
FL, 451
fl , 447
flp , 452
fm , 452
fnmatch , 192
formatter , 327
fpectl , 39
fpformat , 94
ftplib , 295

G
gc , 34

475

gdbm, 244
getopt , 183
getpass , 163
gettext , 198
GL, 455
gl , 453
glob , 191
gopherlib , 298
grp , 241
gzip , 231

H
htmlentitydefs , 357
htmllib , 355
httplib , 293

I
imageop , 394
imaplib , 300
imgfile , 455
imghdr , 404
imp , 64
inspect , 47

J
jpeg , 456

K
keyword , 429

L
linecache , 53
locale , 194

M
mailbox , 346
mailcap , 343
marshal , 61
math , 117
md5, 407
mhlib , 347
mimetools , 334
mimetypes , 344
MimeWriter , 335
mimify , 349
mmap, 224
mpz, 409
msvcrt , 461
multifile , 336
mutex , 162

N
netrc , 350
new, 73

nis , 254
nntplib , 303

O
operator , 44
os , 137
os.path , 149

P
parser , 419
pdb , 257
pickle , 54
pipes , 249
popen2 , 156
poplib , 298
posix , 239
posixfile , 250
pprint , 69
profile , 266
pstats , 267
pty , 247
pwd, 240
py compile , 431
pyclbr , 430

Q
Queue, 223
quopri , 346

R
random , 120
re , 80
readline , 235
repr , 71
resource , 252
rexec , 414
rfc822 , 331
rgbimg , 403
rlcompleter , 236
robotparser , 351
rotor , 410

S
sched , 161
select , 214
sgmllib , 353
sha , 408
shelve , 59
shlex , 134
shutil , 192
signal , 207
SimpleHTTPServer , 317
site , 73
smtplib , 306

476 Module Index

sndhdr , 404
socket , 209
SocketServer , 313
stat , 151
statcache , 153
statvfs , 154
string , 77
StringIO , 94
struct , 88
sunau , 397
SUNAUDIODEV, 460
sunaudiodev , 459
symbol , 428
sys , 29
syslog , 255

T
tabnanny , 430
telnetlib , 309
tempfile , 185
TERMIOS, 246
termios , 245
thread , 215
threading , 217
time , 157
token , 428
tokenize , 429
traceback , 52
tty , 247
types , 41

U
unicodedata , 100
unittest , 108
urllib , 283
urllib2 , 287
urlparse , 312
user , 74
UserDict , 43
UserList , 43
UserString , 44
uu , 339

W
warnings , 62
wave, 399
weakref , 35
webbrowser , 275
whichdb , 227
whrandom , 123
winsound , 467

X
xdrlib , 341

xml.dom , 363
xml.dom.minidom , 373
xml.dom.pulldom , 377
xml.parsers.expat , 357
xml.sax , 377
xml.sax.handler , 379
xml.sax.saxutils , 383
xml.sax.xmlreader , 383
xmllib , 387
xreadlines , 131

Z
zipfile , 232
zlib , 229

Module Index 477

478

INDEX

Symbols
.ini

file, 127
.pdbrc

file, 259
.pythonrc.py

file, 74
==

operator, 4
abs () (in module operator), 45
add () (AddressList method), 333
add () (in module operator), 44
and () (in module operator), 45
bases (class attribute), 16
builtin (built-in module),75
class (instance attribute), 16
cmp () (instance method), 4
concat () (in module operator), 45
contains () (in module operator), 45
copy () (copy protocol), 61
deepcopy () (copy protocol), 61
delitem () (in module operator), 46
delslice () (in module operator), 46
dict (instance attribute), 55
dict (object attribute), 16
displayhook (data in sys), 30
div () (in module operator), 44
excepthook (data in sys), 30
getinitargs () (copy protocol), 55, 61
getitem () (in module operator), 46
getslice () (in module operator), 46
getstate () (copy protocol), 55, 61
iadd () (AddressList method), 334
import () (in module), 20
init () (NullTranslations method), 199
init () (instance constructor), 55
inv () (in module operator), 45
invert () (in module operator), 45
isub () (AddressList method), 334
len () (AddressList method), 333
lshift () (in module operator), 45

main (built-in module),75
members (object attribute), 16
methods (object attribute), 16
mod () (in module operator), 45
mul () (in module operator), 44
neg () (in module operator), 45
not () (in module operator), 45
or () (in module operator), 45
pos () (in module operator), 45
repeat () (in module operator), 45
repr () (netrc method), 351
rshift () (in module operator), 45
setitem () (in module operator), 46
setslice () (in module operator), 46
setstate () (copy protocol), 55, 61
stderr (data in sys), 33
stdin (data in sys), 33
stdout (data in sys), 33
str () (AddressList method), 333
sub () (AddressList method), 334
sub () (in module operator), 44
xor () (in module operator), 45

exit() (in module os), 146
getframe() (in module sys), 31
locale (built-in module), 194
parse() (NullTranslations method), 199
winreg (extension module),462

A
A-LAW, 396, 405
a2b base64() (in module binascii), 339
a2b hex() (in module binascii), 340
a2b hqx() (in module binascii), 340
a2b uu() (in module binascii), 339
ABC language, 4
abort()

FTP method, 296
in module os, 145

above() (method), 182
abs()

in module , 21
in module operator, 45

479

abspath() (in module os.path), 149
AbstractBasicAuthHandler (class in urllib2),

288
AbstractDigestAuthHandler (class in url-

lib2), 288
AbstractFormatter (class in formatter), 329
AbstractWriter (class in formatter), 331
accept()

dispatcher method, 324
socket method, 212

accept2dyear (data in time), 158
access() (in module os), 142
acos()

in module cmath, 119
in module math, 118

acosh() (in module cmath), 119
acquire()

Condition method, 220
lock method, 216
Semaphore method, 220
Thread method, 218

activate form() (form method), 449
activeCount() (in module threading), 217
add()

in module audioop, 391
in module operator, 44
Stats method, 267

add box() (form method), 449
add browser() (form method), 450
add button() (form method), 449
add choice() (form method), 450
add clock() (form method), 449
add counter() (form method), 450
add data() (Request method), 289
add dial() (form method), 449
add flowing data() (formatter method), 328
add handler() (OpenerDirector method), 289
add header() (Request method), 289
add hor rule() (formatter method), 328
add input() (form method), 450
add label data() (formatter method), 328
add lightbutton() (form method), 449
add line break() (formatter method), 328
add literal data() (formatter method), 328
add menu() (form method), 450
add parent() (BaseHandler method), 290
add password() (HTTPPasswordMgr method),

291
add positioner() (form method), 449
add roundbutton() (form method), 449
add section() (ConfigParser method), 128
add slider() (form method), 449
add text() (form method), 449
add timer() (form method), 450

add valslider() (form method), 449
addcallback() (CD parser method), 446
addch() (method), 169
addError() (TestResult method), 116
addFailure() (TestResult method), 116
addheader() (MimeWriter method), 335
addnstr() (method), 169
address family (data in SocketServer), 314
address string() (BaseHTTPRequestHandler

method), 317
AddressList (class in rfc822), 331
addresslist (AddressList attribute), 334
addstr() (method), 169
addSuccess() (TestResult method), 116
addTest() (TestSuite method), 115
addTests() (TestSuite method), 115
adler32() (in module zlib), 230
ADPCM, Intel/DVI, 391
adpcm2lin() (in module audioop), 391
adpcm32lin() (in module audioop), 391
AF INET (data in socket), 210
AF UNIX (data in socket), 210
aifc() (aifc method), 396
aifc (standard module),395
AIFF, 395, 401
aiff() (aifc method), 396
AIFF-C, 395, 401
AL (standard module), 441,443
al (built-in module),441
alarm() (in module signal), 208
all errors (data in ftplib), 295
all features (data in xml.sax.handler), 380
all properties (data in xml.sax.handler), 380
allocate lock() (in module thread), 216
allow reuse address (data in SocketServer),

314
allowremoval() (CD player method), 445
alt() (in module curses.ascii), 181
altsep (data in os), 148
altzone (data in time), 158
anchor bgn() (HTMLParser method), 356
anchor end() (HTMLParser method), 356
and

operator, 3, 4
and () (in module operator), 45
annotate() (in module dircache), 151
anydbm (standard module),225
apop() (POP3 method), 299
append()

array method, 126
IMAP4 method, 301
list method, 11
Template method, 249

appendChild() (Node method), 366

480 Index

apply() (in module), 21
arbitrary precision integers, 409
aRepr (data in repr), 71
argv (data in sys), 29
arithmetic, 5
ArithmeticError (exception in exceptions), 17
array() (in module array), 125
array (built-in module),125
arrays, 125
ArrayType (data in array), 125
article() (NNTPDataError method), 306
AS IS (data in formatter), 328
Ascher, David, 455
ascii() (in module curses.ascii), 181
asctime() (in module time), 158
asin()

in module cmath, 119
in module math, 118

asinh() (in module cmath), 119
assert

statement, 17
assert () (TestCase method), 114
assert line data() (formatter method), 329
assertEqual() (TestCase method), 114
AssertionError (exception in exceptions), 17
assertNotEqual() (TestCase method), 115
assertRaises() (TestCase method), 115
assignment

slice, 11
subscript, 11

ast2list() (in module parser), 421
ast2tuple() (in module parser), 421
ASTType (data in parser), 422
asyncore (built-in module),323
atan()

in module cmath, 119
in module math, 118

atan2() (in module math), 118
atanh() (in module cmath), 119
atexit (standard module),40
atime (data in cd), 444
atof()

in module locale, 196
in module string, 78

atoi()
in module locale, 196
in module string, 78

atol() (in module string), 78
AttlistDeclHandler() (xmlparser method),

359
AttributeError (exception in exceptions), 17
attributes

Node attribute, 365
XMLParser attribute, 387

AttributesImpl (class in xml.sax.xmlreader),
384

AttributesNSImpl (class in xml.sax.xmlreader),
384

attroff() (method), 169
attron() (method), 169
attrset() (method), 169
audio (data in cd), 444
Audio Interchange File Format, 395, 401
AUDIO FILE ENCODINGADPCMG721 (data in

sunau), 398
AUDIO FILE ENCODINGADPCMG722 (data in

sunau), 398
AUDIO FILE ENCODINGADPCMG723 3 (data

in sunau), 398
AUDIO FILE ENCODINGADPCMG723 5 (data

in sunau), 398
AUDIO FILE ENCODINGALAW 8 (data in

sunau), 398
AUDIO FILE ENCODINGDOUBLE (data in

sunau), 398
AUDIO FILE ENCODINGFLOAT (data in sunau),

398
AUDIO FILE ENCODINGLINEAR 16 (data in

sunau), 398
AUDIO FILE ENCODINGLINEAR 24 (data in

sunau), 398
AUDIO FILE ENCODINGLINEAR 32 (data in

sunau), 398
AUDIO FILE ENCODINGLINEAR 8 (data in

sunau), 398
AUDIO FILE ENCODINGMULAW8 (data in

sunau), 398
AUDIO FILE MAGIC(data in sunau), 398
audioop (built-in module),391
authenticate() (IMAP4 method), 301
authenticators() (netrc method), 351
avg() (in module audioop), 391
avgpp() (in module audioop), 392

B
b2a base64() (in module binascii), 339
b2a hex() (in module binascii), 340
b2a hqx() (in module binascii), 340
b2a uu() (in module binascii), 339
BabylMailbox (class in mailbox), 347
base64

encoding, 345
base64 (standard module),345
BaseCookie (class in Cookie), 319
BaseHandler (class in urllib2), 288
BaseHTTPRequestHandler (class in Base-

HTTPServer), 315
BaseHTTPServer (standard module),315

Index 481

basename() (in module os.path), 149
Bastion() (in module Bastion), 416
Bastion (standard module),416
BastionClass (class in Bastion), 417
baudrate() (in module curses), 164
bdb (standard module), 257
Beep() (in module winsound), 467
beep() (in module curses), 164
below() (method), 182
benchmarking, 158
bestreadsize() (CD player method), 445
betavariate() (in module random), 122
bgn group() (form method), 449
bias() (in module audioop), 392
bidirectional() (in module unicodedata), 100
binary

data, packing, 88
binary() (mpz method), 410
binary semaphores, 216
binascii (built-in module),339
bind()

dispatcher method, 324
socket method, 212

bindtextdomain() (in module gettext), 198
binhex() (in module binhex), 338
binhex (standard module),338, 339
bisect() (in module bisect), 124
bisect (standard module),124
bisect left() (in module bisect), 124
bisect right() (in module bisect), 124
bit-string

operations, 6
bkgd() (method), 169
bkgdset() (method), 169
BLOCKSIZE(data in cd), 444
blocksize (data in sha), 408
body() (NNTPDataError method), 306
BOM(data in codecs), 96
BOM32 BE (data in codecs), 96
BOM32 LE (data in codecs), 96
BOM64 BE (data in codecs), 96
BOM64 LE (data in codecs), 96
BOMBE (data in codecs), 96
BOMLE (data in codecs), 96
Boolean

operations, 3, 4
type, 3

border() (method), 169
bottom() (method), 182
bottom panel() (in module curses.panel), 182
box() (method), 170
BROWSER, 275, 276
bsddb

built-in module, 225, 226

extension module,228
btopen() (in module bsddb), 228
buffer

object, 6
buffer()

built-in function, 6, 43
in module , 21

buffer size, I/O, 25
buffer info() (array method), 126
BufferType (data in types), 43
build opener() (in module urllib2), 287
built-in

exceptions, 3
functions, 3
types, 3

builtin module names (data in sys), 30
BuiltinFunctionType (data in types), 42
BuiltinMethodType (data in types), 42
byte-code

file, 64, 66, 431
byteorder (data in sys), 30
byteswap() (array method), 126

C
C

language, 4, 5
structures, 88

C BUILTIN (data in imp), 65
C EXTENSION(data in imp), 65
CacheFTPHandler (class in urllib2), 289
calcsize() (in module struct), 88
calendar() (in module calendar), 132
calendar (standard module),131
call() (method), 243
callable() (in module), 21
CallableProxyType (data in weakref), 36
can change color() (in module curses), 164
can fetch() (RobotFileParser method), 351
cancel() (scheduler method), 162
capitalize()

in module string, 78
string method, 7

capwords() (in module string), 78
cat() (in module nis), 254
catalog (data in cd), 444
category() (in module unicodedata), 100
cbreak() (in module curses), 164
cd (built-in module),443
CDROM(data in cd), 444
ceil()

in module math, 118
in module math, 5

center()
in module string, 79

482 Index

string method, 7
CGI

protocol, 277
cgi (standard module),277
cgi directories (CGIHTTPRequestHandler at-

tribute), 319
CGIHTTPRequestHandler (class in CGI-

HTTPServer), 318
CGIHTTPServer (standard module), 315,318
chaining

comparisons, 4
CHAR MAX(data in locale), 196
character, 100
CharacterDataHandler() (xmlparser method),

360
characters() (ContentHandler method), 381
CHARSET(data in mimify), 350
charset() (NullTranslations method), 200
chdir() (in module os), 143
check()

IMAP4 method, 301
in module tabnanny, 430

check forms() (in module fl), 447
checkcache() (in module linecache), 54
checksum

Cyclic Redundancy Check, 230
MD5, 407
SHA, 408

childerr (Popen4 attribute), 157
childNodes (Node attribute), 366
chmod() (in module os), 143
choice()

in module random, 122
in module whrandom, 123

choose boundary() (in module mimetools), 334
chown() (in module os), 143
chr() (in module), 21
Chunk (class in chunk), 402
chunk (standard module),401
cipher

DES, 242, 407
Enigma, 410
IDEA, 407

classobj() (in module new), 73
ClassType (data in types), 42
clear()

method, 170
dictionary method, 11
Event method, 221

clearcache() (in module linecache), 54
clearok() (method), 170
client address (BaseHTTPRequestHandler at-

tribute), 316
clock() (in module time), 158

clone() (Template method), 249
cloneNode()

method, 374
Node method, 367

Close() (method), 466
close()

method, 224, 228, 243
aifc method, 396, 397
AU read method, 398
AU write method, 399
audio device method, 459
BaseHandler method, 290
CD player method, 445
Chunk method, 402
dispatcher method, 324
file method, 14
FTP method, 298
IMAP4 method, 301
in module fileinput, 130
in module os, 140
IncrementalParser method, 385
OpenerDirector method, 290
SGMLParser method, 354
socket method, 212
StringIO method, 95
Telnet method, 311
Wave read method, 400
Wave write method, 401
XMLParser method, 388
ZipFile method, 233

closed (file attribute), 15
CloseKey() (in module winreg), 462
closelog() (in module syslog), 255
closeport() (audio port method), 442
clrtobot() (method), 170
clrtoeol() (method), 170
cmath (built-in module),119
Cmd(class in cmd), 132
cmd (standard module),132, 257
cmdloop() (Cmd method), 133
cmp()

built-in function, 196
in module , 21
in module filecmp, 154

cmp op (data in dis), 433
cmpfiles() (in module filecmp), 155
code

object, 13, 14, 61
code() (in module new), 73
code

ExpatError attribute, 361
standard module,67

Codecs, 95
decode, 95

Index 483

encode, 95
codecs (standard module),95
coded value (Morsel attribute), 320
codeop (standard module),69
CodeType (data in types), 42
coerce() (in module), 21
collect() (in module gc), 34
color() (in module fl), 448
color content() (in module curses), 164
color pair() (in module curses), 164
colorsys (standard module),402
COLUMNS, 169
combining() (in module unicodedata), 100
command(BaseHTTPRequestHandler attribute), 316
commands (standard module),255
COMMENT(data in tokenize), 429
comment (ZipInfo attribute), 234
commenters (shlex attribute), 135
CommentHandler() (xmlparser method), 360
common(dircmp attribute), 155
Common Gateway Interface, 277
common dirs (dircmp attribute), 155
common files (dircmp attribute), 155
common funny (dircmp attribute), 156
commonprefix() (in module os.path), 149
comparing

objects, 4
comparison

operator, 4
comparisons

chaining, 4
compile()

AST method, 422
built-in function, 14, 42, 421, 422
in module , 21
in module py compile, 431
in module re, 84

compile command()
in module code, 67
in module codeop, 69

compile dir() (in module compileall), 431
compile path() (in module compileall), 431
compileall (standard module),431
compileast() (in module parser), 421
complete() (Completer method), 237
complex()

built-in function, 5
in module , 21

complex number
literals, 5
object, 5

ComplexType (data in types), 42
compress()

