
2.166 Research Assignment 1 (Tips)

Massachusetts Institute of Technology

September 9, 2008
Issued: Wednesday, September 3rd, 2008
Due: Wednesday, September 17th, 2008

Before we embark on a detailed investigation of probabilistic algorithms for robot navigation,
mapping and control, this first assignment concerns the topics of robot programming using MOOS,
and simple sensor processing and trajectory control.

Problem 1. The primary goal this assignment is to enable you to write your own MOOS appli-
cations. To get started, write a MOOS application that implements a “Waypoint Controller” that
steers the robot around the (simulated or real) environment using odometry measurements for po-
sition estimation. You should write this as a new MOOS application (e.g. call it pWaypoint) that
operates with the existing MOOS processes iRobotSim, pRobotViewer, iRemote, MOOSDB, and
pLogger. We’ll give you a demo in class of how to do this.

Detailed directions for downloading, building, and running the software are provided at:

https://web.mit.edu/2.166/www/software/index.html

Be sure to ask for help if you need it, by emailing the course staff.

Implementing RA1

Setup Follow the instructions for downloading and building the software on the class website. Try
running the software as shown on the website to ensure you’re source tree is setup correctly.
Note the instructions for setting up your path variable for your shell.

Interface In your application, you will need to register and publish the appropriate MOOS vari-
ables. Specifically, you’ll need to subscribe for ROBOT POSITION and publish DESIRED THRUST
and DESIRED RUDDER. You may also choose to register for ROBOT X ROBOT Y ROBOT HEADING
if you wish to avoid parsing ROBOT POSITION. Registering for DESIRED LIGHT will allow you
to receive waypoints from user clicks in robotviewer which marks the position with a yellow
arrow shape.

bool CWayPoint : : OnConnectToServer () {
// . . .
m Comms. Reg i s t e r ("ROBOT_POSITION" , 0) ;
m Comms. Reg i s t e r ("DESIRED_LIGHT" , 0) ;
// . . .
r e turn true ;
}
bool CWayPoint : : I t e r a t e () {
// . . .
// your waypoint c on t r o l f unc t i on
i f (GoToWayPoint(dfThrust , dfRudder)) {

1

m Comms. Not i fy ("DESIRED_THRUST" , dfThrust) ;
m Comms. Not i fy ("DESIRED_RUDDER" , dfRudder) ;

}
// . . .
r e turn true ;
}
bool CWayPoint : : GoToWayPoint (double &dfThrust , double &dfRudder) {

// s e t s va lue o f dfThrust and dfRudder approp r i a t e l y
// could re turn f a l s e i f no va l i d waypoint .

}

Parsing Within your OnNewMail you will receive the subscribed messages. The following procedures
may help in parsing the string value of the CMOOSMsg.

bool CWayPoint : : Rece iveRobotPos i t ion (const std : : s t r i n g &sMsg) {
double dfTime , dfX , dfY , dfH ;
i n t n = s s c an f (sMsg . c s t r () ,

"time=%lf,x=%lf,y=%lf,theta=%lf" ,
&dfTime ,&dfX,&dfY,&dfH) ;

i f (n<4) {
// parse e r r o r
re turn f a l s e ;

}
// s e t cur rent time and po s i t i o n
return true ;

}
bool CWayPoint : : Rece iveDes i redLight (const std : : s t r i n g &sMsg) {

double dfX , dfY ;
i n t num = ss can f (sMsg . c s t r () , "%lf %lf" , &dfX , &dfY) ;
i f (n<2) {

// parse e r r o r
re turn f a l s e ;

}
// s e t cur rent waypoint goa l
re turn true ;

}

Alternatively, you may simply inline the parsing in your OnNewMail function.

bool CWayPoint : : OnNewMail (MOOSMSG LIST &NewMail) {
// . . .
MOOSMSG LIST : : i t e r a t o r p ;
f o r (p=NewMail . begin () ; p!=NewMail . end () ; p++) {

CMOOSMsg &Msg = ∗p ;
i f (Msg . m sKey=="DESIRED_LIGHT") {

double x , y ;
i f (s s c an f (Msg . m sVal . c s t r () , "%lf %lf" ,&x,&y)<2) {

// parse e r r o r

} e l s e {
// s e t your new waypoint goa l

}
} e l s e i f (Msg . m sKey=="ROBOT_POSITION") {

// i n l i n e par s ing here
} e l s e {

2

// . . .
}

}
// . . .

}

Misc In implementing your waypoint controller, you will need to steer the robot toward the goal
and control the speed. You will need to account for error with a goal tolerance. Create a
parameter you read from your config block in the moos file, i.e.

// read in a c on f i gu r a t i on parameter
double dfVal ;
i f (m MissionReader . GetConfigurationParam ("GoalRadius" , dfVal))

m dfGoalRadius=dfVal ;

One easy approach to waypoint control is to first turn toward the goal and then drive toward
it. If you choose this approach, be aware of hysteresis may occur around your desired heading
if the gain is too high. A gain proportional to the error can avoid this (like a PD-controller),
where the response is Kd (hdesired − hrobot). You can make the gain a configuration parameter
in your moos file to tune without having to recompile your application.

Try to thiink about which class variables you might need to implement your waypoint con-
troller. You should have at least variables for current pose, a goal waypoint, and whether the
goal is complete or invalid (unset).

3

