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Rolling Bearing Life Prediction, Theory, and Application

Erwin V. Zaretsky
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Summary

A tutorial is presented outlining the evolution, theory, and
application of rolling-element bearing life prediction from that
of A. Palmgren, 1924; W. Weibull, 1939; G. Lundberg and A.
Palmgren, 1947 and 1952; E. loannides and T. Harris, 1985;
and E. Zaretsky, 1987. Comparisons are made between these
life models. The loannides-Harris model without a fatigue limit
is identical to the Lundberg-Palmgren model. The Weibull
model is similar to that of Zaretsky if the exponents are chosen
to be identical. Both the load-life and Hertz stress-life relations
of Weibull, Lundberg and Palmgren, and Ioannides and Harris
reflect a strong dependence on the Weibull slope. The Zaretsky
model decouples the dependence of the critical shear stress-life
relation from the Weibull slope. This results in a nominal
variation of the Hertz stress-life exponent.

For 9th- and 8th-power Hertz stress-life exponents for ball
and roller bearings, respectively, the Lundberg-Palmgren
model best predicts life. However, for 12th- and 10th-power
relations reflected by modern bearing steels, the Zaretsky
model based on the Weibull equation is superior. Under the
range of stresses examined, the use of a fatigue limit would
suggest that (for most operating conditions under which a
rolling-element bearing will operate) the bearing will not fail
from classical rolling-element fatigue. Realistically, this is not
the case. The use of a fatigue limit will significantly overpre-
dict life over a range of normal operating Hertz stresses. (The
use of ISO 281:2007 with a fatigue limit in these calculations
would result in a bearing life approaching infinity.) Since the
predicted lives of rolling-element bearings are high, the
problem can become one of undersizing a bearing for a
particular application.

Rules had been developed to distinguish and compare predicted
lives with those actually obtained. Based upon field and test
results of 51 ball and roller bearing sets, 98 percent of these
bearing sets had acceptable life results using the Lundberg-
Palmgren equations with life adjustment factors to predict bearing
life. That is, they had lives equal to or greater than that predicted.

The Lundberg-Palmgren model was used to predict the life
of a commercial turboprop gearbox. The life prediction was
compared with the field lives of 64 gearboxes. From these
results, the roller bearing lives exhibited a load-life exponent of
5.2, which correlated with the Zaretsky model. The use of the
ANSI/ABMA and ISO standards load-life exponent of 10/3 to
predict roller bearing life is not reflective of modern roller
bearings and will underpredict bearing lives.
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Introduction

By the close of the 19th century, the rolling-element bearing
industry began to focus on sizing of ball and roller bearings for
specific applications and determining bearing life and reliabil-
ity. In 1896, R. Stribeck (Ref. 1) in Germany began fatigue
testing full-scale rolling-element bearings. J. Goodman (Ref. 2)
in 1912 in Great Britain published formulae based on fatigue
data that would compute safe loads on ball and cylindrical
roller bearings. In 1914, the “American Machinists’ Hand-
book” (Ref. 3), devoted six pages to rolling-element bearings
that discussed bearing sizes and dimensions, recommended
(maximum) loading, and specified speeds. However, the
publication did not address the issue of bearing life. During this
time, it would appear that rolling-element bearing fatigue
testing was the only way to determine or predict the minimum
or average life of ball and roller bearings.

In 1924, A. Palmgren (Ref. 4) in Sweden published a paper in
German outlining his approach to bearing life prediction and an
empirical formula based upon the concept of an Ly life, or the
time that 90 percent of a bearing population would equal or exceed
without rolling-element fatigue failure. During the next 20 years
he empirically refined his approach to bearing life prediction and
matched his predictions to test data (Ref. 5). However, his formula
lacked a theoretical basis or an analytical proof.

In 1939, W. Weibull (Refs. 6 and 7) in Sweden published his
theory of failure. Weibull was a contemporary of Palmgren and
shared the results of his work with him. In 1947, Palmgren in
concert with G. Lundberg, also of Sweden, incorporated his
previous work along with that of Weibull and what appears to
be the work of H. Thomas and V. Hoersch (Ref. 8) into a
probabilistic analysis to calculate rolling-element (ball and
roller) life. This has become known as the Lundberg-Palmgren
theory (Refs. 9 and 10). (In 1930, H. Thomas and V. Hoersch
(Ref. 8) at the University of Illinois, Urbana, developed an
analysis for determining subsurface principal stresses under
Hertzian contact (Ref. 11). Lundberg and Palmgren do not
reference the work of Thomas and Hoersch in their papers.)

The Lundberg-Palmgren life equations have been incorpo-
rated into both the International Organization for Standardiza-
tion (ISO) and the American National Standards Institute
(ANSI)/American  Bearing  Manufacturers  Association
(ABMA)! standards for the load ratings and life of rolling-

'ABMA changed their name from the Anti-Friction Bearing Manufac-
turers Association (AFBMA) in 1993.



element (Refs. 12 to 14) as well as in current bearing codes to
predict life.

After World War II the major technology drivers for improv-
ing the life, reliability, and performance of rolling-element
bearings have been the jet engine and the helicopter. By the late
1950s most of the materials used for bearings in the aerospace
industry were introduced into use. By the early 1960s the life of
most steels was increased over that experienced in the early
1940s primarily by the introduction of vacuum degassing and
vacuum melting processes in the late 1950s (Ref. 15).

The development of elastohydrodynamic (EHD) lubrication
theory in 1939 by A. Ertel (Ref. 16) and later A. Grubin
(Ref. 17) in 1949 in Russia showed that most rolling bearings
and gears have a thin EHD film separating the contacting
components. The life of these bearings and gears is a function
of the thickness of the EHD film (Ref. 15).

Computer programs modeling bearing dynamics that incor-
porate probabilistic life prediction methods and EHD theory
enable optimization of rolling-element bearings based on life
and reliability. With improved manufacturing and material
processing, the potential improvement in bearing life can be as
much as 80 times that attainable in the late 1950s or as much as
400 times that attainable in 1940 (Ref. 15).

While there can be multifailure modes of rolling-element
bearings, the failure mode limiting bearing life is contact
(rolling-element) surface fatigue of one or more of the running
tracks of the bearing components. Rolling-element fatigue is
extremely variable but is statistically predictable depending on
the material (steel) type, the processing, the manufacturing, and
operating conditions (Ref. 18).

Rolling-element fatigue life analysis is based on the initiation
or first evidence of fatigue spalling on a loaded, contacting
surface of a bearing. This spalling phenomenon is load cycle
dependent. Generally, the spall begins in the region of maxi-
mum shear stresses, located below the contact surface, and
propagates into a crack network. Failures other than that caused
by classical rolling-element fatigue are considered avoidable if
the component is designed, handled, and installed properly and
is not overloaded (Ref. 18). However, under low EHD lubricant
film conditions, rolling-element fatigue can be surface or near-
surface initiated with the spall propagating into the region of
maximum shearing stresses.

The database for ball and roller bearings is extensive. A con-
cern that arises from these data and their analysis is the variation
between life calculations and the actual endurance characteristics
of these components. Experience has shown that endurance tests
of groups of identical bearings under identical conditions can
produce a variation in Lo life from group to group. If a number
of apparently identical bearings are tested to fatigue at a specific
load, there is a wide dispersion of life among these bearings. For
a group of 30 or more bearings, the ratio of the longest to the
shortest life may be 20 or more (Ref. 18). This variation can
exceed reasonable engineering expectations.
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Bearing Life Theory
Foundation for Bearing Life Prediction

Hertz Contact Stress Theory

In 1917, Arvid Palmgren began his career at the A.—B.
Svenska Kullager-Fabriken (SKF) bearing company in
Sweden. In 1924 he published his paper (Ref. 4) that laid the
foundation for what later was to become known as the
Lundberg-Palmgren theory (Ref.9). Because the 1924 paper
was missing two elements, it did not allow for a comprehensive
rolling-element bearing life theory. The first missing element
was the ability to calculate the subsurface principal stresses and
hence, the shear stresses below the Hertzian contact of either a
ball on a nonconforming race or a cylindrical roller on a race.
The second missing element was a comprehensive life theory
that would fit the observations of Palmgren. Palmgren dis-
counted Hertz contact stress theory (Ref. 11) and depended on
the load-life relation for ball and roller bearings based on
testing at SFK Sweden that began in 1910 (Ref. 19). Zaretsky
discusses the 1924 Palmgren work in Reference 20.

Palmgren did not have confidence in the ability of the
Hertzian equations to accurately predict rolling bearing stresses.
Palmgren (Ref. 4) states, “The calculation of deformation and
stresses upon contact between the curved surfaces. ..is based on a
number of simplifying stipulations, which will not yield very
accurate approximation values, for instance, when calculating the
deformations. Moreover, recent investigations (circa 1919 to
1923) made at SKF have proved through calculation and
experiment that the Hertzian formulae will not yield a generally
applicable procedure for calculating the material stresses... . As
a result of the paramount importance of this problem to ball
bearing technology, comprehensive in-house studies were
performed at SKF in order to find the law that describes the
change in service life that is caused by changing load, rpm,
bearing dimensions, and the like. There was only one possible
approach: tests performed on complete ball bearings. It is not
acceptable to perform theoretical calculations only, since the
actual stresses that are encountered in a ball bearing cannot be
determined by mathematical means.”

Palmgren later recanted his doubts about the validity of
Hertz theory and incorporated the Hertz contact stress equation
in his 1945 book (Ref.5). In their 1947 paper (Ref.9),
Lundberg and Palmgren state, “Hertz theory is valid under the
assumptions that the contact area is small compared to the
dimensions of the bodies and that the frictional forces in the
contact areas can be neglected. For ball bearings, with close
conformity between rolling elements and raceways, these
conditions are only approximately true. For line contact the
limit of validity of the theory is exceeded whenever edge
pressure occurs.”

Lundberg and Palmgren exhibited a great deal of insight into
the other variables modifying the resultant shear stresses



calculated from Hertz theory. They state (Ref. 9), “No one yet
knows much about how the material reacts to the complicated
and varying succession of (shear) stresses which then occur,
nor is much known concerning the effect of residual hardening
stresses or how the lubricant affects the stress distribution
within the pressure area. Hertz theory also does not treat the
influence of those static stresses which are set up by the
expansion or compression of the rings when they are mounted
with tight fits.” These effects are now understood, and life
factors are currently being used to account for them to more
accurately predict bearing life and reliability (Ref. 18).

Equivalent Load

Palmgren (Ref. 4) recognized that it was necessary to
account for combined and variable loading around the circum-
ference of a ball bearing. He proposed a procedure in 1924 “to
establish functions for the service life of bearings under purely
radial load and to establish rules for the conversion of axial and
simultaneous effective axial and radial loads into purely radial
loads.” Palmgren used Stribeck’s equation (Ref. 1) to calculate
what can best be described as a stress on the maximum radially
loaded ball-race contact in a ball bearing. The equation
attributed to Stribeck by Palmgren is as follows:

50
k PP €))
where Q is the total radial load on the bearing, Z is the number
of balls in the bearing, d is the ball diameter, and £ is Stribeck’s
stress constant.

Palmgren modified Stribeck’s equation to include the effects
of speed and load, and he also modified the ball diameter
relation. For brevity, this modification is not presented. It is not
clear whether Palmgren recognized at that time that Stribeck’s
equation was valid only for a diametral clearance greater than
zero with fewer than half of the balls being loaded. However,
he stated that the corrected constant yielded good agreement
with tests performed.

Palmgren (Ref. 4) states, “It is probably impossible to find an
accurate and, at the same time, simple expression for the ball
pressure as a function of radial and axial pressure... .” Accord-
ing to Palmgren, “Adequately precise results can be obtained
by using the following equation:

O=R+yd )

where Q is the imagined, purely radial load that will yield the
same service life as the simultaneously acting radial and axial
forces, R is the actual radial load, and A is the actual axial
load.” For ball bearings, Palmgren presented values of y as a
function of Stribeck’s constant k. Palmgren stated that these
values of y were confirmed by test results.
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By 1945, Palmgren (Ref.5) modified Equation (2) as
follows:

Q=F,=XF +YF, 3)

where

. the equivalent load

the radial component of the actual load
the axial component of the actual load
a rotation factor

the thrust factor of the bearing

~

<<

The rotation factor X is an expression for the effect on the
bearing capacity of the conditions of rotation. The thrust factor
Y is a conversion value for thrust loads.

Fatigue Limit

Palmgren (Ref. 4) states that bearing “limited service life is
primarily a fatigue phenomenon. However, under exceptional
high loads there will be additional factors such as permanent
deformations, direct fractures, and the like....If we start out
from the assumption that the material has a certain fatigue limit
(see App. A), meaning that it can withstand an unlimited
number of cyclic loads on or below a certain, low level of load,
the service life curve will be asymptotic. Since, moreover, the
material has an elastic limit and/or fracture limit, the curve
must yield a finite load even when there is only a single load
value, meaning that the number of cycles equals zero. If we
further assume that the curve has a profile of an exponential
function, the general equation for the relationship existing
between load and number of load cycles prior to fatigue would
read:

k=Clan+e) ™ +u “)

where £ is the specific load or Stribeck’s constant, C is the
material constant, a is the number of load cycles during one
revolution at the point with the maximum load exposure, 7 is
the number of revolutions in millions, e is the material constant
that is dependent on the value of the elasticity or fracture limit,
u is the fatigue limit, and x is an exponent.”