Compress method, 230

in module jpeg, 456
in module zlib, 230

compress size (ZipInfo attribute), 235
compress type (ZipInfo attribute), 234
compressobj() (in module zlib), 230
concat() (in module operator), 45
concatenation

operation, 7
Condition() (in module threading), 217
Condition (class in threading), 220
ConfigParser

class in ConfigParser, 128
standard module,127

configuration
file, 127
file, debugger, 259
file, path, 74
file, user, 74

confstr() (in module os), 148
confstr names (data in os), 148
conjugate() (complex number method), 5
connect()

dispatcher method, 324
FTP method, 296
HTTP method, 294
SMTP method, 307
socket method, 212

connect ex() (socket method), 212
ConnectRegistry() (in module winreg), 462
constructor() (in module copy reg), 59
contains() (in module operator), 45
content type

MIME, 344
ContentHandler (class in xml.sax.handler), 379
control (data in cd), 444
controlnames (data in curses.ascii), 181
ConversionError (exception in xdrlib), 343
conversions

numeric, 5
Cookie (standard module),319
CookieError (exception in Cookie), 319
Coordinated Universal Time, 157
copy()

IMAP4 method, 301
in module shutil, 193
md5 method, 408
sha method, 408
Template method, 250

copy (standard module), 55, 59,60
copy()

dictionary method, 11
in copy, 60

copy2() (in module shutil), 193
copy reg (standard module),59

484 Index

copybinary() (in module mimetools), 334
copyfile() (in module shutil), 192
copyfileobj() (in module shutil), 193
copying files, 192
copyliteral() (in module mimetools), 334
copymessage() (Folder method), 349
copymode() (in module shutil), 193
copyright (data in sys), 30
copystat() (in module shutil), 193
copytree() (in module shutil), 193
cos()

in module cmath, 119
in module math, 118

cosh()
in module cmath, 119
in module math, 118

count()
array method, 126
in module string, 79
list method, 11
string method, 7

countOf() (in module operator), 46
countTestCases() (TestCase method), 115
cPickle (built-in module), 54, 59,59
CPU time, 158
CRC(ZipInfo attribute), 235
crc32()

in module binascii, 340
in module zlib, 230

crc hqx() (in module binascii), 340
create() (IMAP4 method), 301
create socket() (dispatcher method), 324
create system (ZipInfo attribute), 234
create version (ZipInfo attribute), 234
createAttribute() (Document method), 368
createAttributeNS() (Document method), 368
createComment() (Document method), 368
createElement() (Document method), 368
createElementNS() (Document method), 368
CreateKey() (in module winreg), 463
createparser() (in module cd), 443
createProcessingInstruction() (Docu-

ment method), 368
createTextNode() (Document method), 368
crop() (in module imageop), 394
cross() (in module audioop), 392
crypt() (in module crypt), 242
crypt (built-in module), 241,242
crypt(3), 242
cryptography, 407
cStringIO (built-in module),95
ctermid() (in module os), 138
ctime() (in module time), 158
ctrl() (in module curses.ascii), 181

cunifvariate() (in module random), 122
curdir (data in os), 148
currentframe() (in module inspect), 51
currentThread() (in module threading), 217
curs set() (in module curses), 164
curses (standard module),163
curses.ascii (standard module),179
curses.panel (standard module),182
curses.textpad (standard module),178
curses.wrapper (standard module),179
cursyncup() (method), 170
cwd() (FTP method), 298
Cyclic Redundancy Check, 230

D
data

packing binary, 88
data

Comment attribute, 370
MutableString attribute, 44
ProcessingInstruction attribute, 370
Text attribute, 370
UserDict attribute, 43
UserList attribute, 43

database
Unicode, 100

DATASIZE (data in cd), 444
date() (NNTPDataError method), 306
date time (ZipInfo attribute), 234
date time string() (BaseHTTPRequestHand-

ler method), 317
daylight (data in time), 159
Daylight Saving Time, 157
dbhash (standard module), 225,226
dbm (built-in module), 60, 225,243, 244
deactivate form() (form method), 449
debug()

Template method, 249
TestCase method, 114

debug
IMAP4 attribute, 303
shlex attribute, 136
ZipFile attribute, 233

DEBUGCOLLECTABLE(data in gc), 35
DEBUGINSTANCES(data in gc), 35
DEBUGLEAK(data in gc), 35
DEBUGOBJECTS(data in gc), 35
DEBUGSAVEALL(data in gc), 35
DEBUGSTATS(data in gc), 35
DEBUGUNCOLLECTABLE(data in gc), 35
debugger, 33

configuration file, 259
debugging, 257
decimal() (in module unicodedata), 100

Index 485

decode
Codecs, 95

decode()
method, 97
in module base64, 345
in module mimetools, 334
in module quopri, 346
in module uu, 339

decodestring() (in module base64), 345
decomposition() (in module unicodedata), 100
decompress()

Decompress method, 231
in module jpeg, 456
in module zlib, 230

decompressobj() (in module zlib), 230
decrypt() (rotor method), 410
decryptmore() (rotor method), 410
deepcopy() (in copy), 60
def prog mode() (in module curses), 164
def shell mode() (in module curses), 164
default() (Cmd method), 133
default bufsize (data in xml.dom.pulldom),

377
default open() (BaseHandler method), 290
DefaultHandler() (xmlparser method), 360
DefaultHandlerExpand() (xmlparser method),

360
defaults() (ConfigParser method), 128
defaultTestLoader (data in unittest), 114
defaultTestResult() (TestCase method), 115
defpath (data in os), 148
del

statement, 11
delattr() (in module), 21
delay output() (in module curses), 164
delch() (method), 170
dele() (POP3 method), 299
delete()

FTP method, 297
IMAP4 method, 302

delete object() (FORMS object method), 451
deletefolder() (MH method), 348
DeleteKey() (in module winreg), 463
deleteln() (method), 170
deleteparser() (CD parser method), 446
DeleteValue() (in module winreg), 463
delitem() (in module operator), 46
delslice() (in module operator), 46
DeprecationWarning (exception in exceptions),

20
derwin() (method), 170
DES

cipher, 242, 407
descriptor, file, 14

Detach() (method), 466
deterministic profiling, 263
DEVICE (standard module),455
device

Enigma, 410
dgettext() (in module gettext), 198
dictionary

object, 11
type, operations on, 11

DictionaryType (data in types), 42
DictType (data in types), 42
diff files (dircmp attribute), 156
difflib (standard module),90
digest()

md5 method, 408
sha method, 408

digestsize (data in sha), 408
digit() (in module unicodedata), 100
digits (data in string), 77
dir()

FTP method, 297
in module , 21

dircache (standard module),151
dircmp (class in filecmp), 155
directory

changing, 143
creating, 143
deleting, 144, 193
site-packages, 74
site-python, 74

dirname() (in module os.path), 149
dis() (in module dis), 432
dis (standard module),432
disable() (in module gc), 34
disassemble() (in module dis), 432
disco() (in module dis), 432
dispatcher (class in asyncore), 323
displayhook() (in module sys), 30
distb() (in module dis), 432
dither2grey2() (in module imageop), 395
dither2mono() (in module imageop), 394
div() (in module operator), 44
division

integer, 5
long integer, 5

divm() (in module mpz), 409
divmod() (in module), 22
dl (extension module),242
dllhandle (data in sys), 30
do command() (Textbox method), 178
do forms() (in module fl), 447
do GET() (SimpleHTTPRequestHandler method),

318

486 Index

do HEAD() (SimpleHTTPRequestHandler method),
318

do POST() (CGIHTTPRequestHandler method),
319

doc header (Cmd attribute), 134
docmd() (SMTP method), 308
docstrings, 423
doctest (standard module),101
DOCTYPE declaration, 388
documentElement (Document attribute), 368
DOMEventStream (class in xml.dom.pulldom), 377
DOMException (exception in xml.dom), 371
DomstringSizeErr (exception in xml.dom), 371
done() (Unpacker method), 342
DOTALL(data in re), 84
doupdate() (in module curses), 164
drain() (audio device method), 459
DTDHandler (class in xml.sax.handler), 379
dumbdbm(standard module), 225,226
DumbWriter (class in formatter), 331
dump()

in module marshal, 62
in module pickle, 56

dumps()
in module marshal, 62
in module pickle, 57

dup()
in module os, 141
in module posixfile, 250

dup2()
in module os, 141
in module posixfile, 251

DuplicateSectionError (exception in Config-
Parser), 128

E
e

data in cmath, 120
data in math, 119

E2BIG (data in errno), 186
EACCES(data in errno), 186
EADDRINUSE(data in errno), 190
EADDRNOTAVAIL(data in errno), 190
EADV(data in errno), 189
EAFNOSUPPORT(data in errno), 190
EAGAIN(data in errno), 186
EALREADY(data in errno), 191
EBADE(data in errno), 188
EBADF(data in errno), 186
EBADFD(data in errno), 189
EBADMSG(data in errno), 189
EBADR(data in errno), 188
EBADRQC(data in errno), 188
EBADSLT(data in errno), 188

EBFONT(data in errno), 188
EBUSY(data in errno), 186
ECHILD (data in errno), 186
echo() (in module curses), 165
echochar() (method), 170
ECHRNG(data in errno), 187
ECOMM(data in errno), 189
ECONNABORTED(data in errno), 190
ECONNREFUSED(data in errno), 191
ECONNRESET(data in errno), 190
EDEADLK(data in errno), 187
EDEADLOCK(data in errno), 188
EDESTADDRREQ(data in errno), 190
edit() (Textbox method), 178
EDOM(data in errno), 187
EDOTDOT(data in errno), 189
EDQUOT(data in errno), 191
EEXIST (data in errno), 186
EFAULT(data in errno), 186
EFBIG (data in errno), 187
ehlo() (SMTP method), 308
EHOSTDOWN(data in errno), 191
EHOSTUNREACH(data in errno), 191
EIDRM(data in errno), 187
EILSEQ (data in errno), 189
EINPROGRESS(data in errno), 191
EINTR (data in errno), 186
EINVAL (data in errno), 186
EIO (data in errno), 186
EISCONN(data in errno), 190
EISDIR (data in errno), 186
EISNAM(data in errno), 191
eject() (CD player method), 445
EL2HLT (data in errno), 188
EL2NSYNC(data in errno), 188
EL3HLT (data in errno), 188
EL3RST(data in errno), 188
ElementDeclHandler() (xmlparser method),

359
elements (XMLParser attribute), 388
ELIBACC (data in errno), 189
ELIBBAD (data in errno), 189
ELIBEXEC (data in errno), 189
ELIBMAX (data in errno), 189
ELIBSCN (data in errno), 189
Ellinghouse, Lance, 339, 410
EllipsisType (data in types), 42
ELNRNG(data in errno), 188
ELOOP(data in errno), 187
EMFILE (data in errno), 187
EMLINK (data in errno), 187
Empty (exception in Queue), 223
empty()

Queue method, 223

Index 487

scheduler method, 162
emptyline() (Cmd method), 133
EMSGSIZE(data in errno), 190
EMULTIHOP(data in errno), 189
enable() (in module gc), 34
ENAMETOOLONG(data in errno), 187
ENAVAIL (data in errno), 191
enclose() (method), 170
encode

Codecs, 95
encode()

method, 97
in module base64, 346
in module mimetools, 334
in module quopri, 346
in module uu, 339
string method, 7

EncodedFile() (in module codecs), 96
encodestring() (in module base64), 346
encoding

base64, 345
quoted-printable, 346

encodings map (data in mimetypes), 345
encrypt() (rotor method), 410
encryptmore() (rotor method), 410
end() (in module re), 87
end group() (form method), 449
end headers() (BaseHTTPRequestHandler

method), 317
end marker() (MultiFile method), 337
end paragraph() (formatter method), 328
EndCdataSectionHandler() (xmlparser

method), 360
EndDoctypeDeclHandler() (xmlparser

method), 359
endDocument() (ContentHandler method), 381
endElement() (ContentHandler method), 381
EndElementHandler() (xmlparser method), 360
endElementNS() (ContentHandler method), 381
endheaders() (HTTP method), 294
EndNamespaceDeclHandler() (xmlparser

method), 360
endpick() (in module gl), 454
endpos (MatchObject attribute), 87
endPrefixMapping() (ContentHandler method),

381
endselect() (in module gl), 454
endswith() (string method), 7
endwin() (in module curses), 165
ENETDOWN(data in errno), 190
ENETRESET(data in errno), 190
ENETUNREACH(data in errno), 190
ENFILE (data in errno), 187
Enigma

cipher, 410
device, 410

ENOANO(data in errno), 188
ENOBUFS(data in errno), 190
ENOCSI(data in errno), 188
ENODATA(data in errno), 188
ENODEV(data in errno), 186
ENOENT(data in errno), 186
ENOEXEC(data in errno), 186
ENOLCK(data in errno), 187
ENOLINK(data in errno), 189
ENOMEM(data in errno), 186
ENOMSG(data in errno), 187
ENONET(data in errno), 188
ENOPKG(data in errno), 188
ENOPROTOOPT(data in errno), 190
ENOSPC(data in errno), 187
ENOSR(data in errno), 188
ENOSTR(data in errno), 188
ENOSYS(data in errno), 187
ENOTBLK(data in errno), 186
ENOTCONN(data in errno), 190
ENOTDIR(data in errno), 186
ENOTEMPTY(data in errno), 187
ENOTNAM(data in errno), 191
ENOTSOCK(data in errno), 189
ENOTTY(data in errno), 187
ENOTUNIQ(data in errno), 189
enter() (scheduler method), 162
enterabs() (scheduler method), 162
entities (DocumentType attribute), 367
ENTITY declaration, 389
EntityDeclHandler() (xmlparser method), 360
entitydefs

data in htmlentitydefs, 357
XMLParser attribute, 388

EntityResolver (class in xml.sax.handler), 379
enumerate()

in module fm, 452
in module threading, 217

EnumKey() (in module winreg), 463
EnumValue() (in module winreg), 463
environ

data in os, 138
data in posix, 240

environment variables
BROWSER, 275, 276
COLUMNS, 169
HOME, 75, 149
KDEDIR, 276
LANGUAGE, 198, 199
LANG, 194, 195, 198, 199
LC ALL, 198, 199
LC MESSAGES, 198, 199

488 Index

LINES, 169
LNAME, 163
LOGNAME, 163, 296
PAGER, 259
PATH, 148, 281, 283
PYTHONPATH, 32, 281, 470
PYTHONSTARTUP, 74, 236
PYTHONY2K, 157, 158
PYTHON DOM, 364
TMPDIR, 185
TZ, 470
USERNAME, 163
USER, 163, 296
ftp proxy, 283
gopher proxy, 283
http proxy, 283
setting, 139

EnvironmentError (exception in exceptions), 17
ENXIO (data in errno), 186
EOFError (exception in exceptions), 18
EOPNOTSUPP(data in errno), 190
EOVERFLOW(data in errno), 189
EPERM(data in errno), 186
EPFNOSUPPORT(data in errno), 190
EPIPE (data in errno), 187
epoch, 157
EPROTO(data in errno), 189
EPROTONOSUPPORT(data in errno), 190
EPROTOTYPE(data in errno), 190
ERANGE(data in errno), 187
erase() (method), 170
erasechar() (in module curses), 165
EREMCHG(data in errno), 189
EREMOTE(data in errno), 188
EREMOTEIO(data in errno), 191
ERESTART(data in errno), 189
EROFS(data in errno), 187
ERR(data in curses), 174
errno

built-in module, 138, 210
standard module,185

ERROR(data in cd), 444
Error

exception in binascii, 340
exception in locale, 194
exception in sunau, 397
exception in wave, 400
exception in webbrowser, 276
exception in xdrlib, 343

error()
ErrorHandler method, 383
Folder method, 348
MH method, 348
OpenerDirector method, 290

error
exception in anydbm, 225
exception in audioop, 391
exception in cd, 444
exception in curses, 164
exception in dbhash, 226
exception in dbm, 243
exception in dl, 243
exception in dumbdbm, 226
exception in gdbm, 244
exception in getopt, 183
exception in imageop, 394
exception in imgfile, 455
exception in jpeg, 456
exception in nis, 255
exception in os, 138
exception in re, 86
exception in resource, 252
exception in rgbimg, 403
exception in select, 214
exception in socket, 210
exception in struct, 88
exception in sunaudiodev, 459
exception in thread, 216
exception in xml.parsers.expat, 357
exception in zipfile, 232
exception in zlib, 229

error leader() (shlex method), 135
error message format (BaseHTTPRequest-

Handler attribute), 316
error perm (exception in ftplib), 296
error proto

exception in ftplib, 296
exception in poplib, 299

error reply (exception in ftplib), 295
error temp (exception in ftplib), 296
ErrorByteIndex (xmlparser attribute), 359
ErrorCode (xmlparser attribute), 359
errorcode (data in errno), 185
ErrorColumnNumber (xmlparser attribute), 359
ErrorHandler (class in xml.sax.handler), 379
ErrorLineNumber (xmlparser attribute), 359
errors (TestResult attribute), 116
ErrorString() (in module xml.parsers.expat),

357
escape()

in module cgi, 280
in module re, 86
in module xml.sax.saxutils, 383

ESHUTDOWN(data in errno), 190
ESOCKTNOSUPPORT(data in errno), 190
ESPIPE (data in errno), 187
ESRCH(data in errno), 186
ESRMNT(data in errno), 189

Index 489

ESTALE(data in errno), 191
ESTRPIPE (data in errno), 189
ETIME (data in errno), 188
ETIMEDOUT(data in errno), 190
ETOOMANYREFS(data in errno), 190
ETXTBSY(data in errno), 187
EUCLEAN(data in errno), 191
EUNATCH(data in errno), 188
EUSERS(data in errno), 189
eval()

built-in function, 14, 70, 71, 78, 421
in module , 22

Event() (in module threading), 217
Event (class in threading), 221
event scheduling, 161
EWOULDBLOCK(data in errno), 187
exc info() (in module sys), 30
exc traceback (data in sys), 31
exc type (data in sys), 31
exc value (data in sys), 31
except

statement, 17
excepthook() (in module sys), 30
Exception (exception in exceptions), 17
exceptions

built-in, 3
exceptions (standard module),16
EXDEV(data in errno), 186
exec

statement, 14
exec prefix (data in sys), 31
execfile()

built-in function, 75
in module , 22

execl() (in module os), 145
execle() (in module os), 145
execlp() (in module os), 145
executable (data in sys), 31
execv() (in module os), 145
execve() (in module os), 145
execvp() (in module os), 145
execvpe() (in module os), 145
EXFULL(data in errno), 188
exists() (in module os.path), 149
exit()

in module sys, 31
in module thread, 216

exit thread() (in module thread), 216
exitfunc

data in sys, 31
in sys, 40

exp()
in module cmath, 119
in module math, 118

expand() (MatchObject method), 87
expandNode() (DOMEventStream method), 377
expandtabs()

in module string, 78
string method, 7

expanduser() (in module os.path), 149
expandvars() (in module os.path), 149
Expat, 357
ExpatError (exception in xml.parsers.expat), 357
expect() (Telnet method), 311
expovariate() (in module random), 122
expr() (in module parser), 420
expunge() (IMAP4 method), 302
extend()

array method, 126
list method, 11

Extensible Markup Language, 387
extensions map (SimpleHTTPRequestHandler

attribute), 318
External Data Representation, 54, 341
external attr (ZipInfo attribute), 235
ExternalEntityParserCreate() (xmlparser

method), 358
ExternalEntityRefHandler() (xmlparser

method), 361
extra (ZipInfo attribute), 234
extract stack() (in module traceback), 52
extract tb() (in module traceback), 52
extract version (ZipInfo attribute), 234

F
F BAVAIL (data in statvfs), 154
F BFREE(data in statvfs), 154
F BLOCKS(data in statvfs), 154
F BSIZE (data in statvfs), 154
F FAVAIL (data in statvfs), 154
F FFREE(data in statvfs), 154
F FILES (data in statvfs), 154
F FLAG(data in statvfs), 154
F FRSIZE (data in statvfs), 154
F NAMEMAX(data in statvfs), 154
F OK(data in os), 142
fabs() (in module math), 118
fail() (TestCase method), 115
failIf() (TestCase method), 115
failIfEqual() (TestCase method), 115
failUnless() (TestCase method), 114
failUnlessEqual() (TestCase method), 114
failUnlessRaises() (TestCase method), 115
failureException (TestCase attribute), 115
failures (TestResult attribute), 116
false, 3
FancyURLopener (class in urllib), 285
fatalError() (ErrorHandler method), 383

490 Index

FCNTL(standard module), 248
fcntl() (in module fcntl), 247
fcntl (built-in module), 15,247
fcntl() (in module fcntl), 250
fdopen() (in module os), 140
feature external ges (data in

xml.sax.handler), 379
feature external pes (data in

xml.sax.handler), 380
feature namespace prefixes (data in

xml.sax.handler), 379
feature namespaces (data in xml.sax.handler),

379
feature string interning (data in

xml.sax.handler), 379
feature validation (data in xml.sax.handler),

379
feed()

IncrementalParser method, 385
SGMLParser method, 354
XMLParser method, 388

fetch() (IMAP4 method), 302
file

.ini, 127

.pdbrc, 259

.pythonrc.py, 74
byte-code, 64, 66, 431
configuration, 127
copying, 192
debugger configuration, 259
large files, 240
mime.types, 345
object, 14
path configuration, 74
temporary, 185
user configuration, 74

file() (in module posixfile), 251
file (class descriptor attribute), 431
file control

UNIX , 247
file descriptor, 14
file name

temporary, 185
file object

POSIX, 250
file offset (ZipInfo attribute), 235
file open() (FileHandler method), 292
file size (ZipInfo attribute), 235
filecmp (standard module),154
FileHandler (class in urllib2), 288
FileInput (class in fileinput), 130
fileinput (standard module),129
filelineno() (in module fileinput), 130
filename() (in module fileinput), 130

filename (ZipInfo attribute), 234
filename only (data in tabnanny), 430
filenames

pathname expansion, 191
wildcard expansion, 192

fileno()
audio device method, 459
file method, 14
in module SocketServer, 314
socket method, 212
Telnet method, 311

fileopen() (in module posixfile), 250
FileType (data in types), 42
filter()

in module , 22
in module curses, 165

filterwarnings() (in module warnings), 64
find()

method, 224
in module gettext, 199
in module string, 78
string method, 7

find first() (form method), 449
find last() (form method), 449
find longest match() (SequenceMatcher

method), 91
find module() (in module imp), 64
find user password() (HTTPPasswordMgr

method), 291
findall()

in module re, 85
RegexObject method, 86

findfactor() (in module audioop), 392
findfit() (in module audioop), 392
findfont() (in module fm), 452
findmatch() (in module mailcap), 344
findmax() (in module audioop), 392
finish() (in module SocketServer), 315
finish request() (in module SocketServer),

314
first()

method, 229
dbhash method, 227

firstChild (Node attribute), 366
firstkey() (in module gdbm), 245
firstweekday() (in module calendar), 132
fix() (in module fpformat), 94
FL (standard module),451
fl (built-in module),447
flag bits (ZipInfo attribute), 234
flags() (in module posixfile), 250
flags (RegexObject attribute), 86
flash() (in module curses), 165
flattening

Index 491

objects, 54
float()

built-in function, 5, 78
in module , 22

floating point
literals, 5
object, 5

FloatingPointError
exception in exceptions, 18
exception in fpectl, 39

FloatType (data in types), 42
flock() (in module fcntl), 248
floor()

in module math, 118
in module math, 5

flp (standard module),452
flush()

method, 224
audio device method, 460
Compress method, 230
Decompress method, 231
file method, 14
writer method, 329

flush softspace() (formatter method), 328
flushheaders() (MimeWriter method), 335
flushinp() (in module curses), 165
FlushKey() (in module winreg), 463
fm (built-in module),452
fmod() (in module math), 118
fnmatch() (in module fnmatch), 192
fnmatch (standard module),192
fnmatchcase() (in module fnmatch), 192
Folder (class in mhlib), 347
Font Manager, IRIS, 452
fontpath() (in module fm), 452
forget() (in module statcache), 153
forget dir() (in module statcache), 153
forget except prefix() (in module stat-

cache), 153
forget prefix() (in module statcache), 153
fork()

in module os, 146
in module pty, 247

forkpty() (in module os), 146
Formal Public Identifier, 388
format() (in module locale), 196
format exception() (in module traceback), 53
format exception only() (in module trace-

back), 52
format list() (in module traceback), 52
format stack() (in module traceback), 53
format tb() (in module traceback), 53
formatargspec() (in module inspect), 51
formatargvalues() (in module inspect), 51

formatter
HTMLParser attribute, 356
standard module,327, 355

formatting, string, 9
formatwarning() (in module warnings), 64
FORMS Library, 447
fp (AddressList attribute), 333
fpathconf() (in module os), 141
fpectl (extension module),39
fpformat (standard module),94
frame

object, 209
FrameType (data in types), 43
freeze form() (form method), 449
freeze object() (FORMS object method), 451
frexp() (in module math), 118
fromchild (Popen4 attribute), 157
fromfd() (in module socket), 211
fromfile() (array method), 126
fromlist() (array method), 126
fromstring() (array method), 126
fstat() (in module os), 141
fstatvfs() (in module os), 141
FTP

protocol, 285, 295
FTP (class in ftplib), 295
ftp open() (FTPHandler method), 292
ftp proxy, 283
FTPHandler (class in urllib2), 289
ftplib (standard module),295
ftpmirror.py, 296
ftruncate() (in module os), 141
Full (exception in Queue), 223
full() (Queue method), 223
func code (function object attribute), 14
function() (in module new), 73
functions

built-in, 3
FunctionTestCase (class in unittest), 113
FunctionType (data in types), 42
funny files (dircmp attribute), 156

G
G.722, 396
gamma() (in module random), 122
garbage (data in gc), 35
gather() (Textbox method), 179
gauss() (in module random), 122
gc (extension module),34
gcd() (in module mpz), 409
gcdext() (in module mpz), 409
gdbm (built-in module), 60, 225,244
get()

AddressList method, 332

492 Index

ConfigParser method, 129
dictionary method, 11
in module webbrowser, 276
Queue method, 224

get begidx() (in module readline), 235
get buffer()

Packer method, 341
Unpacker method, 342

get close matches() (in module difflib), 90
get completer delims() (in module readline),

236
get data() (Request method), 289
get debug() (in module gc), 34
get directory() (in module fl), 448
get endidx() (in module readline), 235
get filename() (in module fl), 448
get full url() (Request method), 289
get history length() (in module readline),

235
get host() (Request method), 289
get ident() (in module thread), 216
get line buffer() (in module readline), 235
get magic() (in module imp), 64
get matching blocks() (SequenceMatcher

method), 92
get mouse() (in module fl), 448
get nowait() (Queue method), 224
get opcodes() (SequenceMatcher method), 92
get osfhandle() (in module msvcrt), 462
get pattern() (in module fl), 448
get position() (Unpacker method), 342
get request() (in module SocketServer), 314
get rgbmode() (in module fl), 447
get selector() (Request method), 289
get socket() (Telnet method), 311
get starttag text() (SGMLParser method),

354
get suffixes() (in module imp), 64
get threshold() (in module gc), 35
get token() (shlex method), 134
get type() (Request method), 289
getaddr() (AddressList method), 333
getaddrlist() (AddressList method), 333
getallmatchingheaders() (AddressList

method), 332
getargspec() (in module inspect), 51
getargvalues() (in module inspect), 51
getatime() (in module os.path), 149
getattr() (in module), 23
getAttribute() (Element method), 369
getAttributeNode() (Element method), 369
getAttributeNodeNS() (Element method), 369
getAttributeNS() (Element method), 369
GetBase() (xmlparser method), 358

getbegyx() (method), 170
getboolean() (ConfigParser method), 129
getByteStream() (InputSource method), 386
getcaps() (in module mailcap), 344
getch()

method, 170
in module msvcrt, 462

getchannels() (audio configuration method), 442
getCharacterStream() (InputSource method),

386
getche() (in module msvcrt), 462
getclasstree() (in module inspect), 51
getColumnNumber() (Locator method), 385
getcomment() (in module fm), 452
getcomments() (in module inspect), 50
getcompname()

aifc method, 395
AU read method, 398
Wave read method, 400

getcomptype()
aifc method, 395
AU read method, 398
Wave read method, 400

getconfig() (audio port method), 443
getContentHandler() (XMLReader method),

384
getcontext() (MH method), 348
getcurrent() (Folder method), 349
getcwd() (in module os), 143
getdate() (AddressList method), 333
getdate tz() (AddressList method), 333
getdefaultencoding() (in module sys), 31
getdefaultlocale() (in module locale), 195
getdoc() (in module inspect), 50
getDOMImplementation() (in module

xml.dom), 364
getDTDHandler() (XMLReader method), 384
getegid() (in module os), 138
getElementsByTagName()

Document method, 368
Element method, 369

getElementsByTagNameNS()
Document method, 368
Element method, 369

getEncoding() (InputSource method), 386
getencoding() (Message method), 335
getEntityResolver() (XMLReader method),

385
getenv() (in module os), 139
getErrorHandler() (XMLReader method), 385
geteuid() (in module os), 138
getEvent() (DOMEventStream method), 377
getException() (SAXException method), 378
getfd() (audio port method), 442

Index 493

getFeature() (XMLReader method), 385
getfile()

HTTP method, 294
in module inspect, 50

getfillable() (audio port method), 442
getfilled() (audio port method), 442
getfillpoint() (audio port method), 443
getfirstmatchingheader() (AddressList

method), 332
getfloat() (ConfigParser method), 129
getfloatmax() (audio configuration method), 442
getfontinfo() (in module fm), 453
getfontname() (in module fm), 452
getfqdn() (in module socket), 210
getframerate()

aifc method, 395
AU read method, 398
Wave read method, 400

getfullname() (Folder method), 348
getgid() (in module os), 138
getgrall() (in module grp), 241
getgrgid() (in module grp), 241
getgrnam() (in module grp), 241
getgroups() (in module os), 138
getheader() (AddressList method), 332
gethostbyaddr()

in module socket, 140
in module socket, 211

gethostbyname() (in module socket), 210
gethostbyname ex() (in module socket), 210
gethostname()

in module socket, 140
in module socket, 211

getinfo()
audio device method, 460
ZipFile method, 233

getinnerframes() (in module inspect), 51
GetInputContext() (xmlparser method), 358
getint() (ConfigParser method), 129
getitem() (in module operator), 46
getkey() (method), 170
getlast() (Folder method), 349
getLength() (AttributesImpl method), 387
getline() (in module linecache), 53
getLineNumber() (Locator method), 386
getlocale() (in module locale), 195
getlogin() (in module os), 138
getmaintype() (Message method), 335
getmark()

aifc method, 396
AU read method, 399
Wave read method, 400

getmarkers()
aifc method, 396

AU read method, 399
Wave read method, 400

getmaxyx() (method), 171
getmcolor() (in module fl), 448
getmembers() (in module inspect), 49
getMessage() (SAXException method), 378
getmessagefilename() (Folder method), 348
getmodule() (in module inspect), 50
getmoduleinfo() (in module inspect), 49
getmodulename() (in module inspect), 50
getmouse() (in module curses), 165
getmtime() (in module os.path), 149
getName() (Thread method), 222
getname() (Chunk method), 402
getNameByQName() (AttributesNSImpl method),

387
getNames() (AttributesImpl method), 387
getnamespace() (XMLParser method), 388
getnchannels()

aifc method, 395
AU read method, 398
Wave read method, 400

getnframes()
aifc method, 395
AU read method, 398
Wave read method, 400

getopt() (in module getopt), 183
getopt (standard module),183
GetoptError (exception in getopt), 183
getouterframes() (in module inspect), 51
getoutput() (in module commands), 256
getpagesize() (in module resource), 254
getparam() (Message method), 335
getparams()

aifc method, 396
AU read method, 398
in module al, 442
Wave read method, 400

getparyx() (method), 171
getpass() (in module getpass), 163
getpass (standard module),163
getpath() (MH method), 348
getpeername() (socket method), 212
getpgrp() (in module os), 139
getpid() (in module os), 139
getplist() (Message method), 335
getppid() (in module os), 139
getprofile() (MH method), 348
getProperty() (XMLReader method), 385
getprotobyname() (in module socket), 211
getPublicId()

InputSource method, 386
Locator method, 386

getpwall() (in module pwd), 241

494 Index

getpwnam() (in module pwd), 241
getpwuid() (in module pwd), 241
getQNameByName() (AttributesNSImpl method),

387
getQNames() (AttributesNSImpl method), 387
getqueuesize() (audio configuration method),

442
getrawheader() (AddressList method), 332
getrecursionlimit() (in module sys), 31
getrefcount() (in module sys), 31
getreply() (HTTP method), 294
getrlimit() (in module resource), 252
getrusage() (in module resource), 253
getsampfmt() (audio configuration method), 442
getsample() (in module audioop), 392
getsampwidth()

aifc method, 395
AU read method, 398
Wave read method, 400

getsequences() (Folder method), 349
getsequencesfilename() (Folder method),

348
getservbyname() (in module socket), 211
getsignal() (in module signal), 208
getsize()

Chunk method, 402
in module os.path, 149

getsizes() (in module imgfile), 455
getslice() (in module operator), 46
getsockname() (socket method), 212
getsockopt() (socket method), 212
getsource() (in module inspect), 51
getsourcefile() (in module inspect), 50
getsourcelines() (in module inspect), 51
getstate() (in module random), 121
getstatus()

audio port method, 443
CD player method, 445
in module commands, 256

getstatusoutput() (in module commands), 256
getstr() (method), 171
getstrwidth() (in module fm), 453
getsubtype() (Message method), 335
getSystemId()

InputSource method, 386
Locator method, 386

getsyx() (in module curses), 165
gettempprefix() (in module tempfile), 185
getTestCaseNames() (TestLoader method), 117
gettext()

in module gettext, 198
NullTranslations method, 200

gettext (standard module),198
gettrackinfo() (CD player method), 445

getType() (AttributesImpl method), 387
gettype() (Message method), 335
getuid() (in module os), 139
getuser() (in module getpass), 163
getValue() (AttributesImpl method), 387
getvalue() (StringIO method), 95
getValueByQName() (AttributesNSImpl method),

387
getweakrefcount() (in module weakref), 36
getweakrefs() (in module weakref), 36
getwelcome()

FTP method, 296
NNTPDataError method, 305
POP3 method, 299

getwidth() (audio configuration method), 442
getwin() (in module curses), 165
getyx() (method), 171
GL (standard module),455
gl (built-in module),453
glob() (in module glob), 191
glob (standard module),191, 192
globals() (in module), 23
gmtime() (in module time), 159
GNOME, 200
Gopher

protocol, 285, 298
gopher open() (GopherHandler method), 293
gopher proxy, 283
GopherError (exception in urllib2), 287
GopherHandler (class in urllib2), 289
gopherlib (standard module),298
Greenwich Mean Time, 157
grey22grey() (in module imageop), 395
grey2grey2() (in module imageop), 395
grey2grey4() (in module imageop), 394
grey2mono() (in module imageop), 394
grey42grey() (in module imageop), 395
group()

MatchObject method, 87
NNTPDataError method, 305

groupdict() (MatchObject method), 87
groupindex (RegexObject attribute), 86
groups() (MatchObject method), 87
grp (built-in module),241
guess extension() (in module mimetypes), 345
guess type() (in module mimetypes), 344
gzip (standard module),231
GzipFile (class in gzip), 231

H
halfdelay() (in module curses), 166
handle()

BaseHTTPRequestHandler method, 317
in module SocketServer, 315

Index 495

handle accept() (dispatcher method), 323
handle authentication request() (Ab-

stractBasicAuthHandler method), 291
handle authentication request() (Ab-

stractDigestAuthHandler method), 292
handle cdata() (XMLParser method), 389
handle charref()

SGMLParser method, 354
XMLParser method, 389

handle close() (dispatcher method), 323
handle comment()

SGMLParser method, 354
XMLParser method, 389

handle connect() (dispatcher method), 323
handle data()

SGMLParser method, 354
XMLParser method, 389

handle decl() (SGMLParser method), 354
handle doctype() (XMLParser method), 388
handle endtag()

SGMLParser method, 354
XMLParser method, 388

handle entityref() (SGMLParser method),
354

handle error() (in module SocketServer), 314
handle expt() (dispatcher method), 323
handle image() (HTMLParser method), 356
handle proc() (XMLParser method), 389
handle read() (dispatcher method), 323
handle request() (in module SocketServer),

314
handle special() (XMLParser method), 389
handle starttag()

SGMLParser method, 354
XMLParser method, 388

handle write() (dispatcher method), 323
handle xml() (XMLParser method), 388
has colors() (in module curses), 165
has data() (Request method), 289
has extn() (SMTP method), 308
has ic() (in module curses), 165
has il() (in module curses), 165
has key()

method, 228
dictionary method, 11
in module curses, 166

has option() (ConfigParser method), 128
has section() (ConfigParser method), 128
hasattr() (in module), 23
hasAttributes() (Node method), 366
hasChildNodes() (Node method), 366
hascompare (data in dis), 433
hasconst (data in dis), 433

hasFeature() (DOMImplementation method),
365

hash() (in module), 23
hashopen() (in module bsddb), 228
hasjabs (data in dis), 433
hasjrel (data in dis), 433
haslocal (data in dis), 433
hasname (data in dis), 433
head() (NNTPDataError method), 306
header offset (ZipInfo attribute), 235
headers