According to Palmgren, “This exponent x is always located
close to 1/3 or 0.3. Its value will approach 1/3 when the fatigue
limit is so high that it cannot be disregarded, and 0.3 when it is
very low.” Palmgren reported test results that support a value
of x = 1/3. Hence, Equation (4) can be written as

3
k(—ju] - 5

The value e suggests a finite time below which no failure
would be expected to occur. By letting e = 0, substituting for &

Life (millions of stress cycles) = (



from Equation (1), and eliminating the concept of a fatigue
limit for bearing steels, Equation (5) can be rewritten as

3
2
L (million of race revolutions)= [%/5} 6)

In Equation (6), by letting f. = C/5, and P, = O, the 1924
version of the dynamic load capacity Cp for a radial ball
bearing would be

Cp=f.2d? (7

and Equation (6) becomes

3
L= [i—’)] ®)

eq

where Lo is the life in millions of inner-race revolutions, at
which 10 percent of a bearing population will have failed and
90 percent will have survived. This is also referred to as
10-percent life or Lo life.

By 1945, Palmgren (Ref. 5) empirically modified the dynamic
load capacity Cp for ball and roller bearings as follows:

For ball bearings

id*Z% cosp
Cr=f———— 9
2= 002 ©)
For roller bearings
Cp = f.id*1,Z% cosp (10)

where
f- material-geometry coefficient®
i number of rows of rolling elements (balls or rollers)
d ball or roller diameter
I, roller length
Z number of rolling elements (balls or rollers) in a row i
B bearing contact angle

From Anderson (Ref. 21), for a constant bearing load, the
normal force between a rolling element and a race will be
inversely proportional to the number of rolling elements.
Therefore, for a constant number of stress cycles at a point, the
capacity is proportional to the number of rolling elements.
Alternately, the number of stress cycles per revolution is also
proportional to the number of rolling elements, so that for a
constant rolling-element load the capacity for point contact is
inversely proportional to the cube root of the number of rolling

2After 1990, the coefficient f. is designated as fon in the ANSI/ABMA/
ISO standards (Refs. 12 to 14).
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elements. This comes from the inverse cubic relation between
load and life for point contact. Then the dynamic load capacity
varies with number of balls as

Cp~—=2% (11)

24

Equation (11) is reflected in the dynamic load capacity of
Equations (9) and (10).

According to Palmgren (Ref. 5), the coefficient £ (in Egs. (9)
and (10)) is dependent, among other things, on the properties of
the material, the degree of osculation (bearing race-ball
conformity), and the reduction in capacity on account of
uneven load distribution within multiple row bearings and
bearings with long rollers. The magnitude of this coefficient
can be determined only by numerous laboratory tests. It has
one definite value for all sizes of a given bearing type.

In all of the above equations, the units of the input variables
and the resultant units used by Palmgren have been omitted
because they cannot be reasonably used or compared with
engineering practice today. As a result, these equations should
be considered only for their conceptual content and not for any
quantitative calculations.

Lo Life

The Ly life, or the time that 90 percent of a group of bear-
ings will exceed without failing by rolling-element fatigue, is
the basis for calculating bearing life and reliability today.
Accepting this criterion means that the bearing user is willing
in principle to accept that 10 percent of a bearing group will
fail before this time. In Equation (8) the life calculated is the
L]o life.

The rationale for using the Lo life was first laid down by
Palmgren in 1924. He states (Ref. 4), “The (material) constant
C (Eq. (4)) has been determined on the basis of a very great
number of tests run under different types of loads. However,
certain difficulties are involved in the determination of this
constant as a result of service life demonstrated by the different
configurations of the same bearing type under equal test
conditions. Therefore, it is necessary to state whether an
expression is desired for the minimum, (for the) maximum, or
for an intermediate service life between these two
extremes....In order to obtain a good, cost-effective result, it is
necessary to accept that a certain small number of bearings will
have a shorter service life than the calculated lifetime, and
therefore the constants must be calculated so that 90 percent of
all the bearings have a service life longer than that stated in the
formula. The calculation procedure must be considered entirely
satisfactory from both an engineering and a business point of
view, if we are to keep in mind that the mean service life is
much longer than the calculated service life and that those
bearings that have a shorter life actually only require repairs by
replacement of the part which is damaged first.”



Palmgren is perhaps the first person to advocate a probabilis-
tic approach to engineering design and reliability. Certainly, at
that time, engineering practice dictated a deterministic
approach to component design. This approach by Palmgren
was decades ahead of its time. What he advocated is designing
for finite life and reliability at an acceptable risk. This concept
was incorporated in the ANSI/ABMA and ISO standards (Refs.
12 to 14).

Linear Damage Rule

Most bearings are operated under combinations of variable
loading and speed. Palmgren recognized that the variation in
both load and speed must be accounted for in order to predict
bearing life. Palmgren reasoned: “In order to obtain a value for
a calculation, the assumption might be conceivable that (for) a
bearing which has a life of #» million revolutions under constant
load at a certain rpm (speed), a portion M/n of its durability
will have been consumed. If the bearing is exposed to a certain
load for a run of M| million revolutions where it has a life of n,
million revolutions, and to a different load for a run of M,
million revolutions where it will reach a life of n; million
revolutions, and so on, we will obtain

M, M, M
e

n n n3

=1 (12)

In the event of a cyclic variable load we obtain a convenient
formula by introducing the number of intervals p and designate
m as the revolutions in millions that are covered within a single
interval. In that case we have

m m, m
pl L+ =2+=1. =1
moony

(13)

where 7 still designates the total life in millions of revolutions
under the load and rpm (speed) in question (and M in Eq. (12)
equals pm).”

Equations (12) and (13) were independently proposed for
conventional fatigue analysis by B. Langer (Ref. 22) in 1937
and M. Miner (Ref.23) in 1945, 13 and 21 years after
Palmgren, respectively. The equation has been subsequently
referred to as the “linear damage rule” or the “Palmgren-
Langer-Miner rule.” For convenience, the equation can be
written as follows:

LXN XN XX, (14
L L L, I L,

and
Xi+X+X5+...X, =1 (15)
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where L is the total life in stress cycles or race revolutions,
Ly...L, is the life at a particular load and speed in stress cycles
or race revolutions, and Xj...X, is the fraction of total running
time at load and speed. The values of M, M, and so forth in
Equation (12) equal XiL, X>L, and so forth from Equation (14).
Equation (14) is the basis for most variable-load fatigue
analysis and is used extensively in bearing life prediction.

Weibull Analysis
Weibull Distribution Function

In 1939, W. Weibull (Refs. 6 and 7) developed a method and
an equation for statistically evaluating the fracture strength of
materials based upon small population sizes. This method can
be and has been applied to analyze, determine, and predict the
cumulative statistical distribution of fatigue failure or any other
phenomenon or physical characteristic that manifests a statisti-
cal distribution. The dispersion in life for a group of homoge-
neous test specimens can be expressed by

1 L-L,
lnlnE:eln where 0<L <o, 0<S<1 (16)

Ly L,

where S is the probability of survival as a fraction (0 <S<1); e
is the slope of the Weibull plot (referred to as the “Weibull
slope,” “Weibull modulus,” or “shape factor”); L is the life
cycle (stress cycles); L, is the location parameter, or the time
(cycles) below which no failure occurs; and Lg is the character-
istic life (stress cycles). The characteristic life is that time at
which 63.2 percent of a population will fail, or 36.8 percent
will survive.

The format of Equation (16) is referred to as a three-
parameter Weibull analysis. For most—if not all—failure
phenomenon, there is a finite time period under operating
conditions when no failure will occur. In other words, there is
zero probability of failure, or a 100-percent probability of
survival, for a period of time during which the probability
density function is nonnegative. This value is represented by
the location parameter L,. Without a significantly large
database, this value is difficult to determine with reasonable
engineering or statistical certainty. As a result, L, is usually
assumed to be zero and Equation (16) can be written as

lnlnl:elni where 0 < L<o0; 0<S <1 (17)
S Ly

This format is referred to as the two-parameter Weibull
distribution function. The estimated values of the Weibull slope
e and Lp for the two-parameter Weibull analysis may not be
equal to those of the three-parameter analysis. As a result, for a



given survivability value S, the corresponding value of life L
will be similar but not necessarily the same in each analysis.

By plotting the ordinate scale as In In(1/S) and the abscissa
scale as In L, a Weibull cumulative distribution will plot as a
straight line, which is called a “Weibull plot.” Usually, the
ordinate is graduated in statistical percent of specimens failed F
where F = [(1 —S) x 100]. Figure 1(a) is a generic Weibull plot
with some of the values of interest indicated. Figure 1(b) is a
Weibull plot of actual bearing fatigue data. The derivation of
the Weibull distribution function can be found in Appendix B.

The Weibull plot can be used to evaluate any phenomenon
that results in a statistical distribution. The tangent of the
resulting plot, called the “Weibull slope” and designated by e,
defines the statistical distribution. Weibull slopes of 1, 2, and
3.57 represent exponential, Rayleigh, and Gaussian (normal)
distributions, respectively.

The scatter in the data is inversely proportional to the
Weibull slope; that is, the lower the value of the Weibull slope,
the larger the scatter in the data, and vice versa. The Weibull
slope is also liable to statistical variation depending on the
sample size (database) making up the distribution (Ref. 24).
The smaller the sample size, the greater the statistical variation
in the slope.

A true fit of a two-parameter Weibull distribution function
(Fig. 1) would imply a zero minimum life of L, = 0 in Equa-
tion (16). Tallian (Ref. 25) analyzed a composite sample of
2500 rolling-element bearings and concluded that a good fit
was obtained in the failure probability region between 10 and
60 percent. Outside this region, experimental life is longer than
that obtained from the two-parameter Weibull plot prediction.
In the early failure region, bearings were found to behave as
shown in Figure 2. From the Tallian data, it was found that the
location parameter for the three-parameter Weibull distribution
of Equation (16) is 0.053 Ljo, where Ly is that value obtained
from the two-parameter Weibull plot (Eq. (17) and Fig. 1)
(Ref. 15).

Weibull Fracture Strength Model

Weibull (Refs. 6, 7, 26, and 27) related the material strength
to the volume of the material subjected to stress. If the solid
were to be divided in an arbitrary manner into n volume
elements, the probability of survival for the entire solid can be
obtained by multiplying the individual survivabilities together
as follows

§S=8,-5,-8--8, (18)
where the probability of failure F is

F=1-§ (19)
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Statistical percent of bearings failed, In In(1/S)

(b)l |OI|I|I|| Lo Ll |
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Bearing life, In L, millions of inner-race revolutions

Figure 1.—Weibull plot where (Weibull) slope of tangent
of line is e; probability of survival S is 36.8 percent at
which L = Lg, or L/Lg = 1. (a) Schematic where S'is
probability of survival. (b) Rolling-element bearing
fatigue data where Inin (1/8) is presented in ordinate
as statistical percent of bearings failed.

Weibull further related the probability of survival S, the
material strength o, and the stressed volume / according to the
following relation

m%:LﬂXﬁV

(20)
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region (Ref. 25).

where
f (X ) =0c* (21)
For a given probability of survival S,
c~ (ijl/e (22)
V

From Equation (22), for the same probability of survival the
components with the larger stressed volume will have lower
strength (or shorter life).

Bearing Life Models
Weibull Fatigue Life Model

In conversations the author had with W. Weibull on Jan. 22,
1964, Weibull related that he suggested to his contemporaries
A. Palmgren and G. Lundberg in Gothenberg, Sweden (circa
1944), to use his equation (Eq. (20)) to predict bearing (fatigue)
life where

(23)

and where 7 is the critical shear stress and n is the number of
stress cycles to failure.
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In the past, the author has credited this relation to Weibull.
However, there appears to be no documentation of the above
nor any publication of the application of Equation (23) by
Weibull in the open literature. However, in Poplawski et al.
(Ref. 28) applied Equation (23) to Equation (20) where

l cle i 1/e
1 T 14
The parameter c/e is the stress-life exponent. This implies that
the inverse relation of life with stress is a function of the life
scatter (Weibull slope) or data dispersion.

Referring to Figures 3 and 4 for point contact and line con-
tact, respectively, the stressed volume (Ref. 9) is defined as

(24

Point contact: V' =al;z (25a)

Line contact: V =11,z (25b)
The depth z to the critical shear stress t below the Hertzian
contact in the running track is shown in Figure 5. The length of
the running track is /;, and /;is the roller width.

The critical shearing stress can be any one or a combination
of the maximum shearing stress, Tmax, the maximum orthogonal
shearing stress t,, the octahedral shearing stress To, or the von
Mises shearing stress tyy. The von Mises shearing stress is a
variation of the octahedral shearing stress.



Normal load, Py

Figure 3.—Ball-race model for point contact.

Normal load, Py,

Roller —

Iy
X \‘
y

Figure 4. —Roller-race model for line contact.
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Figure 5.—Subsurface stress field under line contact.

(a) Hertz stress distribution for roller on raceway
showing principal stresses at distance z below surface.
(b) Distribution of principal and shearing stress as a
function of depth z below surface.



From Hertz theory (Refs. 11 and 29) for point contact
(Fig. 3), V and 1 can be expressed as a function of the maxi-
mum Hertz (contact) stress, Smax (Ref. 29), where

T~ S max (263)
V ~ Sk (26b)

Substituting Equations (26a) and (26b) in Equation (24) and L

forn,
% Y
I~ 1 1 1
Smax Sr%lax Sglax

From Reference 28, solving for the value of the exponent n for
point contact (ball in a raceway) from Equation (27) gives

@7

c+2
n:

(28)
e

From Hertz theory for line contact (roller in a raceway, Fig. 4),
V~S§ max (29)

Substituting Equations (26a) and (29) in Equation (24) and L

for n,
A A
I 1 1 1
Smax Smax S{l”lax

Solving for the value of n for line contact by substituting
Equations (25a) and (28) into Equation (26) gives

(30)

c+1
n=——
e

(€2))

From Lundberg and Palmgren (Ref.9) for point contact,
¢=10.33 and e = 1.11. Then from Equation (28),

c+2 1033+2
n—=—"——H—=——

=11.12 (32)
e
From Hertz theory (Ref. 29) for point contact,
Smax ~ P (33)
From Equation (27) for point contact,
LN (34a)
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Combining Equations (33) and (34a) for point contact, and
solving for p,

n c+2
=—= 34b
3 3e (34b)
From Equation (32) where n =11.12,
11.12
p=——=37 (34¢)
3
For line contact from Equation (31),
:c+1:10.33+l:10'21 (35)
e
From Equation (30) for line contact,
L (36a)
Shax DY
From Hertz theory (Ref. 29) for line contact,
Smax ~ P% (36b)

Combining Equations (36a) and (36b) and solving for p for line
contact,

p:£:c+1210.21:5.l

36¢
2 2e 2 (36¢)

In their 1952 publication (Ref. 10), Lundberg and Palmgren
assume e = 1.125 for line contact, then from Equation (35),
n=10.1, and from Equation (36¢c), p = 5. From Weibull, the
values of the stress-life and the load-life exponents are depend-
ent on the Weibull slope e, which for rolling-element bearings
can and usually varies between 1 and 2. As a result, the values
of the exponents can only be valid for a single value of the
Weibull slope. As an example, if in Equation (32) for point
contact, a Weibull slope e of 1.02 were selected, then n = 12
and p =4 from Equation (34b). These values did not fit the
bearing database that existed in the 1940s.

Lundberg-Palmgren Model

In 1947 Lundberg and Palmgren (Ref. 9) applied the Weibull
analysis to the prediction of rolling-element bearing fatigue
life. In order to better match the values of the Hertz stress-life
exponent n and the load-life exponent p with experimentally
determined values from pre-1940 tests on air-melt steel
bearings, they introduced another variable, the depth to the
critical shearing stress z to the & power where f(x) in Equa-
tion (20) can be expressed as



€0

The rationale for introducing z" was that it took a finite time
period for a crack to initiate at a distance from the depth of the
critical shearing to the rolling surface. Lundberg and Palmgren
assumed that the time for crack propagation was a function of z”.

Equation (24) thus becomes

(e

where 7 is the life in stress cycles.

For their critical shearing stress, Lundberg and Palmgren
chose the orthogonal shearing stress. From Hertz theory
(Ref. 29),

(38)

Z~ Smax (39)

For point contact, substituting Equations (26a), (26b), and (39)
in Equation (38) and L for n,

LY YL
o
Smax Sr%lax

From Reference 28, solving for the value of the exponent » for
point contact (ball on a raceway) from Equation (40) gives

(40)

Sr'rllax

c+2-h
n=———

e

(41a)

From Lundberg and Palmgren (Ref. 9), using values of 1.11 for
e, ¢ = 10.33, and & = 2.33, from Equation (41a) for point
contact

_1033+2-233

9 41b
1.11 (416)

From Equation (34b) for point contact, where n =9,
(41c)

n 9
:—:—:3
P 3 3

For line contact, substituting Equations (26a), (29), and (39) in
Equation (38) and L for n,

% Y Y
I~ 1 1 1 1
Smax Smax Smax Sr’111ax

From Equation (42) solving for n for line contact,

(42)
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c+1—h
n=

(43a)
e

Using previous values of ¢ and %, and e = 1.125 for line
contact,

10.33+1-2.33
n=————:=8

43b
1.125 (436)
From Equation (36b) for line contact,
n 8
=—=—=4 43¢
pP=7=3 (43¢)

These values of n and p for point and line contacts correlated to
the then-existing rolling-element bearing database.

In their 1952 paper (Ref. 10), Lundberg and Palmgren modi-
fied their value of the load-life exponent p for roller bearings
from 4 to 10/3. The rationale for doing so was that various
roller bearing types had one contact that is line contact and
other that is point contact. They state, “...as a rule the contacts
between the rollers and the raceways transforms from a point to
a line contact for some certain load so that the life exponent
varies from 3 to 4 for differing loading intervals within the
same bearing.” The ANSI/ABMA and ISO standards (Refs. 12
and 14) incorporate p = 10/3 for roller bearings. Computer
codes for rolling-element bearings incorporate p = 4.

Strict Series Reliability

Figures 6 and 7 show schematics of deep-groove and
angular-contact ball bearings. Figure 8 is a schematic of a roller
bearing. From Equations (20) and (30), the fatigue life L of a
bearing inner or outer race determined from the Lundberg-
Palmgren theory (Ref. 9) can be expressed as follows:

R e

where N is the number of stress cycles per inner-race revolution
and A is a material life factor based upon air-melt, pre-1940
AISI 52100 steel® and mineral oil lubricant.

In general, for ball and roller bearings, the running track
lengths for Equations (25a) and (25b) for the inner and outer
raceways are, respectively,

(44)

I, =nD; =n(d, —dcosB) (45a)

3 Numbered AISI steel grades are standardized by the American Iron
and Steel Institute (AISI).
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Figure 6.—Deep-groove ball bearing. (a) Schematic.
(b) Cross section without cage.
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Figure 7.—Ball-race conformity. (a) Deep-groove ball
bearing. (b) Angular-contact ball bearing.
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Figure 8. —Schematic of cylindrical roller bearing
with inner raceway. Bearing accommodates axial
movement by not restraining rollers axially on inner
raceway. Similar bearing with flanged inner ring
allows axial roller movement on outer raceway.

and

I, =nD, =mk(d,+dcosB) (45b)
where d. is the bearing pitch diameter (see Fig. 6).

In Equation (45b), k is a correction factor that can account
for variation of the stressed volume in the outer raceway.
Equations (45a) and (45b) without the correction factor k are
used in the Lundberg-Palmgren theory (Ref. 9) to develop the
capacity of a single contact on a raceway, assuming that all the
ball-raceway loads are the same. In Equation (45b), for an
angular-contact bearing under thrust load only, £ = 1.

Under radial load and no misalignment, the stressed volume
V of a stationary outer race in a roller bearing or deep-groove
ball bearing varies along the outer raceway in a load zone equal
to or less than 180°. In the ANSI/ABMA and ISO standards
(Refs. 12 and 14) for radially loaded, rolling-element bearings,
Equations (45a) and (45b) are adjusted for inner-race rotation
and a fixed outer race with zero internal clearance, using
system-life equations for multiple single contacts to calculate
the bearing fatigue life. The outer raceway has a maximum
load zone of 180°. An equivalent radial load P., was developed
by Lundberg and Palmgren (Ref. 9) and is used in the standards
(Refs. 12 and 14). The equivalent load P., mimics a 180° ball-
race load distribution assumed in the standards when pure axial
loads are applied. It is also used throughout the referenced
standards when combined axial and radial loads are applied in
an angular-contact ball bearing.

Equations (45a) and (45b) are applicable for radially loaded
roller bearings and deep-groove ball bearings where the rolling-
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element-raceway contact diameters are at the pitch diameter
plus or minus the roller or ball diameter, cos f = 1, and £ < 1.
The maximum Hertz stress values are different at each ball- or
roller-race contact, at the inner and outer races, and they vary
along the arc in the zone of contact in a predictable manner.
The width of the contact 2a for a ball bearing (Fig. 3) and the
depth z for both ball and roller bearings (Fig. 5) to the critical
shearing stress t are functions of the maximum Hertz stress and
are different at the inner and outer race contacts.

From Jones (Ref. 29), for a ball bearing with a rotating inner
race and a stationary outer race, the number of stress cycles N;
and N, for a single inner-race rotation for single points on the
inner- and outer-races, respectively, are

N, = %(1 + digcos ﬁJ (46a)
N,, =%(1 —diecos B] (46b)

From Equations (12) and (17) from Weibull (Refs. 6 and 7),
Lundberg and Palmgren (Ref. 9) first derived the relationship
between individual component life and system life. A bearing
is a system of multiple components, each with a different life.
As a result, the life of the system is different from the life of an
individual component in the system. The Lo bearing system
life, where 90 percent of the population survives, can be
expressed as

LAV S 47)
L?O LfOir LTOor

where the life of the rolling elements, by inference, is incorpo-
rated into the life of each raceway tacitly assuming that all
components have the same Weibull slope e where the Ly life of
the bearing will be less than the Lo life of the lowest lived
component in the bearing, which is usually that of the inner
race. This is referred to as a “strict series reliability” equation
and is derived in Appendix C. In properly designed and
operated rolling-element bearings, fatigue of the cage or
separator should not occur and, therefore, is not considered in
determining bearing life and reliability. From Equations (17)
and (44), Lundberg and Palmgren (Ref. 9) derived the follow-

ing relation:
)
Ly =|—
Py

Equation (48) is identical to Equation (8), which was pro-
posed by Palmgren (Ref. 4) in 1924 if p = 3. From Lundberg
and Palmgren (Ref. 9), the load-life exponent p = 3 for ball
bearings and 4 for roller bearings. However, as previously

(43)



discussed, Lundberg and Palmgren in 1952 (Ref. 10) proposed
p = 10/3 for roller bearings.

Dynamic Load Capacity, Cp

Palmgren (Ref. 4) proposed the concept of a dynamic load
rating or capacity for a rolling-element bearing, defined as the
load placed on a bearing that will theoretically result in a Lio
life of 1 million inner-race revolutions. He first characterized
this concept as that shown in Equation (6) that subsequently
evolved as Equations (9) and (10).

From Anderson (Ref. 21), according to the Hertz theory the
dynamic load capacity should be proportional to the square of
the rolling-element diameter. From experimental data,
Palmgren (Ref. 30) found that capacity varied as d'? for balls
up to about 25 mm in diameter and d'* for balls larger than
25 mm in diameter.

From Equation (11), the dynamic load capacity varies with
the number of rolling elements Z to the 2/3 power (Z*7).
However, this would only be correct for an inverse cubic
relation between load and life.

From Anderson (Ref. 21), multiple-row bearings with i rows
of balls may be considered as a combination of i single-row
bearings. From strict series reliability (Appendix C) the
following relation between the life of a multirow bearing and
the lives of the i individual rows is obtained assuming all rows
carry equal load:

—=—t+—+ — (49a)
L I L
Then
1 i
—=— 49b
I (49b)

If each row of the bearing is loaded with a load equal to the
dynamic load capacity of one row C;, then L; = 1 (i.e., one
million inner-race revolutions) and from Equation (49b),

1
Le==

- (50a)
i

or

1

L =
iVe

(50b)

The load P., on the entire bearing is iC;, where P, is the
equivalent bearing load:

=iC, (51)
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From Equations (50b) and (51),
G} _ 1
iC, ) iV

Cp =C, i*-We)

(52a)

or
(52b)

For ball bearings, p = 3 and e is approximately 1.1, so that the
capacity of multirow bearings varies as i*’. For radial ball bear-
ings, the normal force between a ball and a race varies as 1/cos f3,
so that the capacity is proportional to cos 3, where B is the contact
angle (see Fig.7). The influence of the ball-race conformity,
bearing type, and internal dimensions expressed by fo./(cos B)°3,
where f,, is the material and geometry coefficient. Therefore the
capacity of a radial ball bearing varies as (icos B)°”.

For thrust ball bearings, the normal force between a ball and a
race varies as 1/sin B, so that the capacity is proportional to sin 3 or
to (cos B)(tan ). When the influences of the degree of conformity,
of bearing type, and of internal dimensions are included, the
capacity of a thrust ball bearing varies as (icos B) *’(tan B).