MIME, 277, 345
headers

AddressList attribute, 333
BaseHTTPRequestHandler attribute, 316

heapmin() (in module msvcrt), 462
helo() (SMTP method), 308
help() (NNTPDataError method), 305
hex() (in module), 23
hexadecimal

literals, 5
hexbin() (in module binhex), 338
hexdigest()

md5 method, 408
sha method, 408

hexdigits (data in string), 77
hexlify() (in module binascii), 340
hexversion (data in sys), 31
hidden() (method), 182
hide() (method), 182
hide form() (form method), 448
hide object() (FORMS object method), 451
HierarchyRequestErr (exception in xml.dom),

371
hline() (method), 171
hls to rgb() (in module colorsys), 403
HOME, 75, 149
hosts (netrc attribute), 351
hsv to rgb() (in module colorsys), 403
HTML, 285, 355
htmlentitydefs (standard module),357
htmllib (standard module), 285, 353,355
HTMLParser (class in htmllib), 327, 356
htonl() (in module socket), 211
htons() (in module socket), 211
HTTP

protocol, 277, 285, 293, 315
HTTP(class in httplib), 293
http error 301() (HTTPRedirectHandler

method), 291
http error 302() (HTTPRedirectHandler

method), 291
http error 401() (HTTPBasicAuthHandler

method), 292

496 Index

http error 401() (HTTPDigestAuthHandler
method), 292

http error 407() (ProxyBasicAuthHandler
method), 292

http error 407() (ProxyDigestAuthHandler
method), 292

http error default() (BaseHandler method),
290

http open() (HTTPHandler method), 292
http proxy, 283
HTTPBasicAuthHandler (class in urllib2), 288
httpd, 315
HTTPDefaultErrorHandler (class in urllib2),

288
HTTPDigestAuthHandler (class in urllib2), 288
HTTPError (exception in urllib2), 287
HTTPHandler (class in urllib2), 288
httplib (standard module),293
HTTPPasswordMgr (class in urllib2), 288
HTTPPasswordMgrWithDefaultRealm (class

in urllib2), 288
HTTPRedirectHandler (class in urllib2), 288
https open() (HTTPSHandler method), 292
HTTPServer (class in BaseHTTPServer), 315
HTTPSHandler (class in urllib2), 288
hypertext, 355
hypot() (in module math), 118

I
I (data in re), 84
I/O control

buffering, 25, 140, 213
POSIX, 245, 246
tty, 245, 246
UNIX , 247

ibufcount() (audio device method), 460
id()

in module , 23
TestCase method, 115

idcok() (method), 171
IDEA

cipher, 407
ident (data in cd), 444
identchars (Cmd attribute), 133
idlok() (method), 171
IEEE-754, 39
if

statement, 3
ignorableWhitespace() (ContentHandler

method), 382
ignore() (Stats method), 269
IGNORECASE(data in re), 84
ihave() (NNTPDataError method), 306
ihooks (standard module), 20

imageop (built-in module),394
IMAP4

protocol, 300
IMAP4 (class in imaplib), 300
IMAP4.abort (exception in imaplib), 300
IMAP4.error (exception in imaplib), 300
IMAP4.readonly (exception in imaplib), 300
imaplib (standard module),300
imgfile (built-in module),455
imghdr (standard module),404
immedok() (method), 171
imp (built-in module), 20,64
import

statement, 20, 64
ImportError (exception in exceptions), 18
in

operator, 4, 7
INADDR * (data in socket), 210
inch() (method), 171
Incomplete (exception in binascii), 340
IncrementalParser (class in

xml.sax.xmlreader), 384
Independent JPEG Group, 456
index()

array method, 126
in module string, 78
string method, 7

index (data in cd), 444
index() (list method), 11
IndexError (exception in exceptions), 18
indexOf() (in module operator), 46
IndexSizeErr (exception in xml.dom), 371
inet aton() (in module socket), 211
inet ntoa() (in module socket), 211
infile (shlex attribute), 135
Infinity, 23, 78
info() (NullTranslations method), 200
infolist() (ZipFile method), 233
InfoSeek Corporation, 263
ini file, 127
init()

in module fm, 452
in module mimetypes, 345

init builtin() (in module imp), 66
init color() (in module curses), 166
init frozen() (in module imp), 66
init pair() (in module curses), 166
inited (data in mimetypes), 345
initscr() (in module curses), 166
input()

built-in function, 33
in module , 23
in module fileinput, 130

InputSource (class in xml.sax.xmlreader), 384

Index 497

InputType (data in cStringIO), 95
insch() (method), 171
insdelln() (method), 171
insert()

array method, 126
list method, 11

insert text() (in module readline), 235
insertBefore() (Node method), 366
insertln() (method), 171
insnstr() (method), 171
insort() (in module bisect), 124
insort left() (in module bisect), 124
insort right() (in module bisect), 124
inspect (standard module),47
insstr() (method), 171
install()

in module gettext, 199
NullTranslations method, 200

install opener() (in module urllib2), 287
instance() (in module new), 73
instancemethod() (in module new), 73
InstanceType (data in types), 42
instr() (method), 171
instream (shlex attribute), 135
int()

built-in function, 5
in module , 23

Int2AP() (in module imaplib), 301
integer

arbitrary precision, 409
division, 5
division, long, 5
literals, 5
literals, long, 5
object, 5
types, operations on, 6

Intel/DVI ADPCM, 391
interact()

in module code, 67
InteractiveConsole method, 68
Telnet method, 311

InteractiveConsole (class in code), 67
InteractiveInterpreter (class in code), 67
intern() (in module), 23
internal attr (ZipInfo attribute), 235
Internaldate2tuple() (in module imaplib),

301
internalSubset (DocumentType attribute), 367
Internet, 275
Internet Config, 283
InterpolationDepthError (exception in Con-

figParser), 128
InterpolationError (exception in Config-

Parser), 128

interpreter prompts, 32
intro (Cmd attribute), 134
IntType (data in types), 41
InuseAttributeErr (exception in xml.dom), 371
inv() (in module operator), 45
InvalidAccessErr (exception in xml.dom), 371
InvalidCharacterErr (exception in xml.dom),

371
InvalidModificationErr (exception in

xml.dom), 371
InvalidStateErr (exception in xml.dom), 371
invert() (in module operator), 45
IOCTL (standard module), 248
ioctl() (in module fcntl), 248
IOError (exception in exceptions), 18
IP * (data in socket), 210
IPPORT * (data in socket), 210
IPPROTO * (data in socket), 210
IRIS Font Manager, 452
IRIX

threads, 217
is

operator, 4
is not

operator, 4
is builtin() (in module imp), 66
is data() (MultiFile method), 337
is frozen() (in module imp), 66
is linetouched() (method), 172
is wintouched() (method), 172
is zipfile() (in module zipfile), 232
isabs() (in module os.path), 149
isAlive() (Thread method), 223
isalnum()

in module curses.ascii, 180
string method, 7

isalpha()
in module curses.ascii, 180
string method, 7

isascii() (in module curses.ascii), 180
isatty()

Chunk method, 402
file method, 14
in module os, 141

isblank() (in module curses.ascii), 180
isbuiltin() (in module inspect), 50
isCallable() (in module operator), 46
isclass() (in module inspect), 50
iscntrl() (in module curses.ascii), 180
iscode() (in module inspect), 50
iscomment() (AddressList method), 332
isctrl() (in module curses.ascii), 181
isDaemon() (Thread method), 223
isdigit()

498 Index

in module curses.ascii, 181
string method, 7

isdir() (in module os.path), 149
isenabled() (in module gc), 34
isendwin() (in module curses), 166
ISEOF() (in module token), 429
isexpr()

AST method, 422
in module parser, 421

isfile() (in module os.path), 149
isfirstline() (in module fileinput), 130
isframe() (in module inspect), 50
isfunction() (in module inspect), 50
isgraph() (in module curses.ascii), 181
isheader() (AddressList method), 332
isinstance() (in module), 24
iskeyword() (in module keyword), 429
islast() (AddressList method), 332
isleap() (in module calendar), 132
islink() (in module os.path), 149
islower()

in module curses.ascii, 181
string method, 7

isMappingType() (in module operator), 46
ismeta() (in module curses.ascii), 181
ismethod() (in module inspect), 50
ismodule() (in module inspect), 50
ismount() (in module os.path), 150
ISNONTERMINAL() (in module token), 429
isNumberType() (in module operator), 46
isprint() (in module curses.ascii), 181
ispunct() (in module curses.ascii), 181
isqueued() (in module fl), 448
isreadable()

in module pprint, 70
PrettyPrinter method, 71

isrecursive()
in module pprint, 71
PrettyPrinter method, 71

isReservedKey() (Morsel method), 321
isroutine() (in module inspect), 50
isSameNode() (Node method), 366
isSequenceType() (in module operator), 47
isSet() (Event method), 221
isspace()

in module curses.ascii, 181
string method, 7

isstdin() (in module fileinput), 130
issubclass() (in module), 24
issuite()

AST method, 422
in module parser, 421

ISTERMINAL() (in module token), 429
istitle() (string method), 8

istraceback() (in module inspect), 50
isupper()

in module curses.ascii, 181
string method, 8

isxdigit() (in module curses.ascii), 181
item()

NamedNodeMap method, 370
NodeList method, 367

items() (dictionary method), 11
itemsize (array attribute), 125

J
Jansen, Jack, 339
JFIF, 456
join()

in module os.path, 150
in module string, 79
string method, 8
Thread method, 222

joinfields() (in module string), 79
jpeg (built-in module),456
js output()

BaseCookie method, 320
Morsel method, 321

jumpahead() (in module random), 122

K
kbhit() (in module msvcrt), 462
KDEDIR, 276
key (Morsel attribute), 321
KeyboardInterrupt (exception in exceptions),

18
KeyError (exception in exceptions), 18
keyname() (in module curses), 166
keypad() (method), 172
keys()

method, 228
dictionary method, 11

keyword (standard module),429
kill() (in module os), 146
killchar() (in module curses), 166
knee (standard module), 67
knownfiles (data in mimetypes), 345
Kuchling, Andrew, 407

L
L (data in re), 84
LambdaType (data in types), 42
LANG, 194, 195, 198, 199
LANGUAGE, 198, 199
language

ABC, 4
C, 4, 5

large files, 240

Index 499

last()
method, 229
dbhash method, 227
NNTPDataError method, 305

last (MultiFile attribute), 337
last traceback (data in sys), 32
last type (data in sys), 32
last value (data in sys), 32
lastChild (Node attribute), 366
lastcmd (Cmd attribute), 133
lastgroup (MatchObject attribute), 88
lastindex (MatchObject attribute), 88
lastpart() (MimeWriter method), 336
LC ALL, 198, 199
LC ALL (data in locale), 196
LC COLLATE(data in locale), 196
LC CTYPE(data in locale), 196
LC MESSAGES, 198, 199
LC MESSAGES(data in locale), 196
LC MONETARY(data in locale), 196
LC NUMERIC(data in locale), 196
LC TIME (data in locale), 196
ldexp() (in module math), 118
leapdays() (in module calendar), 132
leaveok() (method), 172
left list (dircmp attribute), 155
left only (dircmp attribute), 155
len()

built-in function, 7, 11
in module , 24

length
NamedNodeMap attribute, 370
NodeList attribute, 367

letters (data in string), 77
level (MultiFile attribute), 337
library (data in dbm), 244
light-weight processes, 216
lin2adpcm() (in module audioop), 392
lin2adpcm3() (in module audioop), 392
lin2lin() (in module audioop), 392
lin2ulaw() (in module audioop), 392
line-buffered I/O, 25
linecache (standard module),53
lineno() (in module fileinput), 130
lineno

class descriptor attribute, 431
ExpatError attribute, 361
shlex attribute, 136

LINES, 169
linesep (data in os), 148
link() (in module os), 143
list

object, 6, 10
type, operations on, 11

list()
IMAP4 method, 302
in module , 24
NNTPDataError method, 305
POP3 method, 299

listallfolders() (MH method), 348
listallsubfolders() (MH method), 348
listdir()

in module dircache, 151
in module os, 143

listen()
dispatcher method, 324
socket method, 213

listfolders() (MH method), 348
listmessages() (Folder method), 348
listsubfolders() (MH method), 348
ListType (data in types), 42
literals

complex number, 5
floating point, 5
hexadecimal, 5
integer, 5
long integer, 5
numeric, 5
octal, 5

ljust()
in module string, 79
string method, 8

LK LOCK(data in msvcrt), 461
LK NBLCK(data in msvcrt), 461
LK NBRLCK(data in msvcrt), 461
LK RLCK(data in msvcrt), 461
LK UNLCK(data in msvcrt), 461
LNAME, 163
load()

BaseCookie method, 320
in module marshal, 62
in module pickle, 56

load compiled() (in module imp), 66
load dynamic() (in module imp), 66
load module() (in module imp), 65
load source() (in module imp), 66
loads()

in module marshal, 62
in module pickle, 57

loadTestsFromModule() (TestLoader method),
117

loadTestsFromName() (TestLoader method),
117

loadTestsFromNames() (TestLoader method),
117

loadTestsFromTestCase() (TestLoader
method), 117

LOCALE(data in re), 84

500 Index

locale (standard module),194
localeconv() (in module locale), 194
localName

Attr attribute, 369
Node attribute, 366

locals() (in module), 24
localtime() (in module time), 159
Locator (class in xml.sax.xmlreader), 384
Lock() (in module threading), 217
lock()

in module posixfile, 250
mutex method, 163

locked() (lock method), 216
lockf()

in module fcntl, 248
in module fcntl, 250

locking() (in module msvcrt), 461
LockType (data in thread), 216
log()

in module cmath, 119
in module math, 118

log10()
in module cmath, 119
in module math, 118

log data time string() (BaseHTTPRe-
questHandler method), 317

log error() (BaseHTTPRequestHandler
method), 317

log message() (BaseHTTPRequestHandler
method), 317

log request() (BaseHTTPRequestHandler
method), 317

login()
FTP method, 296
IMAP4 method, 302

LOGNAME, 163, 296
lognormvariate() (in module random), 122
logout() (IMAP4 method), 302
long

integer division, 5
integer literals, 5

long()
built-in function, 5, 78
in module , 24

long integer
object, 5

longimagedata() (in module rgbimg), 403
longname() (in module curses), 166
longstoimage() (in module rgbimg), 403
LongType (data in types), 42
lookup()

in module codecs, 96
in module unicodedata, 100

LookupError (exception in exceptions), 17

lower()
in module string, 79
string method, 8

lowercase (data in string), 77
lseek() (in module os), 141
lshift() (in module operator), 45
lstat() (in module os), 143
lstrip()

in module string, 79
string method, 8

lsub() (IMAP4 method), 302
Lundh, Fredrik, 456

M
M(data in re), 84
macros (netrc attribute), 351
mailbox (standard module), 331,346
mailcap (standard module),343
Maildir (class in mailbox), 347
main() (in module unittest), 114
make form() (in module fl), 447
make parser() (in module xml.sax), 377
makedirs() (in module os), 143
makefile() (socket method), 213
makefolder() (MH method), 348
maketrans() (in module string), 79
map() (in module), 24
mapcolor() (in module fl), 448
mapping

object, 11
types, operations on, 11

maps() (in module nis), 255
marshal (built-in module), 54, 55,61
marshalling

objects, 54
masking

operations, 6
match()

in module nis, 254
in module re, 85
RegexObject method, 86

math (built-in module), 5,117, 120
max()

built-in function, 7
in module , 24
in module audioop, 392

MAX INTERPOLATION DEPTH (data in Config-
Parser), 128

maxdict (Repr attribute), 72
maxint (data in sys), 32
MAXLEN(data in mimify), 350
maxlevel (Repr attribute), 72
maxlist (Repr attribute), 72
maxlong (Repr attribute), 72

Index 501

maxother (Repr attribute), 72
maxpp() (in module audioop), 392
maxstring (Repr attribute), 72
maxtuple (Repr attribute), 72
md5() (in module md5), 407
md5 (built-in module),407
MemoryError (exception in exceptions), 18
Message

class in mhlib, 348
class in mimetools, 334
class in rfc822, 331
in module mimetools, 316

message digest, MD5, 407
MessageClass (BaseHTTPRequestHandler at-

tribute), 316
meta() (in module curses), 166
method

object, 13
methods (class descriptor attribute), 431
MethodType (data in types), 42
MH(class in mhlib), 347
mhlib (standard module),347
MHMailbox (class in mailbox), 347
MIME

base64 encoding, 345
content type, 344
headers, 277, 345
quoted-printable encoding, 346

mime decode header() (in module mimify),
350

mime encode header() (in module mimify),
350

mimetools (standard module), 283, 294,334
mimetypes (standard module),344
MimeWriter

class in MimeWriter, 335
standard module,335

mimify() (in module mimify), 350
mimify (standard module),349
min()

built-in function, 7
in module , 24

minmax() (in module audioop), 392
mirrored() (in module unicodedata), 100
misc header (Cmd attribute), 134
MissingSectionHeaderError (exception in

ConfigParser), 128
mkd() (FTP method), 298
mkdir() (in module os), 143
mkfifo() (in module os), 143
mktemp() (in module tempfile), 185
mktime() (in module time), 159
mktime tz() (in module rfc822), 332
mmap() (in module mmap), 224

mmap(built-in module),224
MmdfMailbox (class in mailbox), 347
mod() (in module operator), 45
mode (file attribute), 16
modf() (in module math), 118
modified() (RobotFileParser method), 351
module

search path, 32, 54, 73
module() (in module new), 73
module (class descriptor attribute), 430
modules (data in sys), 32
ModuleType (data in types), 42
mono2grey() (in module imageop), 394
month() (in module calendar), 132
monthcalendar() (in module calendar), 132
monthrange() (in module calendar), 132
Morsel (class in Cookie), 320
mouseinterval() (in module curses), 166
mousemask() (in module curses), 166
move() (method), 172, 182, 224
movemessage() (Folder method), 349
MP, GNU library, 409
mpz() (in module mpz), 409
mpz (built-in module),409
MPZType (data in mpz), 409
msftoblock() (CD player method), 445
msftoframe() (in module cd), 444
msg() (Telnet method), 311
MSG* (data in socket), 210
msvcrt (built-in module),461
mt interact() (Telnet method), 311
mtime() (RobotFileParser method), 351
mul()

in module audioop, 393
in module operator, 44

MultiFile (class in multifile), 336
multifile (standard module),336
MULTILINE (data in re), 84
mutable

sequence types, 10
sequence types, operations on, 11

MutableString (class in UserString), 44
mutex

class in mutex, 162
standard module,162

mvderwin() (method), 172
mvwin() (method), 172

N
name() (in module unicodedata), 100
name

Attr attribute, 369
class descriptor attribute, 430
data in os, 138

502 Index

DocumentType attribute, 367
file attribute, 16

NameError (exception in exceptions), 18
namelist() (ZipFile method), 233
NamespaceErr (exception in xml.dom), 371
namespaces

XML, 390
namespaceURI (Node attribute), 366
NaN, 23, 78
NannyNag (exception in tabnanny), 430
napms() (in module curses), 166
National Security Agency, 411
neg() (in module operator), 45
netrc

class in netrc, 350
standard module,350

NetrcParseError (exception in netrc), 350
Network News Transfer Protocol, 303
new()

in module md5, 407
in module sha, 408

new (built-in module),73
new alignment() (writer method), 330
new font() (writer method), 330
new margin() (writer method), 330
new module() (in module imp), 65
new panel() (in module curses.panel), 182
new spacing() (writer method), 330
new styles() (writer method), 330
newconfig() (in module al), 441
newgroups() (NNTPDataError method), 305
newnews() (NNTPDataError method), 305
newpad() (in module curses), 166
newrotor() (in module rotor), 410
newwin() (in module curses), 167
next()

method, 229
dbhash method, 227
mailbox method, 347
MultiFile method, 337
NNTPDataError method, 305

nextfile() (in module fileinput), 130
nextkey() (in module gdbm), 245
nextpart() (MimeWriter method), 336
nextSibling (Node attribute), 366
nice() (in module os), 146
nis (extension module),254
NIST, 408
NL (data in tokenize), 429
nl() (in module curses), 167
nlst() (FTP method), 297
NNTP

protocol, 303
NNTP(class in nntplib), 304

NNTPDataError (class in nntplib), 305
NNTPError (class in nntplib), 304
nntplib (standard module),303
NNTPPermanentError (class in nntplib), 304
NNTPProtocolError (class in nntplib), 305
NNTPReplyError (class in nntplib), 304
NNTPTemporaryError (class in nntplib), 304
nocbreak() (in module curses), 167
NoDataAllowedErr (exception in xml.dom), 371
nodelay() (method), 172
nodeName (Node attribute), 366
nodeType (Node attribute), 365
nodeValue (Node attribute), 366
NODISC(data in cd), 444
noecho() (in module curses), 167
nofill (HTMLParser attribute), 356
nok builtin names (RExec attribute), 415
NoModificationAllowedErr (exception in

xml.dom), 371
None (Built-in object), 3
NoneType (data in types), 41
nonl() (in module curses), 167
noop()

IMAP4 method, 302
POP3 method, 299

NoOptionError (exception in ConfigParser), 128
noqiflush() (in module curses), 167
noraw() (in module curses), 167
normalize()

in module locale, 195
Node method, 367

normalvariate() (in module random), 123
normcase() (in module os.path), 150
normpath() (in module os.path), 150
NoSectionError (exception in ConfigParser), 128
not

operator, 4
not in

operator, 4, 7
not () (in module operator), 45
NotANumber (exception in fpformat), 94
notationDecl() (DTDHandler method), 382
NotationDeclHandler() (xmlparser method),

360
notations (DocumentType attribute), 368
NotFoundErr (exception in xml.dom), 371
notify() (Condition method), 220
notifyAll() (Condition method), 220
notimeout() (method), 172
NotImplementedError (exception in excep-

tions), 18
NotStandaloneHandler() (xmlparser method),

360
NotSupportedErr (exception in xml.dom), 371

Index 503

noutrefresh() (method), 172
NSA, 411
NSIG (data in signal), 208
ntohl() (in module socket), 211
ntohs() (in module socket), 211
ntransfercmd() (FTP method), 297
NullFormatter (class in formatter), 329
NullWriter (class in formatter), 331
numeric

conversions, 5
literals, 5
object, 4, 5
types, operations on, 5

numeric() (in module unicodedata), 100
Numerical Python, 27
nurbscurve() (in module gl), 454
nurbssurface() (in module gl), 454
nvarray() (in module gl), 454

O
O APPEND(data in os), 142
O BINARY (data in os), 142
O CREAT(data in os), 142
O DSYNC(data in os), 142
O EXCL(data in os), 142
O NDELAY(data in os), 142
O NOCTTY(data in os), 142
O NONBLOCK(data in os), 142
O RDONLY(data in os), 142
O RDWR(data in os), 142
O RSYNC(data in os), 142
O SYNC(data in os), 142
O TRUNC(data in os), 142
O WRONLY(data in os), 142
object

buffer, 6
code, 13, 14, 61
complex number, 5
dictionary, 11
file, 14
floating point, 5
frame, 209
integer, 5
list, 6, 10
long integer, 5
mapping, 11
method, 13
numeric, 4, 5
sequence, 6
socket, 209
string, 6
traceback, 30, 52
tuple, 6
type, 27

Unicode, 6
xrange, 6, 10

objects
comparing, 4
flattening, 54
marshalling, 54
persistent, 54
pickling, 54
serializing, 54

obufcount() (audio device method), 460
oct() (in module), 24
octal

literals, 5
octdigits (data in string), 77
offset (ExpatError attribute), 361
OK(data in curses), 174
ok builtin modules (RExec attribute), 415
ok path (RExec attribute), 416
ok posix names (RExec attribute), 416
ok sys names (RExec attribute), 416
onecmd() (Cmd method), 133
open()

built-in function, 14
IMAP4 method, 302
in module , 24
in module aifc, 395
in module anydbm, 225
in module cd, 444
in module codecs, 96
in module dbhash, 226
in module dbm, 244
in module dl, 242
in module dumbdbm, 226
in module gdbm, 244
in module gzip, 231
in module os, 141
in module posixfile, 250
in module sunau, 397
in module sunaudiodev, 459
in module wave, 400
in module webbrowser, 276, 277
OpenerDirector method, 290
Telnet method, 310
Template method, 250
URLopener method, 286

open new() (in module webbrowser), 276, 277
open osfhandle() (in module msvcrt), 461
open unknown() (URLopener method), 286
opendir() (in module dircache), 151
OpenerDirector (class in urllib2), 288
openfolder() (MH method), 348
openfp()

in module sunau, 397
in module wave, 400

504 Index

OpenGL, 455
OpenKey() (in module winreg), 464
OpenKeyEx() (in module winreg), 464
openlog() (in module syslog), 255
openmessage() (Message method), 349
openport() (in module al), 441
openpty()

in module os, 141
in module pty, 247

operation
concatenation, 7
repetition, 7
slice, 7
subscript, 7

operations
bit-string, 6
Boolean, 3, 4
masking, 6
shifting, 6

operations on
dictionary type, 11
integer types, 6
list type, 11
mapping types, 11
mutable sequence types, 11
numeric types, 5
sequence types, 7, 11

operator
==, 4
and , 3, 4
comparison, 4
in , 4, 7
is , 4
is not , 4
not , 4
not in , 4, 7
or , 3, 4

operator (built-in module),44
opname (data in dis), 433
options() (ConfigParser method), 128
optionxform() (ConfigParser method), 129
or

operator, 3, 4
or () (in module operator), 45
ord() (in module), 25
ordered attributes (xmlparser attribute), 358
os (standard module), 14, 33,137, 239
os.path (standard module),149
OSError (exception in exceptions), 18
output()

BaseCookie method, 320
Morsel method, 321

OutputString() (Morsel method), 321
OutputType (data in cStringIO), 95

OverflowError (exception in exceptions), 18
overlay() (method), 172
Overmars, Mark, 447
overwrite() (method), 172

P
P DETACH(data in os), 146
P NOWAIT(data in os), 146
P NOWAITO(data in os), 146
P OVERLAY(data in os), 146
P WAIT (data in os), 146
pack() (in module struct), 88
pack array() (Packer method), 342
pack bytes() (Packer method), 342
pack double() (Packer method), 341
pack farray() (Packer method), 342
pack float() (Packer method), 341
pack fopaque() (Packer method), 341
pack fstring() (Packer method), 341
pack list() (Packer method), 342
pack opaque() (Packer method), 342
pack string() (Packer method), 341
package, 74
Packer (class in xdrlib), 341
packing

binary data, 88
PAGER, 259
pair content() (in module curses), 167
pair number() (in module curses), 167
pardir (data in os), 148
parent (BaseHandler attribute), 290
parentNode (Node attribute), 365
paretovariate() (in module random), 123
Parse() (xmlparser method), 358
parse()

in module cgi, 279
in module xml.dom.minidom, 373
in module xml.dom.pulldom, 377
in module xml.sax, 377
RobotFileParser method, 351
XMLReader method, 384

parse and bind() (in module readline), 235
parse header() (in module cgi), 280
parse multipart() (in module cgi), 279
parse qs() (in module cgi), 279
parse qsl() (in module cgi), 279
parsedate() (in module rfc822), 331
parsedate tz() (in module rfc822), 331
ParseFile() (xmlparser method), 358
ParseFlags() (in module imaplib), 301
parseframe() (CD parser method), 446
parser (built-in module),419
ParserCreate() (in module xml.parsers.expat),

357

Index 505

ParserError (exception in parser), 422
parsesequence() (Folder method), 349
parseString()

in module xml.dom.minidom, 373
in module xml.dom.pulldom, 377
in module xml.sax, 378

parsing
Python source code, 419
URL, 312

ParsingError (exception in ConfigParser), 128
partial() (IMAP4 method), 302
pass () (POP3 method), 299
PATH, 148, 281, 283
path

configuration file, 74
module search, 32, 54, 73
operations, 149

path
BaseHTTPRequestHandler attribute, 316
data in os, 138
data in sys, 32

pathconf() (in module os), 143
pathconf names (data in os), 143
pathsep (data in os), 148
pattern (RegexObject attribute), 86
pause() (in module signal), 208
PAUSED(data in cd), 444
Pdb (class in pdb), 257
pdb (standard module), 32,257
persistence, 54
persistent

objects, 54
pformat()

in module pprint, 70
PrettyPrinter method, 71

PGP, 407
pi

data in cmath, 120
data in math, 119

pick() (in module gl), 454
pickle() (in module copy reg), 59
pickle (standard module),54, 59, 61
Pickler (class in pickle), 56
pickling

objects, 54
PicklingError (exception in pickle), 57
pid (Popen4 attribute), 157
PIL (the Python Imaging Library), 456
pipe() (in module os), 141
pipes (standard module),249
PKG DIRECTORY(data in imp), 65
platform (data in sys), 32
play() (CD player method), 445
playabs() (CD player method), 445

PLAYING (data in cd), 444
PlaySound() (in module winsound), 467
playtrack() (CD player method), 445
playtrackabs() (CD player method), 445
plock() (in module os), 146
pm() (in module pdb), 258
pnum (data in cd), 444
poll()

method, 215
in module select, 214
Popen4 method, 157

pop()
array method, 126
list method, 11
MultiFile method, 337

POP3
protocol, 298

POP3(class in poplib), 299
pop alignment() (formatter method), 328
pop font() (formatter method), 329
pop margin() (formatter method), 329
pop source() (shlex method), 135
pop style() (formatter method), 329
popen()

in module os, 140
in module os, 215

popen2()
in module os, 140
in module popen2, 156

popen2 (standard module),156
Popen3 (class in popen2), 156
popen3()

in module os, 140
in module popen2, 156

Popen4 (class in popen2), 156
popen4()

in module os, 140
in module popen2, 156

poplib (standard module),298
PortableUnixMailbox (class in mailbox), 347
pos() (in module operator), 45
pos (MatchObject attribute), 87
posix (built-in module),239
posixfile (built-in module),250
POSIX

file object, 250
I/O control, 245, 246
threads, 216

post() (NNTPDataError method), 306
post mortem() (in module pdb), 258
postcmd() (Cmd method), 133
postloop() (Cmd method), 133
pow()

in module , 25

506 Index

in module math, 118
powm() (in module mpz), 409
pprint()

in module pprint, 70
PrettyPrinter method, 71

pprint (standard module),69
prcal() (in module calendar), 132
pre (standard module), 80
precmd() (Cmd method), 133
prefix

Attr attribute, 369
data in sys, 32
Node attribute, 366

preloop() (Cmd method), 133
prepare input source() (in module

xml.sax.saxutils), 383
prepend() (Template method), 249
Pretty Good Privacy, 407
PrettyPrinter (class in pprint), 69
preventremoval() (CD player method), 445
previous()

method, 229
dbhash method, 227

previousSibling (Node attribute), 366
print

statement, 3
print callees() (Stats method), 269
print callers() (Stats method), 268
print directory() (in module cgi), 280
print environ() (in module cgi), 280
print environ usage() (in module cgi), 280
print exc() (in module traceback), 52
print exception() (in module traceback), 52
print form() (in module cgi), 280
print last() (in module traceback), 52
print stack() (in module traceback), 52
print stats() (Stats method), 268
print tb() (in module traceback), 52
printable (data in string), 77
printdir() (ZipFile method), 233
printf-style formatting, 9
prmonth() (in module calendar), 132
process

group, 138, 139
id, 139
id of parent, 139
killing, 146
signalling, 146

process request() (in module SocketServer),
314

processes, light-weight, 216
processingInstruction() (ContentHandler

method), 382

ProcessingInstructionHandler() (xml-
parser method), 360

processor time, 158
profile (standard module),266
profile function, 33
profiler, 33
profiling, deterministic, 263
prompt (Cmd attribute), 133
prompt user passwd() (FancyURLopener

method), 286
prompts, interpreter, 32
property declaration handler (data in

xml.sax.handler), 380
property dom node (data in xml.sax.handler),

380
property lexical handler (data in

xml.sax.handler), 380
property xml string (data in

xml.sax.handler), 380
protocol

CGI, 277
FTP, 285, 295
Gopher, 285, 298
HTTP, 277, 285, 293, 315
IMAP4, 300
NNTP, 303
POP3, 298
SMTP, 306

PROTOCOLVERSION(IMAP4 attribute), 303
protocol version (BaseHTTPRequestHandler

attribute), 316
proxy() (in module weakref), 36
ProxyBasicAuthHandler (class in urllib2), 288
ProxyDigestAuthHandler (class in urllib2),

288
ProxyHandler (class in urllib2), 288
ProxyType (data in weakref), 36
ProxyTypes (data in weakref), 36
prstr() (in module fm), 452
ps1 (data in sys), 32
ps2 (data in sys), 32
pstats (standard module),267
pthreads, 216
ptime (data in cd), 444
pty (standard module), 141,247
publicId (DocumentType attribute), 367
PullDOM (class in xml.dom.pulldom), 377
punctuation (data in string), 77
push()

InteractiveConsole method, 69
MultiFile method, 337

push alignment() (formatter method), 328
push font() (formatter method), 329
push margin() (formatter method), 329

Index 507

push source() (shlex method), 135
push style() (formatter method), 329
push token() (shlex method), 134
put() (Queue method), 223
put nowait() (Queue method), 223
putch() (in module msvcrt), 462
putenv() (in module os), 139
putheader() (HTTP method), 294
putp() (in module curses), 167
putrequest() (HTTP method), 294
putsequences() (Folder method), 349
putwin() (method), 172
pwd() (FTP method), 298
pwd (built-in module), 149,240
pwlcurve() (in module gl), 454
py compile (standard module),431
PY COMPILED(data in imp), 65
PY FROZEN(data in imp), 65
PY RESOURCE(data in imp), 65
PY SOURCE(data in imp), 65
pyclbr (standard module),430
pyexpat (built-in module), 357
PyOpenGL, 455
Python Enhancement Proposals

PEP 0205, 36
Python Imaging Library, 456
PYTHON DOM, 364
PYTHONPATH, 32, 281, 470
PYTHONSTARTUP, 74, 236
PYTHONY2K, 157, 158
PyZipFile (class in zipfile), 232

Q
qdevice() (in module fl), 448
qenter() (in module fl), 448
qiflush() (in module curses), 167
qread() (in module fl), 448
qreset() (in module fl), 448
qsize() (Queue method), 223
qtest() (in module fl), 448
QueryInfoKey() (in module winreg), 464
queryparams() (in module al), 441
QueryValue() (in module winreg), 464
QueryValueEx() (in module winreg), 465
Queue

class in Queue, 223
standard module,223

quick ratio() (SequenceMatcher method), 93
quit()

FTP method, 298
NNTPDataError method, 306
POP3 method, 300
SMTP method, 309

quopri (standard module),346

quote() (in module urllib), 284
quote plus() (in module urllib), 284
quoted-printable

encoding, 346
quotes (shlex attribute), 135

R
r eval() (RExec method), 414
r exec() (RExec method), 414
r execfile() (RExec method), 414
r import() (RExec method), 415
R OK(data in os), 142
r open() (RExec method), 415
r reload() (RExec method), 415
r unload() (RExec method), 415
raise

statement, 17
randint()

in module random, 122
in module whrandom, 123

random()
in module random, 122
in module whrandom, 123

random (standard module),120
randrange() (in module random), 122
range() (in module), 25
Rat (demo module), 409
ratecv() (in module audioop), 393
ratio() (SequenceMatcher method), 92
rational numbers, 409
raw() (in module curses), 167
raw input()

built-in function, 33
in module , 25
InteractiveConsole method, 69

re
MatchObject attribute, 88
standard module, 10, 77,80, 192

read()
method, 225
array method, 126
audio device method, 460
Chunk method, 402
ConfigParser method, 129
file method, 15
in module imgfile, 456
in module os, 141
MultiFile method, 336
RobotFileParser method, 351
StreamReader method, 98
ZipFile method, 233

read all() (Telnet method), 310
read byte() (method), 225
read eager() (Telnet method), 310

508 Index

read history file() (in module readline), 235
read init file() (in module readline), 235
read lazy() (Telnet method), 310
read mime types() (in module mimetypes), 345
read some() (Telnet method), 310
read token() (shlex method), 134
read until() (Telnet method), 310
read very eager() (Telnet method), 310
read very lazy() (Telnet method), 310
readable() (dispatcher method), 324
readda() (CD player method), 445
readfp() (ConfigParser method), 129
readframes()

aifc method, 396
AU read method, 398
Wave read method, 400

readline()
method, 225
file method, 15
MultiFile method, 336
StreamReader method, 98

readline (built-in module),235
readlines()

file method, 15
MultiFile method, 336
StreamReader method, 99

readlink() (in module os), 143
readmodule() (in module pyclbr), 430
readsamps() (audio port method), 442
readscaled() (in module imgfile), 456
READY(data in cd), 444
Real Media File Format, 401
real quick ratio() (SequenceMatcher

method), 93
recent() (IMAP4 method), 302
rectangle() (in module curses.textpad), 178
recv()

dispatcher method, 324
socket method, 213

recvfrom() (socket method), 213
redraw form() (form method), 448
redraw object() (FORMS object method), 451
redrawln() (method), 173
redrawwin() (method), 173
reduce() (in module), 26
ref() (in module weakref), 35
ReferenceError (exception in weakref), 36
ReferenceType (data in weakref), 36
refilemessages() (Folder method), 349
refresh() (method), 173
register()

method, 215
in module atexit, 40
in module codecs, 95

in module webbrowser, 276
registerDOMImplementation() (in module

xml.dom), 364
RegLoadKey() (in module winreg), 464
relative

URL, 312
release()