For roller bearings with line contact, the load-life exponent
in the life equation is 4, so that the capacity varies as Z**. From
Equation (52b) with p = 4, the capacity of a multirow-roller
bearing is found to vary as i%’8. Theoretically, the capacity of
roller bearings should be proportional to /d. Experimental data
(Ref. 9) indicate that capacity varies as 0784107,

Formulas for the dynamic load capacity Cp as developed by
Palmgren (Ref. 30) and Lundberg and Palmgren (Refs. 9 and
10) are dependent on

(1) Size of rolling elements, d (ball or roller diameter) and /;
(roller length)

(2) Number of rolling elements per row, Z

(3) Number of rows of rolling elements, i

(4) Contact angle, B (see Fig. 7)

(5) Material and geometry coefficient, £,

(6) Units factor, u = 3.647 for metric units (Newtons and
millimeters) or 1.00 for English units (pounds force and
inches) for ball bearings for d > 25.4 mm

The dynamic load capacity below for radially loaded bearings is
designated as Cp,, and for axial loaded bearings it is Cp,. The units
factor u is used to avoid a discontinuity in Cp at d = 25.4 mm for
ball bearings.

The formulas are semiempirical and are incorporated into the
ANSI/ABMA and ISO standards (Refs. 12 to 14). They are as
follows:

(1) Ball bearings

a. For radial ball bearings with d <25.4 mm,

Cp, = fumlicosp)"’ Z%d!3 N (Ib) (53a)



b. For radial ball bearings with d > 25.4 mm,
Cp, =uf.,(icosp )"’ Z%d', N (Ib) (53b)

c. For thrust ball bearings with 3 = 90° and d < 25.4 mm,
Cpy = fum(i cos B)’7(tanB)Z2/3d18 N (Ib)  (53c)

d. For thrust ball bearings with § # 90° and d > 25.4 mm,
Cpy = ufo(i cos B)’ (tanB)Z2/3d'4, N (Ib)  (53d)

e. For thrust ball bearings with 3 =90° and d < 25.4 mm,
Cpy = fon 1972213418 /N (Ib) (53e)

f. For thrust ball bearings with f = 90° and d > 25.4 mm,

Cpy =uf, 1%7Z%3d14 N (Ib) (531)
(2) Roller bearings
a. For radial roller bearings,
Cp, = fomlil, cosBY* Z%d* | N (Ib) (53g)

b. For thrust roller bearings with 8 # 90°,
Cpy = fomlil, cosB)*(tanp)Z3/4d2°/27 N (Ib) ~ (53h)
c. For thrust roller bearings with 3 = 90°,

Cp, = fc,n(il,)7/923/4d29/27 N (Ib)

(531)

The material and geometry coefficient f., (originally desig-
nated f. by Lundberg and Palmgren (Ref. 9)) in turn depends on
the bearing type, material, and processing and the conformity
between the rolling elements and the races. Representative
values of f.,, are given in Tablel from the ANSI/ABMA
standards (Refs. 13 and 14). It should be noted that the coeffi-
cient f.,, and the various exponents of Equations (53a) through
(53g) were chosen by Lundberg and Palmgren (Ref.9) and
Palmgren (Ref. 30) to match their bearing database at the time
of their writing. However, the values of /., have been updated
periodically in the ANSI/ABMA and ISO standards (Table II)
(Refs. 18 and 31). The standards and the bearing manufactur-
ers’ catalogs generally normalize their values of £, to conform-
ities on the inner and outer races of 0.52 (52 percent) (Ref. 31).

Substituting the bearing geometry and the Hertzian contact
stresses for a given normal load Py into Equations (44) through
(47), the dynamic load capacity Cp can be calculated from
Equation (48). Since Py is the normal load on the maximum-
loaded rolling element, it is required that the equivalent load P,
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TABLE —REPRESENTATIVE VALUES OF ROLLING-ELEMENT
BEARING GEOMETRY AND MATERIAL COEFFICIENT fon IN
ANSI/ABMA STANDARDS? 9 AND 11 FOR REPRESENTATIVE

ROLLING-ELEMENT BEARING SIZES
[From Ref. 18.]

Bearing Bearing geometry and material coefficient,
envelope size,* fon®
dcos B Deep-groove and angular- Cylindrical (radial)
d, contact ball bearings® roller bearing
60.71 81.51
0.05 (4614) (7324)
10 72.15 92.62
(5483) (8322)
16 77.58 97.35
(5888) (8747)
2 77.48 97.02
(5888) (8718)
08 74.23 93.72
(5640) (8767)
69.16
34 52560 | T
62.92
40 @478y | T

*Standards 9 and 11 are found in Refs. 13 and 14, respectively.

*Values of f,, are for use with newtons and millimeters; those in parentheses
are for use with pounds and inches.

“Prior to 1990, f;,, was designated as f;.

dd is rolling element diameter, B is contact angle, and d, is pitch diameter.

‘Inner- and outer-race conformities are equal to 0.52.

TABLE II.—REPRESENTATIVE VALUES OF ROLLING-ELEMENT
BEARING GEOMETRY AND MATERIAL COEFFICIENT fon IN
ANSI/ABMA STANDARD 9 (REF. 13) FOR REPRESENTATIVE

BALL BEARING SIZES BY YEAR INTRODUCED (REF. 31)
[Inner- and outer-race conformities are equal to 0.52.]

Bearing size," Bearing geometry and material coefficient,’
dcos B Jon'

d, 1960 1972 1978 1990
0.05 46.75 59.52 46.75 60.70
(3550) (4520) (3550) (4610)

10 55.57 73.34 55.57 72.16
) (4220) (5570) (4220) (5480)
16 59.65 84.41 59.65 77.56
) (4530) (6410) (4530) (5890)
2 59.65 92.96 59.65 77.56
) (4530) (7060) (4350) (5890)
78 57.15 100.08 57.15 74.27
) (4340) (7600) (4340) (5640)
34 53.33 106 53.33 69.26
) (4050) (8050) (4050) (5260)
0 | e | 75.94 62.94
) (3670) (4780)

d = ball diameter, mm (in.); d, = pitch diameter, mm (in.); and 3 = free contact
angle, degrees.

*Values of £;,, are for use with newtons and millimeters; those in parentheses
are for use with pounds and inches.

Prior to 1990, f.,, was designated as f;.

be calculated. Once Cp is determined, f., can be calculated for
the appropriate bearing type from Equation (53).



The equivalent load P., can be obtained from Equation (3)
where values of X and Y for different bearing types are given in
the ANSI/ABMA standards (Refs. 13 and 14). The dynamic
load capacity Cp in the standards should be Cp, (Egs. (53a),
(53b), and (53g)) for a radial bearing or Cp, (Egs. (53c) to
(531), (53h), and (531)) for a thrust bearing.

Lives determined using Equation (53) are based on the “first
evidence of fatigue.” This can be a small spall or surface pit
that may not significantly impair the function of the bearing.
The actual useful bearing life can be much longer. It should be
also noted that in these Equations (53) where derived expo-
nents differed from those obtained experimentally, those
exponents obtained experimentally were substituted by
Lundberg and Palmgren (Refs. 9 and 10) for those that they
analytically derived.

Toannides-Harris Model

Ioannides and Harris (Ref. 32), using Weibull (Refs. 6 and 7)
and Lundberg and Palmgren (Refs. 9 and 10), introduced a
fatigue-limiting shear stress 1, (App. A) where from Equation
(37),

7(x)= (t-.)n

- (54)

The equation is identical to that of Lundberg and Palmgren
(Eq. (37)) except for the introduction of a fatigue-limiting

stress where
% A
1 1Y
n (T_Tuj (;j (Zy

Equation (55) can be expressed as a function of Smax where

% JA
1 1 ) 1
L~ = =T
(r—tu] (Vj (Zy S

max

(35)

(56)

loannides and Harris (Ref. 32) use the same values of
Lundberg and Palmgren for e, c, and 4. If 1, equals 0, then the
values of the Hertz stress-life exponent n are identical to those
of Lundberg and Palmgren (Egs. (41b) and (43b)). However,
for values of 1, > 0, n is also a function of (t — t,). For their
critical shearing stress, loannides and Harris chose the von
Mises stress.

From the above, Equation (48) can be rewritten to include a
“fatigue-limiting” load P,:

¢ )
L=
Peq_Pu

(57a)
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where

(57b)

When P, < P, bearing life is infinite and no failure would be
expected. When P, = 0, the life is the same as that for
Lundberg and Palmgren.

The concept of a fatigue limit for rolling-element bearings
was first proposed by Palmgren in 1924 (Eq. (5)) (Ref. 4). It
was apparently abandoned by him first in 1936 (Ref. 33) and
then again with Lundberg in 1947 (Ref. 9). In 1936 Palmgren
published the following:

“For a few decades after the manufacture of ball bear-
ings had taken up on modern lines, it was generally con-
sidered that ball bearings, like other machine units, were
subject to a fatigue limit; that is, that there was a limit to
their carrying capacity beyond which fatigue speedily
sets in, but below which the bearings could continue to
function for infinity. Systematic examination of the
results of tests made in the SKF laboratories before
1918, however, showed that no fatigue limit existed
within the range covered by the comparatively heavy
loads employed for test purposes. It was found that so far
as the scope of the investigation was concerned, the
employment of a lighter load invariably had the effect of
increasing the number of revolutions a bearing could
execute before fatigue set in. It was certainly still
assumed that a fatigue limit coexisted with a low specific
load, but tests with light loads finally showed that the
fatigue limit for infinite life, if such exists, is reached
under a lighter load than all of those employed, and that
in practice the life is accordingly always a function of
load.”

In 1985, loannides and Harris (Ref. 32) applied Palmgren’s
1924 (Ref. 4) concept of a fatigue limit to the 1947 Lundberg-
Palmgren equations (Ref. 9) in the form shown in Equation (54).
The ostensible reason loannides and Harris used the fatigue limit
was to replace the material and processing life factors (Ref. 18)
that are used as life modifiers in conjunction with the bearing
lives calculated from the Lundberg-Palmgren equations.

There are two problems associated with the use of a fatigue
limit for rolling-element bearing. The first problem is that the
form of Equation (55) may not reflect the presence of a fatigue
limit but the presence of a compressive residual stress (Refs. 18
and 28). The second problem is that there are no data in the open
literature that would justify the use of a fatigue limit for through-
hardened bearing steels such as AISI 52100 and AISI M—50.

In 2007, Sakai (Ref.34) discussed experimental results
obtained by the Research Group for Material Strength in Japan.
He presented stress-life rotating bending fatigue life data from
six different laboratories in Japan for AISI 52100 bearing steel.
He presented stress-life fatigue data for axial loading. The



resultant lives were in excess of a billion (10°) stress cycles at
maximum shearing stresses (Tmax) as low as 0.35 GPa (50.8 ksi)
without an apparent fatigue limit.

In 2008, Tosha et al. (Ref. 35) reported the results of rotating
beam fatigue experiments for through-hardened AISI 52100
bearing steel at very low shearing stresses as low as 48 GPa
(69.6 ksi). “The results produced fatigue lives in excess of 100
million stress cycles without the manifestation of a fatigue limit.”

In order to assure the credibility of their work, additional re-
search was conducted and published by Shimizu, et al. (Ref. 36).
They tested six groups of AISI 52100 bearing steel specimens
using four-alternating torsion fatigue life test rigs to determine
whether a fatigue limit exists or not and to compare the resultant
shear stress-life relaxation with that used for rolling-element
bearing life prediction. The number of specimens in each sample
size ranged from 19 to 33 specimens for a total of 150 tests. The
tests were run at 0.50, 0.63, 0.76, 0.80, 0.95, and 1.00 GPa (75.5,
91.4, 110.2, 116.0, 137.8, and 145.0 ksi) maximum shearing
stress amplitudes. The stress-life curves of these data show an
inverse dependence of life on shearing stress, but do not show an
inverse relation for inverse dependence of the shearing stress
minus a fatigue limiting stress. The shear stress-life exponent for
the AISI 52100 steel was 10.34 from a three-parameter Weibull
analysis and was independent of the Weibull slope e.

Recent publications by the American Society of Mechanical
Engineers (ASME) (Ref. 37) and the ISO (Refs. 38 and 39) for
calculating the life of rolling-element bearings include a fatigue
limit and the effects of ball-race conformity on bearing fatigue
life. These methods do not, however, include the effect of ball
failure on bearing life. The ISO method is based on the work
reported by loannides, Bergling, and Gabelli (Ref. 40). The
ASME method as contained in their ASMELIFE software
(Ref. 37) uses the von Mises stress as the critical shearing
stress with a fatigue limit value of 684 MPa (99 180 psi). This
corresponds to a Hertz surface contact stress of 1140 MPa (165
300 psi). The ISO 281:2007 method (Ref. 39) uses a fatigue
limit stress of 900 MPa (130 500 psi), which corresponds to a
Hertz contact stress of 1500 MPa (217 500 psi) (Ref. 31).

The concepts of a fatigue limit load (bearing load under
which the fatigue stress limit is just reached in the most heavily
loaded raceway contact) introduced in the new ISO rating
methods (Ref. 39) is proportional to the fatigue limit load
raised to the 3rd power for ball bearings (point contact). By
using ISO 281:2007 (Ref. 39), these differing values of load
would result in a 128-percent higher load below which no
fatigue failure would be expected to occur (Ref. 31) than by
using ASMELIFE (Ref. 37).