Condition method, 220
lock method, 216
Semaphore method, 221
Thread method, 218, 219

reload()
built-in function, 32, 65, 67
in module , 26

remove()
array method, 126
in module os, 144
list method, 11

remove option() (ConfigParser method), 129
remove section() (ConfigParser method), 129
removeAttribute() (Element method), 369
removeAttributeNode() (Element method),

369
removeAttributeNS() (Element method), 369
removecallback() (CD parser method), 446
removeChild() (Node method), 366
removedirs() (in module os), 144
removemessages() (Folder method), 349
rename()

FTP method, 297
IMAP4 method, 302
in module os, 144

renames() (in module os), 144
reorganize() (in module gdbm), 245
repeat() (in module operator), 45
repetition

operation, 7
replace()

method, 182
in module string, 80
string method, 8

replaceChild() (Node method), 367
report() (dircmp method), 155
report full closure() (dircmp method), 155
report partial closure() (dircmp method),

155
report unbalanced() (SGMLParser method),

355
Repr (class in repr), 71
repr()

in module , 26
in module repr, 72
Repr method, 72

repr (standard module),71

Index 509

repr1() (Repr method), 72
Request (class in urllib2), 287
request queue size (data in SocketServer),

314
request version (BaseHTTPRequestHandler at-

tribute), 316
RequestHandlerClass (data in SocketServer),

314
reserved (ZipInfo attribute), 234
reset()

DOMEventStream method, 377
in module statcache, 153
IncrementalParser method, 385
Packer method, 341
SGMLParser method, 353
StreamReader method, 99
StreamWriter method, 98
Template method, 249
Unpacker method, 342
XMLParser method, 388

reset prog mode() (in module curses), 167
reset shell mode() (in module curses), 168
resetbuffer() (InteractiveConsole method), 69
resetlocale() (in module locale), 196
resetparser() (CD parser method), 446
resetwarnings() (in module warnings), 64
resize() (method), 225
resolveEntity() (EntityResolver method), 382
resource (built-in module),252
response() (IMAP4 method), 302
responses (BaseHTTPRequestHandler attribute),

316
retr() (POP3 method), 299
retrbinary() (FTP method), 296
retrieve() (URLopener method), 286
retrlines() (FTP method), 297
returns unicode (xmlparser attribute), 359
reverse()

array method, 126
in module audioop, 393
list method, 11

reverse order() (Stats method), 268
rewind()

aifc method, 396
AU read method, 398
Wave read method, 400

rewindbody() (AddressList method), 332
RExec (class in rexec), 414
rexec (standard module), 20,414
RFC

RFC 1014, 341
RFC 1321, 407
RFC 1521, 345, 346
RFC 1524, 344

RFC 1725, 298
RFC 1730, 300
RFC 1738, 313
RFC 1766, 195
RFC 1808, 313
RFC 1832, 341
RFC 1866, 355, 356
RFC 1869, 306, 307
RFC 2060, 300
RFC 2068, 319
RFC 2109, 319, 320
RFC 2396, 313
RFC 2822, 160
RFC 821, 306, 307
RFC 822, 127, 160, 200, 294, 308, 309, 331, 332
RFC 854, 309, 310
RFC 959, 295
RFC 977, 303

rfc822 (standard module),331, 334
rfile (BaseHTTPRequestHandler attribute), 316
rfind()

in module string, 78
string method, 8

rgb to hls() (in module colorsys), 403
rgb to hsv() (in module colorsys), 403
rgb to yiq() (in module colorsys), 403
rgbimg (built-in module),403
right list (dircmp attribute), 155
right only (dircmp attribute), 155
rindex()

in module string, 79
string method, 8

rjust()
in module string, 79
string method, 8

rlcompleter (standard module),236
rlecode hqx() (in module binascii), 340
rledecode hqx() (in module binascii), 340
RLIMIT AS (data in resource), 253
RLIMIT CORE(data in resource), 252
RLIMIT CPU(data in resource), 252
RLIMIT DATA(data in resource), 253
RLIMIT FSIZE (data in resource), 253
RLIMIT MEMLOC(data in resource), 253
RLIMIT NOFILE (data in resource), 253
RLIMIT NPROC(data in resource), 253
RLIMIT OFILE (data in resource), 253
RLIMIT RSS(data in resource), 253
RLIMIT STACK(data in resource), 253
RLIMIT VMEM(data in resource), 253
RLock() (in module threading), 217
rmd() (FTP method), 298
rmdir() (in module os), 144
RMFF, 401

510 Index

rms() (in module audioop), 393
rmtree() (in module shutil), 193
rnopen() (in module bsddb), 228
RobotFileParser (class in robotparser), 351
robotparser (standard module),351
robots.txt, 351
rotor (built-in module),410
round() (in module), 26
rpop() (POP3 method), 299
rset() (POP3 method), 299
rshift() (in module operator), 45
rstrip()

in module string, 79
string method, 8

RTLD LAZY (data in dl), 242
RTLD NOW(data in dl), 242
ruler (Cmd attribute), 134
run()

in module pdb, 258
in module profile, 266
scheduler method, 162
TestCase method, 114
Thread method, 222

runcall() (in module pdb), 258
runcode() (InteractiveConsole method), 68
runeval() (in module pdb), 258
runsource() (InteractiveConsole method), 68
RuntimeError (exception in exceptions), 19
RuntimeWarning (exception in exceptions), 20
RUSAGEBOTH(data in resource), 254
RUSAGECHILDREN(data in resource), 254
RUSAGESELF (data in resource), 254

S
S (data in re), 84
s eval() (RExec method), 415
s exec() (RExec method), 415
s execfile() (RExec method), 415
S IFMT() (in module stat), 152
S IMODE() (in module stat), 152
s import() (RExec method), 415
S ISBLK() (in module stat), 151
S ISCHR() (in module stat), 151
S ISDIR() (in module stat), 151
S ISFIFO() (in module stat), 151
S ISLNK() (in module stat), 151
S ISREG() (in module stat), 151
S ISSOCK() (in module stat), 152
s reload() (RExec method), 415
s unload() (RExec method), 415
saferepr() (in module pprint), 71
same files (dircmp attribute), 156
samefile() (in module os.path), 150
sameopenfile() (in module os.path), 150

samestat() (in module os.path), 150
save bgn() (HTMLParser method), 357
save end() (HTMLParser method), 357
SaveKey() (in module winreg), 465
SAX2DOM(class in xml.dom.pulldom), 377
SAXException (exception in xml.sax), 378
SAXNotRecognizedException (exception in

xml.sax), 378
SAXNotSupportedException (exception in

xml.sax), 378
SAXParseException (exception in xml.sax), 378
scale() (in module imageop), 394
scalefont() (in module fm), 452
sched (standard module),161
scheduler (class in sched), 161
sci() (in module fpformat), 94
scroll() (method), 173
scrollok() (method), 173
search

path, module, 32, 54, 73
search()

IMAP4 method, 302
in module re, 84
RegexObject method, 86

SEARCHERROR(data in imp), 66
section divider() (MultiFile method), 337
sections() (ConfigParser method), 128
Secure Hash Algorithm, 408
seed()

in module random, 121
in module whrandom, 123
whrandom method, 123

seek()
method, 225
CD player method, 445
Chunk method, 402
file method, 15
MultiFile method, 336

SEEK CUR(data in posixfile), 250
SEEK END(data in posixfile), 250
SEEK SET (data in posixfile), 250
seekblock() (CD player method), 445
seektrack() (CD player method), 446
select()

IMAP4 method, 302
in module gl, 454
in module select, 214

select (built-in module),214
Semaphore() (in module threading), 217
Semaphore (class in threading), 220
semaphores, binary, 216
send()

dispatcher method, 324
HTTP method, 294

Index 511

socket method, 213
send error() (BaseHTTPRequestHandler

method), 317
send flowing data() (writer method), 330
send header() (BaseHTTPRequestHandler

method), 317
send hor rule() (writer method), 330
send label data() (writer method), 330
send line break() (writer method), 330
send literal data() (writer method), 330
send paragraph() (writer method), 330
send query() (in module gopherlib), 298
send response() (BaseHTTPRequestHandler

method), 317
send selector() (in module gopherlib), 298
sendcmd() (FTP method), 296
sendmail() (SMTP method), 308
sendto() (socket method), 213
sep (data in os), 148
sequence

object, 6
types, mutable, 10
types, operations on, 7, 11
types, operations on mutable, 11

sequence2ast() (in module parser), 420
sequenceIncludes() (in module operator), 46
SequenceMatcher (class in difflib), 90, 91
SerialCookie (class in Cookie), 319
serializing

objects, 54
serve forever() (in module SocketServer), 314
server

WWW, 277, 315
server activate() (in module SocketServer),

314
server address (data in SocketServer), 314
server bind() (in module SocketServer), 315
server version

BaseHTTPRequestHandler attribute, 316
SimpleHTTPRequestHandler attribute, 318

set()
ConfigParser method, 129
Event method, 221
Morsel method, 321

set call back() (FORMS object method), 450
set completer() (in module readline), 235
set completer delims() (in module readline),

236
set debug() (in module gc), 34
set debuglevel()

FTP method, 296
HTTP method, 294
NNTPDataError method, 305
SMTP method, 307

Telnet method, 311
set event call back() (in module fl), 447
set form position() (form method), 448
set graphics mode() (in module fl), 447
set history length() (in module readline),

235
set location() (method), 228
set pasv() (FTP method), 297
set position() (Unpacker method), 342
set proxy() (Request method), 289
set seq1() (SequenceMatcher method), 91
set seq2() (SequenceMatcher method), 91
set seqs() (SequenceMatcher method), 91
set spacing() (formatter method), 329
set threshold() (in module gc), 34
set trace() (in module pdb), 258
set url() (RobotFileParser method), 351
set userptr() (method), 182
setattr() (in module), 26
setAttribute() (Element method), 369
setAttributeNode() (Element method), 369
setAttributeNodeNS() (Element method), 369
setAttributeNS() (Element method), 369
SetBase() (xmlparser method), 358
setblocking() (socket method), 213
setByteStream() (InputSource method), 386
setcbreak() (in module tty), 247
setchannels() (audio configuration method), 442
setCharacterStream() (InputSource method),

386
setcheckinterval() (in module sys), 33
setcomptype()

aifc method, 396
AU write method, 399
Wave write method, 401

setconfig() (audio port method), 443
setContentHandler() (XMLReader method),

384
setcontext() (MH method), 348
setcurrent() (Folder method), 349
setDaemon() (Thread method), 223
setdefaultencoding() (in module sys), 33
setDocumentLocator() (ContentHandler

method), 380
setDTDHandler() (XMLReader method), 385
setegid() (in module os), 139
setEncoding() (InputSource method), 386
setEntityResolver() (XMLReader method),

385
setErrorHandler() (XMLReader method), 385
seteuid() (in module os), 139
setFeature() (XMLReader method), 385
setfillpoint() (audio port method), 443
setfirstweekday() (in module calendar), 131

512 Index

setfloatmax() (audio configuration method), 442
setfont() (in module fm), 452
setframerate()

aifc method, 396
AU write method, 399
Wave write method, 401

setgid() (in module os), 139
setinfo() (audio device method), 460
setitem() (in module operator), 46
setkey() (rotor method), 410
setlast() (Folder method), 349
setliteral()

SGMLParser method, 354
XMLParser method, 388

setLocale() (XMLReader method), 385
setlocale() (in module locale), 194
setlogmask() (in module syslog), 255
setmark() (aifc method), 397
setMaxConns() (CacheFTPHandler method), 293
setmode() (in module msvcrt), 461
setName() (Thread method), 222
setnchannels()

aifc method, 396
AU write method, 399
Wave write method, 401

setnframes()
aifc method, 396
AU write method, 399
Wave write method, 401

setnomoretags()
SGMLParser method, 353
XMLParser method, 388

setoption() (in module jpeg), 456
setparams()

aifc method, 396
AU write method, 399
in module al, 442
Wave write method, 401

setpath() (in module fm), 452
setpgid() (in module os), 139
setpgrp() (in module os), 139
setpos()

aifc method, 396
AU read method, 399
Wave read method, 401

setprofile() (in module sys), 33
setProperty() (XMLReader method), 385
setPublicId() (InputSource method), 386
setqueuesize() (audio configuration method),

442
setraw() (in module tty), 247
setrecursionlimit() (in module sys), 33
setregid() (in module os), 139
setreuid() (in module os), 139

setrlimit() (in module resource), 252
setsampfmt() (audio configuration method), 442
setsampwidth()

aifc method, 396
AU write method, 399
Wave write method, 401

setscrreg() (method), 173
setsid() (in module os), 139
setslice() (in module operator), 46
setsockopt() (socket method), 213
setstate() (in module random), 121
setSystemId() (InputSource method), 386
setsyx() (in module curses), 168
setTimeout() (CacheFTPHandler method), 293
settrace() (in module sys), 33
setuid() (in module os), 139
setUp() (TestCase method), 114
setup() (in module SocketServer), 315
setupterm() (in module curses), 168
SetValue() (in module winreg), 465
SetValueEx() (in module winreg), 465
setwidth() (audio configuration method), 442
SGML, 353
sgmllib (standard module),353, 355
SGMLParser

class in sgmllib, 353
in module sgmllib, 355

sha (built-in module),408
shelve (standard module), 54,59, 61
shifting

operations, 6
shlex

class in shlex, 134
standard module,134

shortDescription() (TestCase method), 115
show() (method), 182
show choice() (in module fl), 447
show file selector() (in module fl), 448
show form() (form method), 448
show input() (in module fl), 448
show message() (in module fl), 447
show object() (FORMS object method), 451
show question() (in module fl), 447
showsyntaxerror() (InteractiveConsole

method), 68
showtraceback() (InteractiveConsole method),

68
showwarning() (in module warnings), 64
shuffle() (in module random), 122
shutdown() (socket method), 213
shutil (standard module),192
SIG* (data in signal), 208
SIG DFL (data in signal), 208
SIG IGN (data in signal), 208

Index 513

signal() (in module signal), 208
signal (built-in module),207, 216
Simple Mail Transfer Protocol, 306
SimpleCookie (class in Cookie), 319
SimpleHTTPRequestHandler (class in Simple-

HTTPServer), 318
SimpleHTTPServer (standard module), 315,317
sin()

in module cmath, 120
in module math, 118

sinh()
in module cmath, 120
in module math, 118

site (standard module),73
site-packages

directory, 74
site-python

directory, 74
sitecustomize (module), 74
size()

method, 225
FTP method, 298

sizeofimage() (in module rgbimg), 403
skip() (Chunk method), 402
skippedEntity() (ContentHandler method), 382
slave() (NNTPDataError method), 306
sleep() (in module time), 159
slice

assignment, 11
operation, 7

slice()
built-in function, 42, 438
in module , 27

SliceType (data in types), 42
SmartCookie (class in Cookie), 319
SMTP

protocol, 306
SMTP(class in smtplib), 306
SMTPConnectError (exception in smtplib), 307
SMTPDataError (exception in smtplib), 307
SMTPException (exception in smtplib), 307
SMTPHeloError (exception in smtplib), 307
smtplib (standard module),306
SMTPRecipientsRefused (exception in smt-

plib), 307
SMTPResponseException (exception in smt-

plib), 307
SMTPSenderRefused (exception in smtplib), 307
SMTPServerDisconnected (exception in smt-

plib), 307
SND ALIAS (data in winsound), 467
SND ASYNC(data in winsound), 468
SND FILENAME(data in winsound), 467
SND LOOP(data in winsound), 467

SND MEMORY(data in winsound), 467
SND NODEFAULT(data in winsound), 468
SND NOSTOP(data in winsound), 468
SND NOWAIT(data in winsound), 468
SND PURGE(data in winsound), 468
sndhdr (standard module),404
SO * (data in socket), 210
SOCK DGRAM(data in socket), 210
SOCK RAW(data in socket), 210
SOCK RDM(data in socket), 210
SOCK SEQPACKET(data in socket), 210
SOCK STREAM(data in socket), 210
socket

object, 209
socket()

IMAP4 method, 303
in module socket, 211

socket
built-in module, 14,209, 275
data in SocketServer, 314

socket() (in module socket), 215
socket type (data in SocketServer), 314
SocketServer (standard module),313
SocketType (data in socket), 212
softspace (file attribute), 16
SOL * (data in socket), 210
SOMAXCONN(data in socket), 210
sort() (list method), 11
sort stats() (Stats method), 267
sortTestMethodsUsing (TestLoader attribute),

117
source (shlex attribute), 135
sourcehook() (shlex method), 134
span() (MatchObject method), 87
spawn() (in module pty), 247
spawnv() (in module os), 146
spawnve() (in module os), 146
specified attributes (xmlparser attribute),

359
split()

in module os.path, 150
in module re, 85
in module string, 79
RegexObject method, 86
string method, 8

splitdrive() (in module os.path), 150
splitext() (in module os.path), 150
splitfields() (in module string), 79
splitlines() (string method), 8
sprintf-style formatting, 9
sqrt()

in module cmath, 120
in module math, 118
in module mpz, 409

514 Index

sqrtrem() (in module mpz), 409
ST ATIME (data in stat), 152
ST CTIME (data in stat), 152
ST DEV(data in stat), 152
ST GID (data in stat), 152
ST INO (data in stat), 152
ST MODE(data in stat), 152
ST MTIME(data in stat), 152
ST NLINK (data in stat), 152
ST SIZE (data in stat), 152
ST UID (data in stat), 152
stack() (in module inspect), 51
stackable

streams, 95
StandardError (exception in exceptions), 17
standend() (method), 173
standout() (method), 173
start()

MatchObject method, 87
Thread method, 222

start color() (in module curses), 168
start new thread() (in module thread), 216
startbody() (MimeWriter method), 335
StartCdataSectionHandler() (xmlparser

method), 360
StartDoctypeDeclHandler() (xmlparser

method), 359
startDocument() (ContentHandler method), 381
startElement() (ContentHandler method), 381
StartElementHandler() (xmlparser method),

360
startElementNS() (ContentHandler method),

381
startfile() (in module os), 146
startmultipartbody() (MimeWriter method),

336
StartNamespaceDeclHandler() (xmlparser

method), 360
startPrefixMapping() (ContentHandler

method), 381
startswith() (string method), 8
startTest() (TestResult method), 116
stat()

in module os, 144
in module statcache, 153
NNTPDataError method, 305
POP3 method, 299

stat (standard module), 144,151
statcache (standard module),153
statement

assert , 17
del , 11
except , 17
exec , 14

if , 3
import , 20, 64
print , 3
raise , 17
try , 17
while , 3

Stats (class in pstats), 267
status() (IMAP4 method), 303
statvfs() (in module os), 144
statvfs (standard module), 144,154
stderr (data in sys), 33
stdin (data in sys), 33
stdout (data in sys), 33
STILL (data in cd), 444
stop()