The effect of using different values of fatigue limit or no
fatigue limit on rolling-element fatigue life prediction is shown
in Table III. This table summarizes the qualitative results
obtained for maximum Hertz stresses of 1379, 1724, and
2068 MPa (200, 250, and 300 ksi) for point contact using
Equation (38) for Lundberg-Palmgren without a fatigue limit
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TABLE III.—EFFECT OF FATIGUE LIMIT Tt ON
ROLLING-ELEMENT FATIGUE LIFE
[From Ref. 31.]
Relative life®* (Eq. (58))

Fatigue limit,?

T Maximum Hertz stress,
MPa (ksi) MPa (ksi)
1379 1724 2068
(200) (250) (300)
0 (0), Lundberg-Palmgren (Ref. 9) 1 0.134 0.026
684 (99.2), ASMELIFE (Ref. 37) 11.9x10° 3152 44.6
900 (130.5), ISO 281:2007 (Ref. 39) 0 23.3x10° 4258

*The von Mises stress.

®Includes effect of stressed volume.

“Normalized to life at maximum Hertz stress of 1379 MPa (200 ksi)
with no fatigue limit.

and Equation (55) for fatigue limits of 684 MPa (99 180 psi)
(from ASMELIFE) and 900 MPa (130 500 psi) (from ISO
281:2007). The results are normalized to a maximum Hertz
stress of 1379 MPa (200 ksi) with no fatigue limit where the
quotient of Equation (55) divided by Equation (38) is taken to
the c/e power of 9.3 (taken from Lundberg and Palmgren). The
effect of stressed volume was also factored into these calcula-

tions (Ref. 31):
. S
b2

where Ly is the life with the fatigue limit t,, L is the life
without a fatigue limit t,, and t is the critical shearing stress.

(58)

Zaretsky Model

Both the Weibull and Lundberg-Palmgren models relate the
critical shear stress-life exponent ¢ to the Weibull slope e. The
parameter c/e thus becomes, in essence, the effective critical
shear stress-life exponent, implying that the critical shear
stress-life exponent depends on bearing life scatter or disper-
sion of the data. A search of the literature for a wide variety of
materials and for nonrolling-element fatigue reveals that most
stress-life exponents vary from 6 to 12. The exponent appears
to be independent of scatter or dispersion in the data. Hence,
Zaretsky (Ref. 41) has rewritten the Weibull equation to reflect
that observation by making the exponent ¢ independent of the
Weibull slope e, where

f(X) — Tcene (59)

From Equations (5) and (59), the life n in stress cycles is given

-6

(60)



For critical shearing stress t, Zaretsky chose the maximum
shearing stress, Tss.

Lundberg and Palmgren (Ref. 9) assumed that once initiated,
the time a crack takes to propagate to the surface and form a
fatigue spall is a function of the depth to the critical shear stress
z. Hence, by implication, bearing fatigue life is crack propaga-
tion time dependent. However, rolling-element fatigue life can
be categorized as “high-cycle fatigue.” Crack propagation time
is an extremely small fraction of the total life or running time
of the bearing. The Lundberg-Palmgren relation implies that
the opposite is true. To decouple the dependence of bearing life
on crack propagation rate, Zaretsky (Refs. 41 and 42) dis-
pensed with the Lundberg-Palmgren relation of L ~ z"¢ in
Equation (60). (It should be noted that at the time (1947)
Lundberg and Palmgren published their theory, the concepts of
“high-cycle” and “low-cycle” fatigue were only then beginning
to be formulated.)

Equation (60) can be written as

c 1/e
JA RN .
t)\V Shox
From Reference 28, solving for the value of the Hertz stress-
life exponent n, for point contact from Equation (61) gives

(61)

n=c+— (62a)
e
and for line contact,
1
n=c+— (62b)
e

If it is assumed that c =9 and e = 1.11, n = 10.8 for point contact
and n = 9.9 for line contact. If it is further assumed that ¢ =10
and e = 1.0, n = 12 for point contact and n = 11 for line contact.

What differentiates Equation (61) from those of Weibull
(Eq. 24), Lundberg and Palmgren (Eq. (38)) and loannides and
Harris (Eq. (56)) is that the relation between shearing stress and
life is independent of the Weibull slope, e, or the distribution of
the failure data. However, in all four models, there is a depend-
ency of the Hertz stress-life exponent, n, on the Weibull slope.
The magnitude of the variation is least with the Zaretsky
model.

Although Zaretsky (Refs. 41 and 42) does not propose a
fatigue-limiting stress, he does not exclude that concept either.
However, his approach is entirely different from that of
Ioannides and Harris (Ref. 32). For critical stresses less than
the fatigue-limiting stress, the life for the elemental stressed
volume is assumed to be infinite. Thus, the stressed volume of
the component would be affected where L ~ 1/V¥. As an
example, a reduction in stressed volume of 50 percent results in
an increase in life by a factor of 1.9.
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Ball and Roller Set Life

Lundberg and Palmgren (Ref. 9) do not directly calculate the
life of the rolling-element (ball or roller) set of the bearing.
However, through benchmarking of the equations with bearing
life data by use of a material-geometry factor .., the life of the
rolling-element set is implicitly included in the life calculation
of Equations (53a) to (53g).

The rationale for not including the rolling-element set in
Equation (47) appears in the 1945 edition of A. Palmgren’s
book (Ref. 5) wherein he states, “...the fatigue phenomenon
which determines the life (of the bearing) usually develops on
the raceway of one ring or the other. Thus, the rolling elements
are not the weakest parts of the bearing....” The database that
Palmgren used to benchmark his and later the Lundberg-
Palmgren equations were obtained under radially loaded
conditions. Under these conditions, the life of the rolling
elements as a system (set) will be equal to or greater than that
of the outer race. As a result, failure of the rolling elements in
determining bearing life was not initially considered by
Palmgren. Had it been, Equation (47) would have been written
as follows (with L' correlating to the recalculated lives):

) ) ) )
- = —— +| — +| —
LlO Lz’r L;,'e Lz’Jr
L, >L,,and L,/L, =L, /L, and where
the Weibull slope e will be the same for each of the compo-
nents as well as for the bearing as a system, provided all
components are of the same material.

Comparing Equation (63) with Equation (47), the value of
the Lo bearing life will be the same. However, the values of the
L; and L, as well as L; and L, between the two equations

will not be the same, but the ratio of L,/L; and L,./L; will

remain unchanged.
The fraction of failures due to the failure of a bearing com-
ponent is expressed by Johnson (Ref. 24) as

(63)

where Lt'r > Lir s or >

ir

o ‘ Lo )
Fraction of inner-race failures = (;IOJ (64a)

L e
Fraction of rolling-element failures = (L_l’oj (64b)

re

0

Fraction of outer-race failures = (Ll—,] (64c¢)

or

From Equations (64a) to (64c¢), if the life of the bearing and
the fractions of the total failures represented by the inner race,
the outer race, and the rolling element set are known, the life of



each of these components can be calculated. Hence, by obser-
vation, it is possible to determine the life of each of the bearing
components with respect to the life of the bearing.

Equations (64a) to (64c) were verified using radially loaded
and thrust-loaded 50-mm-bore ball bearings. Three hundred
and forty virtual bearing sets totaling 31 400 bearings were
randomly assembled and tested by Monte Carlo (random)
number generation (Ref. 43). From the Monte Carlo simula-
tion, the percentage of each component failed was determined
and compared with those predicted from Equations (64a) to
(64c¢). These results are shown in Table IV. There is excellent
agreement between these techniques (Ref. 43).

Figure 9 summarizes rolling-element fatigue life data for
ABEC 7 204-size angular-contact ball bearings* made from AISI
52100 steel (Ref. 44). The bearings had a free contact angle of
10°. Operating conditions were an inner-ring speed of
10 000 rpm, an outer-ring temperature of 79 °C (175 °F), and a
thrust load of 1108 N (249 1b). The thrust load produced maxi-
mum Hertz stresses of 3172 MPa (460 ksi) on the inner race and
2613 MPa (379 ksi) on the outer race. From a Weibull analysis
of the data, the bearing Lo life was 20.5 million inner-race
revolutions, or approximately 34.2 hr of operation (Ref. 44).

Seven of the twelve bearings failed from rolling-element
fatigue. Two of the failed bearings had fatigue spalls on a ball
and an inner race. Two bearings had inner-race fatigue spalls.
Two bearings had fatigue spalls on a ball, and one bearing had

an outer-race fatigue spall. Counting each component that
failed as an individual failure independent of the bearing, there
were four inner-race failures, four ball failures, and one outer-
race failure for a total of nine failed components. Inner-race
failures were responsible for 44.4 percent of the failures; ball
failures, 44.4 percent; and outer-race failures, 11.2 percent.
Using each of these percentages in Equations (64a) to (64c)
together with the experimental Lo life, the lives of the inner
and outer races and the ball set were calculated. For purposes
of the calculation the Weibull slope e was assumed to be 1.11,
the same as Lundberg and Palmgren (Ref.9). The resultant
component Lip lives were 53 million inner-race revolutions
(88.3 hr) for both the inner race and ball set and 183.3 million
inner-race revolutions (305.5 hr) for the outer race.

For nearly all rolling-element bearings the number of inner-
race failures is greater than those of the outer race. According-
ly, from Equations (64a) and (64c), the life of the outer race
will be greater than that of the inner race. Zaretsky (Ref. 18)
noted that for radially loaded bearings (ball or roller), the
percentage of failures of the rolling-element set was generally
equal to and/or less than that of the outer race. For thrust-
loaded ball or roller bearings, Zaretsky further noted that the
percent for the rolling-element set was equal to or less than that
for the inner race but more than for the outer race. In order to
account for material and processing variations, Zaretsky
developed what is now referred to as Zaretsky’s Rule (Ref. 18):

TABLE IV.—COMPARISON OF BEARING FAILURE DISTRIBUTIONS BASED UPON WEIBULL-
BASED MONTE CARLO METHOD AND THOSE CALCULATED FROM EQUATIONS (64a) TO
(64c) FOR 50-mm-BORE DEEP-GROOVE AND ANGULAR-CONTACT BALL BEARINGS
[From Ref. 43.]

Ball bearing type Component Percent failure
Weibull-based Results from
Monte Carlo results Equations (64a) to (64c)
Inner race 70.1 69.9
Deep groove Rolling element 14.8 15.0
Outer race 15.1 15.0
Inner race 45.4 45.1
Angular contact Rolling element 45.2 45.1
Outer race 9.4 9.7

“The ABEC scale is a system for rating the manufacturing tolerances
of precision bearings developed by the Annular Bearing Engineering
Committee (ABEC) of the ABMA.
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Figure 9.—Rolling-element fatigue lives of AlSI 52100 204-size angular-contact ball
bearings. Contact angle is 10°; outer-race temperature, 79 °C (175 °F); thrust load,
1108 N (249 Ib); inner-ring speed, 10 000 rpm; lubricant, MIL-L-7808; L1 life,
20.5x108 inner-ring revolutions (34.2 hr); and failure index, 7 out of 12 (Ref. 44).

For radially loaded ball and roller bearings, the life of the
rolling—element set is equal to or greater than the life of the
outer race. Let the life of the rolling-element set (as a system)
be equal to that of the outer race.

From Equation (63) where L;, = L]

or s

LI I S Y
LIO Lt'r L;r

For thrust-loaded ball and roller bearings, the life of the
rolling-element set is equal to or greater than the life of the inner
race but less than that of the outer race. Let the life of the rolling-
element set (as a system) be equal to that of the inner race.

From Equation (63) where L;, = L;,,

LI Y S I O
LIO Li’r L;r

Examples of using Equations (65) and (66) are given in
Reference 18. As previously stated, the resulting values for L;,
and L, from these equations are not the same as those from
Equation (47). They will be higher.

(65)

(66)
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H. Takata (Ref.45), using a modified approach to the
Lundberg-Palmgren theory (Ref. 9), derived the basic dynamic
load capacity of the rolling-element bearing set in addition to
those for the inner and outer races for radial and thrust-loaded
ball and roller bearings. For radially loaded ball bearings,
Takata assumes random ball rotation. For thrust-loaded ball
bearings, he assumes a single or fixed running track on each
ball. According to Takata, the basic dynamic load capacity Cp
of a bearing system can be expressed as

-l/w

Cp =(Crr +Cr +Cy») (67)
where C, is calculated from Equations (53a) and (53b) (from
Lundberg-Palmgren, Ref. 9), and the exponent w is equal to
10/3 for ball bearings. Takata (Ref. 45) provides equations for
calculating the dynamic load capacity of the rolling-element
(ball) set, Cr. The resulting values for Cj and C,- will be
higher than those from the Lundberg-Palmgren equations.

Takata (Ref. 45) performed a single ball-set life calculation
within his paper for a 30-mm-bore deep-groove ball bearing.
From this calculation he concluded that for this bearing

Cir < Cre < Cor (683)



This would imply that

L, <L, <L, (68b)
However, Takata did not validate his example or his equations to
determine ball- or roller-set life with a bearing life database.