CD player method, 446
TestResult method, 116

stopTest() (TestResult method), 116
storbinary() (FTP method), 297
store() (IMAP4 method), 303
storlines() (FTP method), 297
str()

in module , 27
in module locale, 196

strcoll() (in module locale), 196
StreamReader (class in codecs), 98
StreamReaderWriter (class in codecs), 99
StreamRecoder (class in codecs), 99
streams, 95

stackable, 95
StreamWriter (class in codecs), 97
strerror() (in module os), 139
strftime() (in module time), 159
string

documentation, 423
formatting, 9
object, 6

string
MatchObject attribute, 88
standard module, 10,77, 196, 197

StringIO
class in StringIO, 94
standard module,94

StringType (data in types), 42
strip()

in module string, 79
string method, 8

strip dirs() (Stats method), 267
stripspaces (Textbox attribute), 179
strptime() (in module time), 160
struct (built-in module),88, 213
structures

C, 88
strxfrm() (in module locale), 196

Index 515

sub()
in module operator, 44
in module re, 85
RegexObject method, 86

subdirs (dircmp attribute), 156
subn()

in module re, 85
RegexObject method, 86

subpad() (method), 173
subscribe() (IMAP4 method), 303
subscript

assignment, 11
operation, 7

subwin() (method), 173
suffix map (data in mimetypes), 345
suite() (in module parser), 420
suiteClass (TestLoader attribute), 117
sunau (standard module),397
SUNAUDIODEV(standard module), 459,460
sunaudiodev (built-in module),459, 460
super (class descriptor attribute), 431
swapcase()

in module string, 79
string method, 8

sym() (method), 243
sym name (data in symbol), 428
symbol (standard module),428
symbol table, 3
symlink() (in module os), 144
sync()

method, 229
dbhash method, 227
in module gdbm, 245

syncdown() (method), 173
syncok() (method), 173
syncup() (method), 173
syntax error() (XMLParser method), 389
SyntaxErr (exception in xml.dom), 371
SyntaxError (exception in exceptions), 19
SyntaxWarning (exception in exceptions), 20
sys (built-in module),29
sys version (BaseHTTPRequestHandler at-

tribute), 316
sysconf() (in module os), 148
sysconf names (data in os), 148
syslog() (in module syslog), 255
syslog (built-in module),255
system() (in module os), 147
SystemError (exception in exceptions), 19
SystemExit (exception in exceptions), 19
systemId (DocumentType attribute), 367

T
tabnanny (standard module),430

tagName (Element attribute), 368
tan()

in module cmath, 120
in module math, 119

tanh()
in module cmath, 120
in module math, 119

target (ProcessingInstruction attribute), 370
tb lineno() (in module traceback), 53
tcdrain() (in module termios), 246
tcflow() (in module termios), 246
tcflush() (in module termios), 246
tcgetattr() (in module termios), 245
tcgetpgrp() (in module os), 141
tcsendbreak() (in module termios), 246
tcsetattr() (in module termios), 246
tcsetpgrp() (in module os), 142
tearDown() (TestCase method), 114
tell()

method, 225
aifc method, 396, 397
AU read method, 399
AU write method, 399
Chunk method, 402
file method, 15
MultiFile method, 337
Wave read method, 401
Wave write method, 401

Telnet (class in telnetlib), 310
telnetlib (standard module),309
tempdir (data in tempfile), 185
tempfile (standard module),185
Template (class in pipes), 249
template (data in tempfile), 185
tempnam() (in module os), 144
temporary

file, 185
file name, 185

TemporaryFile() (in module tempfile), 185
termattrs() (in module curses), 168
TERMIOS(standard module),246
termios (built-in module),245, 246
termname() (in module curses), 168
test()

in module cgi, 280
mutex method, 163

testandset() (mutex method), 163
TestCase (class in unittest), 113
TestLoader (class in unittest), 113
testMethodPrefix (TestLoader attribute), 117
tests (data in imghdr), 404
testsRun (TestResult attribute), 116
TestSuite (class in unittest), 113
testzip() (ZipFile method), 233

516 Index

Textbox (class in curses.textpad), 178
textdomain() (in module gettext), 198
TextTestRunner (class in unittest), 114
Thread (class in threading), 217, 222
thread (built-in module),215
threading (standard module),217
threads

IRIX, 217
POSIX, 216

tie() (in module fl), 448
tigetflag() (in module curses), 168
tigetnum() (in module curses), 168
tigetstr() (in module curses), 168
time() (in module time), 161
time (built-in module),157
Time2Internaldate() (in module imaplib), 301
timegm() (in module calendar), 132
timeout() (method), 173
times() (in module os), 147
timezone (data in time), 161
title() (string method), 8
TMP MAX(data in os), 145
TMPDIR, 185
tmpfile() (in module os), 140
tmpnam() (in module os), 145
tochild (Popen4 attribute), 157
tofile() (array method), 126
togglepause() (CD player method), 446
tok name (data in token), 429
token

shlex attribute, 136
standard module,428

tokeneater() (in module tabnanny), 430
tokenize() (in module tokenize), 429
tokenize (standard module),429
tolist()

array method, 126
AST method, 422
xrange method, 10

tomono() (in module audioop), 393
top()

method, 182
POP3 method, 300

top panel() (in module curses.panel), 182
tostereo() (in module audioop), 393
tostring() (array method), 126
totuple() (AST method), 422
touchline() (method), 173
touchwin() (method), 174
tovideo() (in module imageop), 394
toxml() (method), 374
tparm() (in module curses), 168
trace() (in module inspect), 52
trace function, 33

traceback
object, 30, 52

traceback (standard module),52
tracebacklimit (data in sys), 33
TracebackType (data in types), 43
transfercmd() (FTP method), 297
translate()

in module string, 79
string method, 8

translate references() (XMLParser
method), 388

translation() (in module gettext), 199
true, 3
truncate() (file method), 15
truth

value, 3
truth() (in module operator), 45
try

statement, 17
ttob()

in module imgfile, 456
in module rgbimg, 404

tty
I/O control, 245, 246

tty (standard module),247
ttyname() (in module os), 142
tuple

object, 6
tuple() (in module), 27
tuple2ast() (in module parser), 421
TupleType (data in types), 42
turnoff sigfpe() (in module fpectl), 39
turnon sigfpe() (in module fpectl), 39
type

Boolean, 3
object, 27
operations on dictionary, 11
operations on list, 11

type()
built-in function, 14, 41
in module , 27

typeahead() (in module curses), 168
typecode (array attribute), 125
TypeError (exception in exceptions), 19
types

built-in, 3
mutable sequence, 10
operations on integer, 6
operations on mapping, 11
operations on mutable sequence, 11
operations on numeric, 5
operations on sequence, 7, 11

types (standard module), 14, 27,41
types map (data in mimetypes), 345

Index 517

TypeType (data in types), 41
TZ, 470
tzname (data in time), 161

U
U (data in re), 84
u-LAW, 391, 396, 405, 459
ugettext() (NullTranslations method), 200
uid() (IMAP4 method), 303
uidl() (POP3 method), 300
ulaw2lin() (in module audioop), 393
umask() (in module os), 139
uname() (in module os), 139
UnboundLocalError (exception in exceptions),

19
UnboundMethodType (data in types), 42
unbuffered I/O, 25
unctrl()

in module curses, 168
in module curses.ascii, 181

undoc header (Cmd attribute), 134
unfreeze form() (form method), 449
unfreeze object() (FORMS object method),

451
ungetch()

in module curses, 168
in module msvcrt, 462

ungetmouse() (in module curses), 169
unhexlify() (in module binascii), 340
unichr() (in module), 27
UNICODE(data in re), 84
Unicode, 95, 100

database, 100
object, 6

unicode() (in module), 27
unicodedata (standard module),100
UnicodeError (exception in exceptions), 19
UnicodeType (data in types), 42
uniform()

in module random, 122
in module whrandom, 123

unittest (standard module),108
UNIX

file control, 247
I/O control, 247

UnixMailbox (class in mailbox), 346
unknown charref()

SGMLParser method, 355
XMLParser method, 389

unknown endtag()
SGMLParser method, 355
XMLParser method, 389

unknown entityref()
SGMLParser method, 355

XMLParser method, 389
unknown open()

BaseHandler method, 290
UnknownHandler method, 293

unknown starttag()
SGMLParser method, 355
XMLParser method, 389

UnknownHandler (class in urllib2), 289
unlink()

method, 374
in module os, 145

unlock() (mutex method), 163
unmimify() (in module mimify), 350
unpack() (in module struct), 88
unpack array() (Unpacker method), 343
unpack bytes() (Unpacker method), 343
unpack double() (Unpacker method), 342
unpack farray() (Unpacker method), 343
unpack float() (Unpacker method), 342
unpack fopaque() (Unpacker method), 343
unpack fstring() (Unpacker method), 343
unpack list() (Unpacker method), 343
unpack opaque() (Unpacker method), 343
unpack string() (Unpacker method), 343
Unpacker (class in xdrlib), 341
unparsedEntityDecl() (DTDHandler method),

382
UnparsedEntityDeclHandler() (xmlparser

method), 360
Unpickler (class in pickle), 56
unqdevice() (in module fl), 448
unquote() (in module urllib), 284
unquote plus() (in module urllib), 284
unregister() (method), 215
unsubscribe() (IMAP4 method), 303
untouchwin() (method), 174
unused data (attribute), 231
update()

dictionary method, 11
md5 method, 408
sha method, 408

update panels() (in module curses.panel), 182
upper()

in module string, 79
string method, 9

uppercase (data in string), 77
URL, 277, 283, 312, 315, 351

parsing, 312
relative, 312

urlcleanup() (in module urllib), 284
urlencode() (in module urllib), 284
URLError (exception in urllib2), 287
urljoin() (in module urlparse), 313
urllib (standard module),283, 293

518 Index

urllib2 (standard module),287
urlopen()

in module urllib, 283
in module urllib2, 287

URLopener (class in urllib), 285
urlparse() (in module urlparse), 312
urlparse (standard module), 286,312
urlretrieve() (in module urllib), 284
urlunparse() (in module urlparse), 313
use env() (in module curses), 169
use rawinput (Cmd attribute), 134
USER, 163, 296
user

configuration file, 74
effective id, 138
id, 139
id, setting, 139

user() (POP3 method), 299
user (standard module),74
UserDict

class in UserDict, 43
standard module,43

UserList
class in UserList, 43
standard module,43

USERNAME, 163
userptr() (method), 183
UserString

class in UserString, 44
standard module,44

UserWarning (exception in exceptions), 20
UTC, 157
utime() (in module os), 145
uu (standard module), 339,339

V
value

truth, 3
value (Morsel attribute), 320
value decode() (BaseCookie method), 320
value encode() (BaseCookie method), 320
ValueError (exception in exceptions), 19
values() (dictionary method), 11
varray() (in module gl), 454
vars() (in module), 27
VERBOSE(data in re), 84
verbose (data in tabnanny), 430
verify() (SMTP method), 308
verify request() (in module SocketServer),

315
version

data in curses, 174
data in sys, 33
URLopener attribute, 286

version info (data in sys), 34
version string() (BaseHTTPRequestHandler

method), 317
vline() (method), 174
vnarray() (in module gl), 454
voidcmd() (FTP method), 296
volume (ZipInfo attribute), 234
vonmisesvariate() (in module random), 123

W
W OK(data in os), 142
wait()

Condition method, 220
Event method, 221
in module os, 147
Popen4 method, 157

waitpid() (in module os), 147
walk() (in module os.path), 150
warn() (in module warnings), 64
warn explicit() (in module warnings), 64
Warning (exception in exceptions), 20
warning() (ErrorHandler method), 383
warnings, 62
warnings (standard module),62
wasSuccessful() (TestResult method), 116
wave (standard module),399
WeakKeyDictionary (class in weakref), 36
weakref (extension module),35
WeakValueDictionary (class in weakref), 36
webbrowser (standard module),275
weekday() (in module calendar), 132
weibullvariate() (in module random), 123
WEXITSTATUS() (in module os), 147
wfile (BaseHTTPRequestHandler attribute), 316
what()

in module imghdr, 404
in module sndhdr, 405

whathdr() (in module sndhdr), 405
whichdb() (in module whichdb), 227
whichdb (standard module),227
while

statement, 3
whitespace

data in string, 78
shlex attribute, 135

whrandom (standard module),123
whseed() (in module random), 121
WIFEXITED() (in module os), 147
WIFSIGNALED() (in module os), 147
WIFSTOPPED() (in module os), 147
window() (method), 183
Windows ini file, 127
WindowsError (exception in exceptions), 19
WinSock, 215

Index 519

winsound (built-in module),467
winver (data in sys), 34
WNOHANG(data in os), 147
wordchars (shlex attribute), 135
World-Wide Web, 275, 283, 312, 351
wrapper() (in module curses.wrapper), 179
writable() (dispatcher method), 324
write()

method, 225
array method, 127
audio device method, 460
ConfigParser method, 129
file method, 15
in module imgfile, 456
in module os, 142
InteractiveConsole method, 68
StreamWriter method, 98
Telnet method, 311
ZipFile method, 233

write byte() (method), 225
write history file() (in module readline),

235
writeframes()

aifc method, 397
AU write method, 399
Wave write method, 401

writeframesraw()
aifc method, 397
AU write method, 399
Wave write method, 401

writelines()
file method, 15
StreamWriter method, 98

writepy() (PyZipFile method), 233
writer (formatter attribute), 328
writesamps() (audio port method), 443
writestr() (ZipFile method), 233
writexml() (method), 374
WrongDocumentErr (exception in xml.dom), 371
WSTOPSIG() (in module os), 147
WTERMSIG()(in module os), 147
WWW, 275, 283, 312, 351

server, 277, 315

X
X (data in re), 84
X OK(data in os), 142
xatom() (IMAP4 method), 303
XDR, 54, 341
xdrlib (standard module),341
xgtitle() (NNTPDataError method), 306
xhdr() (NNTPDataError method), 306
XML, 387

namespaces, 390

xml.dom (standard module),363
xml.dom.minidom (standard module),373
xml.dom.pulldom (standard module),377
xml.parsers.expat (standard module),357
xml.sax (standard module),377
xml.sax.handler (standard module),379
xml.sax.saxutils (standard module),383
xml.sax.xmlreader (standard module),383
XmlDeclHandler() (xmlparser method), 359
XMLFilterBase (class in xml.sax.saxutils), 383
XMLGenerator (class in xml.sax.saxutils), 383
xmllib (standard module),387
XMLParser (class in xmllib), 387
XMLParserType (data in xml.parsers.expat), 357
XMLReader (class in xml.sax.xmlreader), 383
xor() (in module operator), 45
xover() (NNTPDataError method), 306
xpath() (NNTPDataError method), 306
xrange

object, 6, 10
xrange()

built-in function, 6, 42
in module , 27

XRangeType (data in types), 42
xreadlines()

file method, 15
in module xreadlines, 131

xreadlines
extension module,131
standard module, 15

Y
Y2K, 157
Year 2000, 157
Year 2038, 157
yiq to rgb() (in module colorsys), 403

Z
ZeroDivisionError (exception in exceptions),

19
zfill() (in module string), 80
zip() (in module), 27
ZIP DEFLATED(data in zipfile), 232
ZIP STORED(data in zipfile), 232
ZipFile (class in zipfile), 232
zipfile (standard module),232
ZipInfo (class in zipfile), 232
zlib (built-in module),229

520 Index

	1 Introduction
	2 Built-in Types, Exceptions and Functions
	2.1 Built-in Types
	2.1.1 Truth Value Testing
	2.1.2 Boolean Operations
	2.1.3 Comparisons
	2.1.4 Numeric Types
	Bit-string Operations on Integer Types

	2.1.5 Sequence Types
	String Methods
	String Formatting Operations
	XRange Type
	Mutable Sequence Types

	2.1.6 Mapping Types
	2.1.7 Other Built-in Types
	Modules
	Classes and Class Instances
	Functions
	Methods
	Code Objects
	Type Objects
	The Null Object
	The Ellipsis Object
	File Objects
	Internal Objects

	2.1.8 Special Attributes

	2.2 Built-in Exceptions
	2.3 Built-in Functions

	3 Python Runtime Services
	3.1 sys --- System-specific parameters and functions
	3.2 gc --- Garbage Collector interface
	3.3 weakref --- Weak references
	3.3.1 Weak Reference Objects
	3.3.2 Example
	3.3.3 Weak References in Extension Types

	3.4 fpectl --- Floating point exception control
	3.4.1 Example
	3.4.2 Limitations and other considerations

	3.5 atexit --- Exit handlers
	3.5.1 atexit Example

	3.6 types --- Names for all built-in types
	3.7 UserDict --- Class wrapper for dictionary objects
	3.8 UserList --- Class wrapper for list objects
	3.9 UserString --- Class wrapper for string objects
	3.10 operator --- Standard operators as functions.
	3.10.1 Mapping Operators to Functions

	3.11 inspect --- Inspect live objects
	3.11.1 Types and members
	3.11.2 Retrieving source code
	3.11.3 Classes and functions
	3.11.4 The interpreter stack

	3.12 traceback --- Print or retrieve a stack traceback
	3.12.1 Traceback Example

	3.13 linecache --- Random access to text lines
	3.14 pickle --- Python object serialization
	3.14.1 Example

	3.15 cPickle --- Alternate implementation of pickle
	3.16 copyprotect unhbox voidb@x kern .06emvbox {hrule width.55em}reg --- Register pickle support functions
	3.17 shelve --- Python object persistence
	3.18 copy --- Shallow and deep copy operations
	3.19 marshal --- Alternate Python object serialization
	3.20 warnings --- Warning control
	3.20.1 Warning Categories
	3.20.2 The Warnings Filter
	3.20.3 Available Functions

	3.21 imp --- Access the import internals
	3.21.1 Examples

	3.22 code --- Interpreter base classes
	3.22.1 Interactive Interpreter Objects
	3.22.2 Interactive Console Objects

	3.23 codeop --- Compile Python code
	3.24 pprint --- Data pretty printer
	3.24.1 PrettyPrinter Objects

	3.25 repr --- Alternate repr() implementation
	3.25.1 Repr Objects
	3.25.2 Subclassing Repr Objects

	3.26 new --- Creation of runtime internal objects
	3.27 site --- Site-specific configuration hook
	3.28 user --- User-specific configuration hook
	3.29 protect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em}builtinprotect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em} --- Built-in functions
	3.30 protect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em}mainprotect unhbox voidb@x kern .06emvbox {hrule width.55em}protect unhbox voidb@x kern .06emvbox {hrule width.55em} --- Top-level script environment

	4 String Services
	4.1 string --- Common string operations
	4.2 re --- Regular expression operations
	4.2.1 Regular Expression Syntax
	4.2.2 Matching vs. Searching
	4.2.3 Module Contents
	4.2.4 Regular Expression Objects
	4.2.5 Match Objects

	4.3 struct --- Interpret strings as packed binary data
	4.4 difflib --- Helpers for computing deltas
	4.4.1 SequenceMatcher Objects
	4.4.2 Examples

	4.5 fpformat --- Floating point conversions
	4.6 StringIO --- Read and write strings as files
	4.7 cStringIO --- Faster version of StringIO
	4.8 codecs --- Codec registry and base classes
	4.8.1 Codec Base Classes
	Codec Objects
	StreamWriter Objects
	StreamReader Objects
	StreamReaderWriter Objects
	StreamRecoder Objects

	4.9 unicodedata --- Unicode Database

	5 Miscellaneous Services
	5.1 doctest --- Test docstrings represent reality
	5.1.1 Normal Usage
	5.1.2 Which Docstrings Are Examined?
	5.1.3 What's the Execution Context?
	5.1.4 What About Exceptions?
	5.1.5 Advanced Usage
	5.1.6 How are Docstring Examples Recognized?
	5.1.7 Warnings
	5.1.8 Soapbox

	5.2 unittest --- Unit testing framework
	5.2.1 Organizing test code
	5.2.2 Re-using old test code
	5.2.3 Classes and functions
	5.2.4 TestCase Objects
	5.2.5 TestSuite Objects
	5.2.6 TestResult Objects
	5.2.7 TestLoader Objects

	5.3 math --- Mathematical functions
	5.4 cmath --- Mathematical functions for complex numbers
	5.5 random --- Generate pseudo-random numbers
	5.6 whrandom --- Pseudo-random number generator
	5.7 bisect --- Array bisection algorithm
	5.7.1 Example

	5.8 array --- Efficient arrays of numeric values
	5.9 ConfigParser --- Configuration file parser
	5.9.1 ConfigParser Objects

	5.10 fileinput --- Iterate over lines from multiple input streams
	5.11 xreadlines --- Efficient iteration over a file
	5.12 calendar --- General calendar-related functions
	5.13 cmd --- Support for line-oriented command interpreters
	5.13.1 Cmd Objects

	5.14 shlex --- Simple lexical analysis
	5.14.1 shlex Objects

	6 Generic Operating System Services
	6.1 os --- Miscellaneous OS interfaces
	6.1.1 Process Parameters
	6.1.2 File Object Creation
	6.1.3 File Descriptor Operations
	6.1.4 Files and Directories
	6.1.5 Process Management
	6.1.6 Miscellaneous System Information

	6.2 os.path --- Common pathname manipulations
	6.3 dircache --- Cached directory listings
	6.4 stat --- Interpreting stat() results
	6.5 statcache --- An optimization of os.stat()
	6.6 statvfs --- Constants used with os.statvfs()
	6.7 filecmp --- File and Directory Comparisons
	6.7.1 The dircmp class

	6.8 popen2 --- Subprocesses with accessible I/O streams
	6.8.1 Popen3 and Popen4 Objects

	6.9 time --- Time access and conversions
	6.10 sched --- Event scheduler
	6.10.1 Scheduler Objects

	6.11 mutex --- Mutual exclusion support
	6.11.1 Mutex Objects

	6.12 getpass --- Portable password input
	6.13 curses --- Terminal handling for character-cell displays
	6.13.1 Functions
	6.13.2 Window Objects
	6.13.3 Constants

	6.14 curses.textpad --- Text input widget for curses programs
	6.14.1 Textbox objects

	6.15 curses.wrapper --- Terminal handler for curses programs
	6.16 curses.ascii --- Utilities for ASCII characters
	6.17 curses.panel --- A panel stack extension for curses.
	6.17.1 Functions
	6.17.2 Panel Objects

	6.18 getopt --- Parser for command line options
	6.19 tempfile --- Generate temporary file names
	6.20 errno --- Standard errno system symbols
	6.21 glob --- Unix style pathname pattern expansion
	6.22 fnmatch --- Unix filename pattern matching
	6.23 shutil --- High-level file operations
	6.23.1 Example

	6.24 locale --- Internationalization services
	6.24.1 Background, details, hints, tips and caveats
	6.24.2 For extension writers and programs that embed Python

	6.25 gettext --- Multilingual internationalization services
	6.25.1 GNU gettext API
	6.25.2 Class-based API
	The NullTranslations class
	The GNUTranslations class
	Solaris message catalog support
	The Catalog constructor

	6.25.3 Internationalizing your programs and modules
	Localizing your module
	Localizing your application
	Changing languages on the fly
	Deferred translations

	6.25.4 Acknowledgements

	7 Optional Operating System Services
	7.1 signal --- Set handlers for asynchronous events
	7.1.1 Example

	7.2 socket --- Low-level networking interface
	7.2.1 Socket Objects
	7.2.2 Example

	7.3 select --- Waiting for I/O completion
	7.3.1 Polling Objects

	7.4 thread --- Multiple threads of control
	7.5 threading --- Higher-level threading interface
	7.5.1 Lock Objects
	7.5.2 RLock Objects
	7.5.3 Condition Objects
	7.5.4 Semaphore Objects
	7.5.5 Event Objects
	7.5.6 Thread Objects

	7.6 Queue --- A synchronized queue class
	7.6.1 Queue Objects

	7.7 mmap --- Memory-mapped file support
	7.8 anydbm --- Generic access to DBM-style databases
	7.9 dumbdbm --- Portable DBM implementation
	7.10 dbhash --- DBM-style interface to the BSD database library
	7.10.1 Database Objects

	7.11 whichdb --- Guess which DBM module created a database
	7.12 bsddb --- Interface to Berkeley DB library
	7.12.1 Hash, BTree and Record Objects

	7.13 zlib --- Compression compatible with gzip
	7.14 gzip --- Support for gzip files
	7.15 zipfile --- Work with ZIP archives
	7.15.1 ZipFile Objects
	7.15.2 PyZipFile Objects
	7.15.3 ZipInfo Objects

	7.16 readline --- GNU readline interface
	7.16.1 Example

	7.17 rlcompleter --- Completion function for GNU readline
	7.17.1 Completer Objects

	8 Unix Specific Services
	8.1 posix --- The most common POSIX system calls
	8.1.1 Large File Support
	8.1.2 Module Contents

	8.2 pwd --- The password database
	8.3 grp --- The group database
	8.4 crypt --- Function to check Unix passwords
	8.5 dl --- Call C functions in shared objects
	8.5.1 Dl Objects

	8.6 dbm --- Simple ``database'' interface
	8.7 gdbm --- GNU's reinterpretation of dbm
	8.8 termios --- POSIX style tty control
	8.8.1 Example

	8.9 TERMIOS --- Constants used with the termios module
	8.10 tty --- Terminal control functions
	8.11 pty --- Pseudo-terminal utilities
	8.12 fcntl --- The fcntl() and ioctl() system calls
	8.13 pipes --- Interface to shell pipelines
	8.13.1 Template Objects

	8.14 posixfile --- File-like objects with locking support
	8.15 resource --- Resource usage information
	8.15.1 Resource Limits
	8.15.2 Resource Usage

	8.16 nis --- Interface to Sun's NIS (Yellow Pages)
	8.17 syslog --- Unix syslog library routines
	8.18 commands --- Utilities for running commands

	9 The Python Debugger
	9.1 Debugger Commands
	9.2 How It Works

	10 The Python Profiler
	10.1 Introduction to the profiler
	10.2 How Is This Profiler Different From The Old Profiler?
	10.3 Instant Users Manual
	10.4 What Is Deterministic Profiling?
	10.5 Reference Manual
	10.5.1 The Stats Class

	10.6 Limitations
	10.7 Calibration
	10.8 Extensions --- Deriving Better Profilers
	10.8.1 OldProfile Class
	10.8.2 HotProfile Class

	11 Internet Protocols and Support
	11.1 webbrowser --- Convenient Web-browser controller
	11.1.1 Browser Controller Objects

	11.2 cgi --- Common Gateway Interface support.
	11.2.1 Introduction
	11.2.2 Using the cgi module
	11.2.3 Old classes
	11.2.4 Functions
	11.2.5 Caring about security
	11.2.6 Installing your CGI script on a Unix system
	11.2.7 Testing your CGI script
	11.2.8 Debugging CGI scripts
	11.2.9 Common problems and solutions

	11.3 urllib --- Open arbitrary resources by URL
	11.3.1 URLopener Objects
	11.3.2 Examples

	11.4 urllib2 --- extensible library for opening URLs
	11.4.1 Request Objects
	11.4.2 OpenerDirector Objects
	11.4.3 BaseHandler Objects
	11.4.4 HTTPRedirectHandler Objects
	11.4.5 ProxyHandler Objects
	11.4.6 HTTPPasswordMgr Objects
	11.4.7 AbstractBasicAuthHandler Objects
	11.4.8 HTTPBasicAuthHandler Objects
	11.4.9 ProxyBasicAuthHandler Objects
	11.4.10 AbstractDigestAuthHandler Objects
	11.4.11 HTTPDigestAuthHandler Objects
	11.4.12 ProxyDigestAuthHandler Objects
	11.4.13 HTTPHandler Objects
	11.4.14 HTTPSHandler Objects
	11.4.15 FileHandler Objects
	11.4.16 FTPHandler Objects
	11.4.17 CacheFTPHandler Objects
	11.4.18 GopherHandler Objects
	11.4.19 UnknownHandler Objects

	11.5 httplib --- HTTP protocol client
	11.5.1 HTTP Objects
	11.5.2 Examples

	11.6 ftplib --- FTP protocol client
	11.6.1 FTP Objects

	11.7 gopherlib --- Gopher protocol client
	11.8 poplib --- POP3 protocol client
	11.8.1 POP3 Objects
	11.8.2 POP3 Example

	11.9 imaplib --- IMAP4 protocol client
	11.9.1 IMAP4 Objects
	11.9.2 IMAP4 Example

	11.10 nntplib --- NNTP protocol client
	11.10.1 NNTP Objects

	11.11 smtplib --- SMTP protocol client
	11.11.1 SMTP Objects
	11.11.2 SMTP Example

	11.12 telnetlib --- Telnet client
	11.12.1 Telnet Objects
	11.12.2 Telnet Example

	11.13 urlparse --- Parse URLs into components
	11.14 SocketServer --- A framework for network servers
	11.15 BaseHTTPServer --- Basic HTTP server
	11.16 SimpleHTTPServer --- Simple HTTP request handler
	11.17 CGIHTTPServer --- CGI-capable HTTP request handler
	11.18 Cookie --- HTTP state management
	11.18.1 Cookie Objects
	11.18.2 Morsel Objects
	11.18.3 Example

	11.19 asyncore --- Asynchronous socket handler
	11.19.1 Example basic HTTP client

	12 Internet Data Handling
	12.1 formatter --- Generic output formatting
	12.1.1 The Formatter Interface
	12.1.2 Formatter Implementations
	12.1.3 The Writer Interface
	12.1.4 Writer Implementations

	12.2 rfc822 --- Parse RFC 822 mail headers
	12.2.1 Message Objects
	12.2.2 AddressList Objects

	12.3 mimetools --- Tools for parsing MIME messages
	12.3.1 Additional Methods of Message Objects

	12.4 MimeWriter --- Generic MIME file writer
	12.4.1 MimeWriter Objects

	12.5 multifile --- Support for files containing distinct parts
	12.5.1 MultiFile Objects
	12.5.2 MultiFile Example

	12.6 binhex --- Encode and decode binhex4 files
	12.6.1 Notes

	12.7 uu --- Encode and decode uuencode files
	12.8 binascii --- Convert between binary and ascii
	12.9 xdrlib --- Encode and decode XDR data
	12.9.1 Packer Objects
	12.9.2 Unpacker Objects
	12.9.3 Exceptions

	12.10 mailcap --- Mailcap file handling.
	12.11 mimetypes --- Map filenames to MIME types
	12.12 base64 --- Encode and decode MIME base64 data
	12.13 quopri --- Encode and decode MIME quoted-printable data
	12.14 mailbox --- Read various mailbox formats
	12.14.1 Mailbox Objects

	12.15 mhlib --- Access to MH mailboxes
	12.15.1 MH Objects
	12.15.2 Folder Objects
	12.15.3 Message Objects

	12.16 mimify --- MIME processing of mail messages
	12.17 netrc --- netrc file processing
	12.17.1 netrc Objects

	12.18 robotparser --- Parser for robots.txt

	13 Structured Markup Processing Tools
	13.1 sgmllib --- Simple SGML parser
	13.2 htmllib --- A parser for HTML documents
	13.2.1 HTMLParser Objects

	13.3 htmlentitydefs --- Definitions of HTML general entities
	13.4 xml.parsers.expat --- Fast XML parsing using Expat
	13.4.1 XMLParser Objects
	13.4.2 ExpatError Exceptions
	13.4.3 Example
	13.4.4 Content Model Descriptions
	13.4.5 Expat error constants

	13.5 xml.dom --- The Document Object Model API
	13.5.1 Module Contents
	13.5.2 Objects in the DOM
	DOMImplementation Objects
	Node Objects
	NodeList Objects
	DocumentType Objects
	Document Objects
	Element Objects
	Attr Objects
	NamedNodeMap Objects
	Comment Objects
	Text and CDATASection Objects
	ProcessingInstruction Objects
	Exceptions

	13.5.3 Conformance
	Type Mapping
	Accessor Methods

	13.6 xml.dom.minidom --- Lightweight DOM implementation
	13.6.1 DOM objects
	13.6.2 DOM Example
	13.6.3 minidom and the DOM standard

	13.7 xml.dom.pulldom --- Support for building partial DOM trees
	13.7.1 DOMEventStream Objects

	13.8 xml.sax --- Support for SAX2 parsers
	13.8.1 SAXException Objects

	13.9 xml.sax.handler --- Base classes for SAX handlers
	13.9.1 ContentHandler Objects
	13.9.2 DTDHandler Objects
	13.9.3 EntityResolver Objects
	13.9.4 ErrorHandler Objects

	13.10 xml.sax.saxutils --- SAX Utilities
	13.11 xml.sax.xmlreader --- Interface for XML parsers
	13.11.1 XMLReader Objects
	13.11.2 IncrementalParser Objects
	13.11.3 Locator Objects
	13.11.4 InputSource Objects
	13.11.5 AttributesImpl Objects
	13.11.6 AttributesNSImpl Objects

	13.12 xmllib --- A parser for XML documents
	13.12.1 XML Namespaces

	14 Multimedia Services
	14.1 audioop --- Manipulate raw audio data
	14.2 imageop --- Manipulate raw image data
	14.3 aifc --- Read and write AIFF and AIFC files
	14.4 sunau --- Read and write Sun AU files
	14.4.1 AUprotect unhbox voidb@x kern .06emvbox {hrule width.55em}read Objects
	14.4.2 AUprotect unhbox voidb@x kern .06emvbox {hrule width.55em}write Objects

	14.5 wave --- Read and write WAV files
	14.5.1 Waveprotect unhbox voidb@x kern .06emvbox {hrule width.55em}read Objects
	14.5.2 Waveprotect unhbox voidb@x kern .06emvbox {hrule width.55em}write Objects

	14.6 chunk --- Read IFF chunked data
	14.7 colorsys --- Conversions between color systems
	14.8 rgbimg --- Read and write ``SGI RGB'' files
	14.9 imghdr --- Determine the type of an image
	14.10 sndhdr --- Determine type of sound file

	15 Cryptographic Services
	15.1 md5 --- MD5 message digest algorithm
	15.2 sha --- SHA message digest algorithm
	15.3 mpz --- GNU arbitrary magnitude integers
	15.4 rotor --- Enigma-like encryption and decryption

	16 Restricted Execution
	16.1 rexec --- Restricted execution framework
	16.1.1 RExec Objects
	16.1.2 Defining restricted environments
	16.1.3 An example

	16.2 Bastion --- Restricting access to objects

	17 Python Language Services
	17.1 parser --- Access Python parse trees
	17.1.1 Creating AST Objects
	17.1.2 Converting AST Objects
	17.1.3 Queries on AST Objects
	17.1.4 Exceptions and Error Handling
	17.1.5 AST Objects
	17.1.6 Examples
	Emulation of compile()
	Information Discovery

	17.2 symbol --- Constants used with Python parse trees
	17.3 token --- Constants used with Python parse trees
	17.4 keyword --- Testing for Python keywords
	17.5 tokenize --- Tokenizer for Python source
	17.6 tabnanny --- Detection of ambiguous indentation
	17.7 pyclbr --- Python class browser support
	17.7.1 Class Descriptor Objects

	17.8 pyprotect unhbox voidb@x kern .06emvbox {hrule width.55em}compile --- Compile Python source files
	17.9 compileall --- Byte-compile Python libraries
	17.10 dis --- Disassembler for Python byte code
	17.10.1 Python Byte Code Instructions

	18 SGI IRIX Specific Services
	18.1 al --- Audio functions on the SGI
	18.1.1 Configuration Objects
	18.1.2 Port Objects

	18.2 AL --- Constants used with the al module
	18.3 cd --- CD-ROM access on SGI systems
	18.3.1 Player Objects
	18.3.2 Parser Objects

	18.4 fl --- FORMS library interface for GUI applications
	18.4.1 Functions Defined in Module fl
	18.4.2 Form Objects
	18.4.3 FORMS Objects

	18.5 FL --- Constants used with the fl module
	18.6 flp --- Functions for loading stored FORMS designs
	18.7 fm --- Font Manager interface
	18.8 gl --- Graphics Library interface
	18.9 DEVICE --- Constants used with the gl module
	18.10 GL --- Constants used with the gl module
	18.11 imgfile --- Support for SGI imglib files
	18.12 jpeg --- Read and write JPEG files

	19 SunOS Specific Services
	19.1 sunaudiodev --- Access to Sun audio hardware
	19.1.1 Audio Device Objects

	19.2 SUNAUDIODEV --- Constants used with sunaudiodev

	20 MS Windows Specific Services
	20.1 msvcrt -- Useful routines from the MS VC++ runtime
	20.1.1 File Operations
	20.1.2 Console I/O
	20.1.3 Other Functions

	20.2 protect unhbox voidb@x kern .06emvbox {hrule width.55em}winreg -- Windows registry access
	20.2.1 Registry Handle Objects

	20.3 winsound --- Sound-playing interface for Windows

	A Undocumented Modules
	A.1 Frameworks
	A.2 Miscellaneous useful utilities
	A.3 Platform specific modules
	A.4 Multimedia
	A.5 Obsolete
	A.6 SGI-specific Extension modules

	B Reporting Bugs
	Module Index
	Index