Ball-Race Conformity Effects

ANSI/ABMA and ISO standards based on the Lundberg-
Palmgren bearing life model (Ref. 9) are normalized for ball
bearings having inner- and outer-race conformities of
52 percent (0.52) and made from pre-1940 bearing steel. As
discussed previously, the Lundberg-Palmgren model incorpo-
rates an inverse 9th-power relation between Hertz stress and
fatigue life for ball bearings. Except for differences in applied
loading, deep-groove and angular-contact ball bearings are
treated identically. The effect of race conformity on ball set life
independent of race life is not incorporated into the Lundberg-
Palmgren model. An analysis by Zaretsky, Poplawski, and
Root (Refs. 31 and 46) considered the life of the ball set
independently from race life, resulting in different life relations
for deep-groove and angular-contact ball bearings. Both a 9th-
and a 12th-power relation between Hertz stress and life were
considered by them.

Rolling-element bearing computer models are capable of
handling various race conformities in combination with
Lundberg-Palmgren theory, but they universally do not include
the influence of ball-set life on overall bearing life. Computer
programs acknowledging the influence of ball-set life are

L

typically used for more rigorous analysis of bearing systems
but are not commonly used in the general bearing design
community.

The conformities at the inner and outer races affect the
resultant Hertz stresses and the lives of their respective race-
ways. The determination of life factors LF; and LF, based on
the conformities at the inner and outer races, respectively, can
be calculated by normalizing the equations for Hertz stress for
the inner and outer races to a conformity of 0.52 (the value of
0.52 was chosen as a typical reference value). Stresses are
evaluated for the same race diameter as a function of conformi-
ty. Based on Equation (27), the ratio of the stress at a 0.52
conformity to the value at the same normal load Py at another
ball-race conformity, where n = 9 or 12, gives the appropriate
life factor

S n
LF = max, s 69a
Smax ( )
For the inner race,
2
HNET R
d—d d 0524 ) "V
LF, = > (69b)
%
BERNE I N
d—d d fid HVJo.s52

Bearings 1908 108 208

Series Extremely Extra Light
light light

Relative Cp 4 1.42 2.24

308 408
Medium Heavy
3.05 4.35

Figure 10.—Effect of bearing series on relative sizes and dynamic capacities, Cp, of 40-mm-bore

deep-groove ball bearings (Ref. 31).

NASA/TP—2013-215305/REV1

20



and for the outer race,

[_ 2 4 1
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TABLE V.—EFFECT OF RACE CONFORMITY AND HERTZ STRESS-LIFE EXPONENT N

%
1 J (PW)O.sz

n

(69¢)

where d and d, are defined in Figure 6. Hertz (Ref. 11) gives
the dimensions for the pressure (Hertz contact) area in terms of
transcendental functions p and v (Ref. 29). The values of the
product of the transcendental functions (uv)os: are listed in
Table V and are different for the inner and outer races.

For various ball bearing series (see Fig. 10), values of these
life factors for conformities ranging from 0.505 to 0.570,
subject to round-off error, are given in Table V for inner and

outer races, for n =9 and 12.

ON BALL BEARING LIFE AS FUNCTION OF BALL BEARING SERIES

[From Ref. 46.]

Conformity, Ball bearing series®
! Extremely light, deosp _ 0.15
dg
Inner race Outer race
(uv)i Life factor,® (uv)o Life factor,”
LF; LF,

n=9 n=12 n=9 n=12
0.505 2.013 14.7 36.05 1.826 11.84 27.00
0.510 1.776 4.53 7.51 1.673 3.61 5.53
0.515 1.641 2.12 2.73 1.551 1.71 2.05
0.520 1.517 1.00 1.00 1.471 1.00 1.00
0.525 1.503 0.88 0.84 1.415 0.66 0.57
0.530 1.452 0.62 0.53 1.369 0.46 0.36
0.535 1.409 0.45 0.35 1.335 0.35 0.25
0.540 1.376 0.35 0.25 1.304 0.27 0.17
0.545 1.361 0.30 0.20 1.282 0.22 0.13
0.550 1.328 0.23 0.14 1.262 0.18 0.10
0.555 1.306 0.19 0.11 1.244 0.15 0.08
0.560 1.296 0.17 0.10 1.227 0.13 0.06
0.565 1.278 0.15 0.08 1.211 0.11 0.05
0.570 1.262 0.13 0.06 1.196 0.09 0.04

Extra light, M =0.18
e

0.505 2.048 12.58 29.27 1.887 11.88 27.10
0.510 1.784 3.47 5.25 1.662 3.54 5.40
0.515 1.654 1.68 1.99 1.541 1.68 2.00
0.520 1.570 1.00 1.00 1.465 1.00 1.00
0.525 1.505 0.66 0.57 1.407 0.65 0.57
0.530 1.458 0.47 0.37 1.364 0.47 0.36
0.535 1.441 0.41 0.30 1.345 0.39 0.28
0.540 1.398 0.30 0.20 1.303 0.28 0.18
0.545 1.366 0.23 0.14 1.276 0.22 0.13
0.550 1.336 0.18 0.10 1.254 0.17 0.10
0.555 1.307 0.15 0.08 1.234 0.14 0.08
0.560 1.301 0.13 0.07 1.212 0.12 0.06
0.565 1.283 0.11 0.06 1.204 0.10 0.05
0.570 1.267 0.10 0.05 1.192 0.09 0.04

*(uv) is the product of the transcendental functions, d is rolling element diameter, B is contact angle, and d_ is

pitch diameter.

°All values of LF; and LF, are normalized to 1.00 for conformity f of 0.520.
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TABLE V.—CONCLUDED.

Conformity, Ball bearing series®
s Light, 2P _ (23
de
Inner race Outer race
(uv)i Life factor,” (uv)o Life factor,”
LF; LF,

n=9 n=12 n=9 n=12
0.505 2.062 12.32 28.38 1.870 11.83 26.94
0.510 1.843 4.28 6.95 1.652 3.61 5.54
0.515 1.658 1.58 1.84 1.549 1.89 2.34
0.520 1.583 1.00 1.00 1.454 1.00 1.00
0.525 1.520 0.67 0.58 1.397 0.66 0.57
0.530 1.471 0.48 0.37 1.354 0.47 0.36
0.535 1.431 0.36 0.25 1.333 0.38 0.28
0.540 1.401 0.28 0.19 1.292 0.27 0.18
0.545 1.374 0.22 0.14 1.267 0.21 0.13
0.550 1.347 0.19 0.11 1.235 0.16 0.09
0.555 1.324 0.15 0.08 1.227 0.14 0.08
0.560 1.312 0.14 0.07 1.211 0.12 0.06
0.565 1.298 0.12 0.06 1.198 0.10 0.05
0.570 1.280 0.10 0.05 1.180 0.09 0.04

Medium, L0P. _ 55
dy
0.505 2.067 11.78 26.82 1.878 12.34 28.53
0.510 1.893 5.11 8.81 1.623 3.09 4.50
0.515 1.684 1.71 2.04 1.524 1.64 1.93
0.520 1.594 1.00 1.00 1.454 1.00 1.00
0.525 1.548 0.74 0.67 1.393 0.64 0.55
0.530 1.483 0.48 0.38 1.350 0.45 0.35
0.535 1.442 0.36 0.26 1.314 0.33 0.23
0.540 1.409 0.28 0.19 1.285 0.26 0.16
0.545 1.382 0.23 0.14 1.253 0.19 0.11
0.550 1.360 0.19 0.11 1.234 0.16 0.09
0.555 1.338 0.16 0.09 1.214 0.13 0.07
0.560 1.318 0.14 0.07 1.206 0.12 0.06
0.565 1.304 0.12 0.06 1.186 0.09 0.04
0.570 1.289 0.10 0.05 1.190 0.09 0.04
Heavy, dcosp =0.28
e

0.505 2.056 11.87 27.08 1.874 13.02 30.62
0.510 1.784 3.18 4.17 1.637 3.58 5.47
0.515 1.668 1.62 1.97 1.519 1.70 2.03
0.520 1.583 1.00 1.00 1.443 1.00 1.00
0.525 1.547 0.78 0.72 1.387 0.66 0.57
0.530 1.472 0.48 0.38 1.345 0.47 0.36
0.535 1.435 0.37 0.27 1.310 0.34 0.24
0.540 1.400 0.29 0.19 1.282 0.27 0.17
0.545 1.373 0.23 0.14 1.260 0.22 0.13
0.550 1.346 0.19 0.11 1.231 0.17 0.09
0.555 1.327 0.16 0.09 1.217 0.14 0.07
0.560 1.310 0.14 0.07 1.206 0.12 0.06
0.565 1.292 0.12 0.06 1.191 0.10 0.05
0.570 1.283 0.11 0.05 1.180 0.09 0.04

*(nv) is the product of the transcendental functions, d is rolling element diameter, B is contact angle, and d, is
pitch diameter.
°All values of LF; and LF, are normalized to 1.00 for conformity f'of 0.520.
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From References 31 and 46, the ratio of the outer- to the
inner-race life can be approximated as

S n
X — ﬁ ~ max;
Li Smax,,
Referring to Figures 6 and 7 and Hertzian contact theory
(Ref. 29) (see Appendix D),

(70)

y n
2cosf 4 1 V3
2B L2 ),

L, d,—dcosp d fd
X:—z y
bl aeesp 4 L)

d +dcosp d_fd) TV

(71)

Values of pv for representative ball bearing series can be
obtained from Table V (Ref. 46). Assuming cos = 1 and
fi=fo = 0.52, values of L,/L; were calculated from Equa-
tion (71) for n = 9 and 12 and are summarized in Table VI. It
should be noted that in the development of these relationships it
was assumed that the contact angle B does not change with
speed and load (Refs. 31 and 46).

TABLE VI—REPRESENTATIVE RATIOS OF OUTER- TO
INNER-RACE LIFE, L,/Li FOR REPRESENTATIVE BALL
BEARING SERIES AS FUNCTION OF HERTZ
STRESS-LIFE EXPONENT, n, AT INNER- AND
OUTER-RACE CONFORMITIES OF 0.52
[From Eq. (70).]

Ball bearing Bearing Outer- to inner-race
series envelope life ratio,
size,? X=L,/L;
dcosp Hertz stress-life exponent,
d, n
9 12
Extremely light 0.15 4.35 7.11
Extra light 18 4.39 7.18
Light 23 6.61 12.40
Medium 25 8.36 16.96
Heavy 28 12.04 27.60

?d is rolling element diameter, B is contact angle, and d, is pitch diameter.

Deep-Groove Ball Bearings

For radially loaded deep-groove ball bearings (Eq. (65)), the
life of the rolling-element set from Zaretsky’s Rule is equal to
or greater than the life of the outer race. Therefore, L. = L,
with X= L,/L;. Equation (65) can be rewritten as

1
XeLl_’e 4
Ly :( J

Xe+2

(72)
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Applying life factors based on the effect of conformity to the
respective lives of the inner and outer races, Equation (72)
becomes

(LENLF,)XL,;
(wr,y xe+2er) ]

Dividing Equation (73) by (72) provides the bearing life
factor LF, for the radially loaded deep-groove ball bearing
based on conformity:

LF, = {(LFI- J(LF,)(x + 2)}%

(LF,)Y X +2(LF.Y

Ly, = (73)

(74

Angular-Contact Ball Bearings

From Zaretsky’s Rule for thrust-loaded ball bearings
(Eq. (66)), the life of the rolling-element set is equal to or
greater than the life of the inner race but less than that of the
outer race with L, = L; and X = L,/L;. Equation (66) can be

written as follows:
1
Xe Llfe 4
Ly, =

2Xe+1

(75)

Applying life factors based on the effect of conformity on the
respective lives of the inner and outer races, Equation (75)
becomes

(76)

Dividing Equation (76) by (75) provides the bearing life factor
LF, for the thrust-loaded, angular-contact ball bearing recog-
nizing conformity:

(77

LF, = {(LF,- ¥(LE, Y (2Xx¢ + 1)}%

2(LF, Y xe+(LEY

Representative life factors LF, from Equations (22), (27), and
(31) were determined with the Lundberg-Palmgren theory and
Zaretsky’s Rule based on four combinations of inner- and
outer-race conformities and for three representative series.
These results are summarized in Table VII, for the two Hertz
stress-life exponents n =9 and 12 (Ref. 46).

From the above, the ANSI/ABMA and ISO life calculations
can be modified based upon ball-race conformity as follows:

P
Lo =LF, (C—D] (78)
F,



TABLE VIL—LIFE FACTORS BASED ON COMBINATIONS OF BALL-RACE CONFORMITIES FOR HERTZ STRESS-LIFE
EXPONENT n =9 AND 12 NORMALIZED TO INNER- AND OUTER-RACE CONFORMITIES OF 0.52

[From Ref. 46.]

Ball bearing series* Ball-race conformity Bearing life factor for conformity,® LF,
Lundberg- Deep-groove ball bearing Angular-contact ball bearing
Inner race, Outer race, Palmgren® From Eq. (72) Change from From Eq. (77) Change from
IR OR Lundberg-Palmgren, Lundberg-Palmgren,
percent percent
3
Hertz stress-life exponent n =9 and Lo = Sp
Peg
Extremely light, 0.505 0.52 4.16 3.15 -24.30 7.40 —77.83
dcos 0.57 0.52 0.15 015 | - 0.14 —6.59
——=0.15 0.52 0.505 1.16 1.19 2.59 1.09 —6.23
¢ 0.52 0.57 0.35 0.22 -37.11 0.45 29.83
Light, 0.505 0.52 5.10 3.05 —40.28 6.97 36.76
dcosp 0.57 0.52 0.11 0.10 -9.09 011 | e
— =023 0.52 0.505 1.10 1.04 -5.68 7.05 —4.42
¢ 0.52 0.57 0.49 0.27 -39.04 0.59 35.15
Heavy 0.505 0.52 6.77 4.66 -32.24 8.51 25.73
d ; 0.57 0.52 0.12 0.10 —-18.53 0.09 -26.03
cosf _
- 0.28 0.52 0.505 1.05 0.89 -15.08 1.03 —2.22
¢ 0.52 0.57 0.59 0.31 —46.87 0.73 24.15
c 4
Hertz stress-life exponent n =12 and L, = {PD ]
eq
0.505 0.52 6.83 S 3.65 S —46.56 10.79 S 57.98
Peq PEq cq
Cp Cp Cp
Extremely light, 0.57 0.52 0.07 [ch] 0.06 [E} -14.29 0.06 [Eq] -14.29
deosB _ 15 . c c
¢ 0.52 0.505 1.10| =2 1.02| 2 -7.27 1.05| 2 455
ch ch eq
0.52 0.57 0.26| <2 0.14| <2 —46.15 039| <2 50.00
Peq Peq eq
0.505 0.52 9.67 b 5.03 S —47.98 14.03 S 45.09
Fq fq eq
C C C
Licht 0.57 0.52 0.05| -2 0.04| =2 ~20.00 005 2| |
e Bq Fq Fq
deosP _ 93 c c c
¢ 0.52 0.505 1.05| =2 0.89| 2 ~15.24 1.03| =2 ~1.90
Peq PEq ©q
0.52 0.57 0.37 S 0.20 S -45.95 0.53 S 43.24
Peq PEq cq
C C C
0.505 0.52 14.97| =2 781 =2 —47.83 19.13| =2 27.79
ch ch eq
C C C
0.57 0.52 0.05| =2 0.04| =2 ~20.00 00521 |
Heavy, Ry Fyq Fq
@ 028 C C C
¢ 0.52 0.505 1.02| -2 0.77| =2 ~2451 1.01| -2 -0.01
Fyq Feq Fyq
C C C
0.52 0.57 0.57| -2 0.30| =2 —47.37 072 =2 26.32
Peq Peq eq

*d is rolling element diameter, {3 is contact angle, and d, is pitch diameter.

YAll life factors are benchmarked to inner- and outer-race conformities of 0.52 and L, = [ Cp
Poq

‘For deep-groove and angular-contact ball bearings.
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3
J where Cp, is bearing dynamic capacity and P is equivalent load.




The bearing fatigue lives in actual application will usually
be equal to or greater than those calculated using the
ANSI/ABMA and ISO standards that incorporate the
Lundberg-Palmgren model. The relative fatigue life of an
individual race is more sensitive to changes in race conformity
for a Hertz stress-life exponent n of 12 than where n = 9.
However, when the effects are combined to predict actual
bearing life for a specified set of conditions and bearing
geometry, the predicted life of the bearing will be greater for a
value of n =12 (p = 4) than n =9 (p = 3) (Ref. 46).

Stress Effects
Hertz Stress-Life Relation

There is an issue of what the value of the Hertz stress-life
relation and, hence, the value of the load-life exponent p
should be for purposes of analysis. The generally accepted
relation between load and life in a rolling-element bearing is
that life varies with the inverse cubic power of load for ball
bearings (point contact) and with the inverse 4th power of load
for roller bearings (line contact). Work reported by Parker and
Zaretsky (Ref. 47) suggests that for air-melted steels the
stress-life exponent n is approximately 9 for point contact.
However, for the cleaner post-1960 vacuum-processed steels,
n = 12 for point contact better fits the data. A definitive
database does not exist for line contact (roller bearings).

For ball bearings, the Hertz stress-life relation where life is
inversely proportional to the maximum Hertz stress to the 9th
power and the cubic root of load, has been generally accepted
by ball bearing manufacturers and users. There is at least one
exception where a manufacturer had indicated based on its
unpublished database that the life of ball bearings varies
inversely with the 4th power of load (or 12th power of Hertz
stress). Nevertheless, the inverse cubic load-life relation has
been included in the ANSI/ABMA standards for ball bearings
(Ref. 13).

Varying the Hertz stress-life exponent n can significantly
affect life predictions for long-lived (lightly loaded) bearings.
Using n = 9 results in a more conservative estimate of bearing
life than using n = 12. Also, the ratio of the predicted lives at
the two values of the Hertz stress-life exponent # is a function
of load and is directly related to Cp/Peq. Hence, in the normal
operating load envelope, life may be underpredicted by a
factor of 20 when using the ANSI/ABMA standards or a 9th
power Hertz stress-life exponent n. A proper stress-life
exponent then becomes more than of mere academic interest,
since a design engineer requires a reliable analytic tool to
predict bearing life and performance.

Fatigue tests of ball bearings by several investigators tended
to verify this inverse cubic relation. Styri (Ref. 48) presented
data for two types of ball bearings. For one group of 6207-size,
deep-groove ball bearings under various radial loads from 3.5 to
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17.3 kN (775 to 3880 Ibf), life was inversely proportional to
load to the 3.3 power. Another group of 1207-size double-row
self-aligning bearings was tested with very high load such that
the maximum Hertz stress at the outer-race-ball contact varied
from 4.0 to 5.6 GPa (580 to 810 ksi). Here it was found that life
varied inversely with the 9th power of stress (or the 3rd power
of load). Cordiano et al. (Ref. 49) reported load-life data for
217-size, thrust-loaded ball bearings. The resultant Hertz stress-
life exponents were 8.1, 9.6, and 12.6 for three lubricants, a
water-glycol base, a phosphate ester base, and a phosphate ester,
respectively. McKelvey and Moyer (Ref. 50) reported that with
four groups of AISI 4620, carburized-steel, crowned rollers
(elliptical contact), fatigue life varied inversely with maximum
Hertz stress to a range of the 8th to 9th power. Maximum Hertz
stress in these tests varied from 1.8 to 3.3 GPa (262 to 478 ksi).
Townsend et al. (Ref. 51) surface fatigue tested three groups of
case-carburized,  consumable-electrode-vacuum-arc-remelted
AISI 9310 8.89-cm- (3.5-in.-) pitch-diameter spur gears at
maximum Hertz stresses of 1.5, 1.7, and 1.9 GPa (222, 248, and
272 ksi). The gears were run at 10 000 rpm and 77 °C (170 °F).
The lubricant was superrefined naphthenic mineral oil with an
additive package. The Li life varied inversely with stress to the
8.4 power, but the Lso life varied inversely with stress to the
10.2 power. The average Hertz stress-life exponent n was 9.3.

Several other investigators (Refs. 52 to 60) have reported
data with bench-type, rolling-element fatigue testers, rather
than with full-scale bearings or gears. Data are summarized in
Table VIII. The Lo lives as a function of maximum Hertz
stress for these data are shown in Figure 11. From the table the
maximum Hertz stress for these data ranged from 3.7 to 9.0
GPa (526 to 1300 ksi). With the exception of Greenert’s work
(Ref. 57) the stress-life exponents ranged from 8.4 to 12.4.
The data are all for AIST 52100 and AISI M—-50 steels (except
for the data reported by Barwell and Scott (Ref. 52), who do
not state the type of steel). At least two sets of data were for
air-melted steel, three were for vacuum-degassed steel, and
one was for vacuum-arc-remelted steel. The other references
do not state the melting process.

The Hertz stress-life exponents from Greenert (Ref. 57),
ranging from 15 to 19, are much higher than those from other
published data. This lack of correlation is unexplained.
However, there is a probability that compressive residual
stresses present in the AISI 52100 steel could account for the
resultant high values of the Hertz stress-life exponents.

Lorosch (Ref. 61) fatigue tested three groups of vacuum-
degassed 7205B-size AISI 52100 inner races at maximum Hertz
stresses of 2.6, 2.8, and 3.5 GPa (370, 406, and 500 ksi). Each
group consisted of 20 races, for a total of 60. (It is assumed that
all 60 races came from a single heat of material and were of the
same hardness, but Lorosch does not state so in his paper.) After
the test runs Lorosch examined cross sections of the races. He
observed that only at the lowest stress, 2.6 GPa (370 ksi), did no
measurable plastic deformation occur. At the two higher stresses



TABLE VIII.—PUBLISHED BENCH-TYPE RIG ROLLING-ELEMENT FATIGUE DATA RELATED TO STRESS-LIFE EFFECTS
[From Ref. 47.]

Number Reference Material Lubricant Load range, Maximum Hertz Load-life | Stress-life | Test type
from Type Melting kg stress range, exponent | exponent
Figure 11 process GPa, (ksi)
1 ?;:ff’zl;)"“d Scott (a) Mineral oil 200 to 600 (b;)tg :(‘)’ gé%) 238 8.4 Four ball
2 ?;glferﬁ_?)ld Carter 1 A1S152100 | Airmelt | SAE 10 mineral oil | ——-oemrerreer (6%(% ttg 75520) 35 10.4 Spin rig
30 et say | (ASIMs0y | Airmelt | SAE 10 mineral oil | -eoroeree (600 10 7500 32 97 | Spinrig
4 ](BRa::f(c.] };T? ! (AIISIVBZSO) @) A T— (613 o ;;;) 3.2 97 ccl}rigir;gr;g
5 fﬁg}t 55) ( AIEsTI\I;;}OO) () Diester 400 to 600 (;g 67 t2°965'8) 3.6 108 Four ball
6 gfﬁ;‘;dme £5g) | AISIS2100 @) #60 Spindle ol | —-eneeceeenes ( BN 75;)) 2.8 s | Croed
7 8’{:;“5"% AISI 52100 @) I\lligryifalt?fggp ------------- (85;{5 o 8%) S1063 ] “I5tol9 | Toroids
8 X:‘el?g gt) al. AISI 52100 Vfgr‘l‘l‘:l‘;i‘fc Mineral 0il | <-cecececeer ( 641'3 o 5650) 4.1 9124 | Four ball
o [Sqmbereand | wisisao | UL Squaiene | e 025wty | 38 | 115 | Fourba
10 }S?Zilsffzgegfa I518) AISI 52100 (Ye?,xcal;lsl:i 133 l;ilrin;;o """"""" (9554;)0193'80) 39 1.7 | Fourball
1" giifsrkayn?}{e (a7 | ASIS2100 | el | araffinic mineral | . ( (s 3‘27) 4 12| Five ball

*Melting process not reported.
®Approximate stress range, not reported by authors of reference.
°Estimated, not reported by authors of reference.
dReanalyzed by Zaretsky and Parker (Ref. 60).
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Figure 11.—Summary of published stress-life relation data for Hertzian contacts
failing from rolling-element fatigue. Refer to Table 7 (Ref. 47).
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plastic deformations of different magnitudes were measured.
Lorosch divided the races at the two higher stresses into groups
according to these magnitudes. Group A included the races with
the smaller deformations, and group B included the races with
the larger deformations. The resultant stress-life exponent of
groups A and B was 12. However, when Zaretsky (Ref. 28)
reconstituted the data for groups A and B into a single group,
designated group AB, the stress-life exponent varied from 12 to
27 depending on the stress range over which the exponent was
calculated. Lorosch did not calculate the stress reduction
resulting from plastic deformation of the races, nor did he report
on component hardness, hardness differential between the balls
and races, or residual stresses induced during operation—all of
which would also have affected his results. From these tests
Lorosch concluded that “under low loads and with elastohydro-
dynamic (EHD) lubrication there is no material fatigue, thus
indicating that under such conditions bearing life is practically
unlimited.”

Zwirlein and Schlicht (Ref. 62), in a companion paper pub-
lished concurrently with that of Lorosch (Ref. 61) and using the
same 7205B-size bearing inner race data, state that “contact
pressures less than 2.6 GPa (370 ksi) do not lead to the for-
mation of pitting within a foreseeable period. This corresponds
to ‘true endurance’.” This observation would support the
assumption by loannides and Harris (Ref. 32) of the existence
of a “fatigue limit for bearing steels.” However, this observation
is not supported by rolling-element fatigue data in the open
literature for stress levels under 2.6 GPa (370 ksi)—such as
those reported in References 63 to 67, which exhibited classical
rolling-element fatigue. In rotating machinery nearly all rolling-
element bearings operate at a maximum Hertz stress less than
2.1 GPa (300 ksi). Therefore, if Lorosch and Zwirlein and
Schlicht were correct, no bearing in rotating machinery applica-
tions would fail by classical rolling-element fatigue.

To the author’s knowledge there are no reported laboratory-
generated, full-scale bearing rolling-element fatigue data at
stresses significantly below 2.1 GPa (300 ksi) that would
either establish or refute the presumption of a “fatigue limit.”
However, Townsend et al. (Ref. 68) reported rolling-element
and bending fatigue tests for four sets of spur gears made from
through-hardened, vacuum-induction-melted, consumable-
electrode-vacuum-arc-remelted (VIM—VAR) AIST M-50 steel
and case-carburized, vacuum-arc-remelted (VAR) AISI 9310
steel. These gears were tested at a maximum Hertz stress of
1.7 GPa (248 ksi) and a maximum bending stress at the tooth
root of 0.27 GPa (39 ksi). This results in a maximum shearing
stress at the tooth root of 0.14 GPa (20 ksi). The AISI 9310
gears were “standard” machined as was one set of the AISI
M-50 gears. A second set of AISI M—50 gears was “standard”
near-net-shape forged using a controlled-energy-flow forming
technique (CEFF). The third set of AISI M—-50 gears was
ausforged in a CEFF machine.

The results of these tests are shown in Figure 12 (Ref. 68).
The entire set of standard machined, case-carburized VAR AISI
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9310 gears failed by classical rolling-element fatigue at or near
the gear tooth pitch diameter. There was no tooth-bending
fatigue failure with the AISI 9310 gears. The entire set of
standard machined AISI M-50 gears failed by bending fatigue.
The standard forged and ausforged AISI M—50 gears failed by
classical rolling-element fatigue and had approximately 5 times
the Ly life of the AISI 9310 gears. The standard machined AISI
M-50 gears had an Lo bending fatigue life of about 40 percent
that of the AISI 9310 gear surface fatigue life.

What is significant about these tests is that bending fatigue
is reported for through hardened bearing steel (AISI M—50) at
shearing stresses of 0.14 GPa (20 ksi). These results suggest
that if a fatigue limit exists for AISI M—50 it would be less
than 0.14 GPa (20 ksi).

While it can be reasonably argued that the resultant stresses
may be higher than that reported because of gear tooth
dynamic loads, tooth bending fatigue was not experienced
with the standard machined case-carburized AISI 9310 gears
under the same conditions.

The standard forged and the ausforged AISI M—50 gears did
not fail from bending fatigue but did fail from classical
rolling-element (surface) fatigue. These results further suggest
that if there is a fatigue limit for through-hardened bearing
steels it would be less than at a maximum Hertz stress of
1.7 GPa (248 ksi).

As previously discussed, a paper presented by Tosha et al.
(Ref. 35) reporting the results of rotating beam fatigue
experiments for through-hardened AISI 52100 steel at very
low stress levels, shows conclusively that a fatigue limit does
not exist for this bearing steel.

The explanation for the trend in the Lorosch (Ref. 61) and
Zwirlein and Schlicht (Ref. 62) data is the inducement of
compressive residual stresses in the AISI 52100 steel caused
by the transformation of retained austenite into martensite
during rolling-element cycling. These compressive residual
stresses were reported by Zwirlein and Schlicht. Compressive
residual stresses reduce the effective magnitude of the maxi-
mum shear stresses caused by Hertzian loading. This lower
stress results in longer bearing life and deviation from the
Hertz stress-life exponent n of 9 or 12 to a significantly higher
value. Lorosch as well as Zwirlein and Schlicht extrapolated
their data, leading them to conclude the existence of a fatigue-
limiting stress rather than concluding that induced compres-
sive residual stresses had increased bearing life.

Lorosch (Ref. 61) performed another series of rolling-
element fatigue experiments with 20 inner races, designated
group C, from the same heat as groups A and B. He used a
Rockwell hardness tester to make 0.1-mm-diameter indenta-
tions at four evenly spaced locations around the center of the
race circumference. He divided group C into two sets of 10
bearings, which were tested at 2.6 and 2.8 GPa (370 and
406 ksi), respectively. The Lo lives for group C were signifi-
cantly reduced from the group AB lives. These tests exhibited
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Figure 12.—Fatigue lives of spur gear systems made of VIM-VAR AIS| M-50 and VAR AISI 9310. Maximum Hertz
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stress, 1.71 GPa meter (248 ksi); maximum bending stress at tooth root, 0.27 GPa (39 ksi); speed, 10 000 rpm;
temperature, 350 K (170 °F); lubricant, super-refined naphthenic mineral oil (Ref. 68). (a) Standard machined
AlSI M-50 bending fatigue. (b) Standard forged M-50 pitting fatigue. (c) Ausforged M50 pitting fatigue.

(d) AISI 9310 pitting fatigue. (e) Summary of gear life.
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Figure 13.—Representative principal residual stress as a function of depth below
surface for heat-treated AISI M-50, AISI 9310, and M50 NiL (AMS 6278) (Ref. 18).

a 9.5 stress-life exponent. Because these indentations are
analogous to wear debris denting during bearing operation, the
results suggest that surface damage is another factor affecting
the stress-life exponent.

Residual and Hoop Stresses

Residual stresses can be induced in a material by heat treat-
ing, rolling, shot peening, diamond burnishing, and severe
grinding. Each of these methods (except heat treating) is a
separate mechanical process that is performed after heat
treating (Refs. 15 and 18). Figure 13 shows representative
residual stresses as a function of depth below the surface for
three heat-treated bearing steels (Refs. 15 and 18). Carburized-
grade steels generally have high compressive residual stresses
in their cases, as shown for the carburized AISI 9310 and
carburized AMS 6278 (VIM-VAR M50 NilL) steels in
Figure 13. Residual stresses are virtually nonexistent in unrun
through-hardened steels but are induced at the surface by
grinding to a depth of approximately 25 um (0.001 in.) below
the original surface. They can also be induced during opera-
tion or stressing of the bearing race surface.

Koistinen (Ref. 69) reported a method of producing com-
pressive residual stresses in the surface of AISI 52100 steel by
austenitizing it in an atmosphere containing ammonia. Stickels
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and Janotik (Ref. 70) also induced compressive residual
stresses in the surfaces of AISI 52100 steel rolling-element
specimens by austenitizing them in a carbide atmosphere, even
though the austenitizing temperature was below that needed to
dissolve all primary carbides. The compressive residual stress
extended to 300 um (0.012 in.) below the surface and had a
maximum value of 600 MPa (87 ksi). The carburized case
(surface layer) contained a larger volume fraction of primary
carbides and more retained austenite and was slightly harder
than the core (Refs. 15 and 18).

Pioneering research on the effect of residual stress on
rolling-element fatigue life conducted by the staff of the
General Motors Research Laboratories (Refs. 71 to 74) found
that compressive residual stresses induced beneath the surface
of ball bearing race grooves prolong rolling-element fatigue
life. According to Reference 73, ball bearing lives were
doubled when metallurgically induced (“prenitrided”) com-
pressive residual stress was present in the inner races. Scott et
al. (Ref. 74) found that compressive residual stresses induced
by unidentified “mechanical processing” extend the fatigue
life of ball bearings.

Naisong et al. (Ref. 75) conducted rolling-element fatigue
tests in the rolling-contact fatigue tester with AISI 52100 steel
specimens that had compressive residual stress induced by
treatment in a carburizing atmosphere. The tests, conducted at
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Figure 14.—Effect of superimposing compressive residual
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under Hertzian contact (Ref. 15).

a maximum Hertz stress of 5 GPa (729 ksi), resulted in a depth
to the maximum shear stress of 0.15 mm (0.006 in.). The
treated material with the induced compressive residual stresses
had approximately 1.6 times the life of untreated AISI 52100
in spite of having more carbides at or near the surface.

From Naisong et al. (Ref. 75) it is apparent that the distribu-
tion of the induced compressive residual stresses is a function of
the carbon potential. For ball and roller bearings the zone of
maximum resolved shear stresses due to Hertzian loading
occurs from 0.10 to 0.25 mm (0.004 to 0.010 in.) below the
surface. With a carbon potential of 0.9 wt% carbon in iron,
effective compressive residual stresses were available to a depth
of 0.30 mm (0.012 in.). This depth was sufficient to have a
beneficial effect. For carbon potentials less than 0.7 wt%
carbon, high tensile residual stresses were present at depths to
0.20 mm (0.008 in.). Hence, without taking due care it is also
possible to reduce the fatigue life by using the carburizing
process to induce residual stresses (Refs. 15 and 18).

The results of this research indicated that a compressive
residual stress at the depth of the zone of maximum resolved
shear stresses does prolong rolling-element fatigue life. Jones
(Ref. 76), Carter (Ref. 77), Akaoka (Ref. 78), and Zaretsky et
al. (Ref. 79) suggested that the maximum shear stress Tmax 1S
the most significant stress in the rolling-element fatigue
process. Zaretsky et al. (Ref. 80) developed an analysis that
superimposes the residual stresses upon the principal subsur-
face stress, lowering the maximum shear stress. A similar
analysis was reported by Foord et al. (Ref. 81) and then by
Cioclov (Ref. 82) in a discussion to Foord et al. The theoreti-
cal effect of compressive residual stresses due to heat treat-
ment on rolling-element fatigue is shown in Table IX. This
table shows the potential effect of both applied stress and
subsurface residual compressive stress on theoretical life. Note
that relative lives are presented here, not life factors.

The analysis of Zaretsky et al. (Ref. 80), illustrated in Fig-
ure 14, shows the principal stresses in the tangential (rolling)
direction S; and in the normal direction S, for a Hertzian
contact. The maximum shear stress is

Tmax = %(Sn - St) (79

Superimposing the value of the compressive residual stress
on the tangential principal stress gives the modified principal
tangential stress

S/ =S+, (80)

By combining Equations (79) and (80), the maximum shear
stress due to the effect of residual stresses (Tmax)- can be
determined:

! Nodig _ . L
(Tmax)r_E(Sn_St)_z[Sn (St+Sr)] Trax 2( Sr) (81)

TABLE IX.—THEORETICAL EFFECT OF COMPRESSIVE RESIDUAL STRESSES
DUE TO HEAT TREATMENT ON ROLLING-ELEMENT FATIGUE LIFE
[From Ref. 18.]

Material Compressive Maximum Hertz stress, GPa (ksi
residual 1.4 1.9 2.4 4.8
stress, (200) (275) (350) (700)
GPa (ksi) Relative life?
AISI M-50 0 1 5.7x1072 6.5x1073 1x107°
AISI 9310 0.2 (29) 12.1 32.4x1072 24.8x1073 2x107°
AMS 6278
(VIM-VAR 0.4 (58) 381 280x1072 119.1x1073 5x107°
M50 NiL)

*Relative life normalized to AISI M—50 at a maximum Hertz stress of 1.4 GPa (200 ksi) and no subsurface
residual stress. These relative lives are not life factors.

NASA/TP—2013-215305/REV1

30




The negative sign before S, designates a compressive resid-
ual stress. A positive sign before S, would designate a tensile
residual stress (Ref. 80). Hence, the residual stress can either
increase or decrease the maximum shear stress. Accordingly, a
compressive residual stress would reduce the maximum shear
stress and increase the fatigue life according to the inverse
relation of life and stress to the c/e power:

cle
L~ 1 (82a)
(‘C max )r
for Lundberg and Palmgren where c/e = 9.3, or
1 c
L~ 77— (82Db)
(Tmax )r

for Zaretsky where 9 < ¢ < 10.

For rolling-element bearings the beneficial effect of the
compressive residual stresses is offset by the presence of
tensile (hoop) stresses in the bearing inner race.

These hoop stresses are induced and affected primarily by
the press fit of the inner race over the shaft, centrifugal
loading, and thermal effects between the race and the shaft.
Coe and Zaretsky (Ref. 83) analyzed the effect of hoop
stresses on rolling-element fatigue. Czyzewski (Ref. 84)
showed that, in the absence of compressive residual stress,
hoop stresses are generally tensile, are designated by a + sign,
and can negatively affect fatigue life. As with the compressive
residual stresses, hoop stresses alter the critical subsurface
shear stress and affect the life of the bearing inner race.
Equation (81) can be rewritten to account for the effect of both
residual and tensile (hoop) stresses as

1
(Tmax )rh = "Tmax _E(i Sr T Sh )

(83)

Again the positive or negative sign indicates a tensile or
compressive stress, respectively. Equation (82) can be written
to reflect the effect of both the compressive and tensile
stresses on life. For Lundberg and Palmgren, where c/e = 9.3,

this is
1 cle
L~
|:(Tmax )rh :I

(84a)
or for Zaretsky, where 9 < ¢ < 10, this is
1 C
L~ {—} (84b)
(Tmax )r‘h
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cle c
1 1

Since life L~(—j or (—] , Equations (48) and (84)
T T

have been combined to modify the predicted bearing life
(Ref. 18). From Lundberg and Palmgren (Ref. 9),
Tmax

cle C P
L= =D
N |:(Tmax )rh i| (ch ]

where c/e = 9.3, p = 3 for ball bearings, and p = 4 for roller
Tmax

bearings. From Zaretsky,
c p
o [
N (Tmax )r‘h Peq

where p = 4 for ball bearings, p = 5 for roller bearings, and
9 < ¢ £ 10. From Hertz theory (Ref. 29), Tmax = 0.328max for
ball bearings, depending on raceway conformity, and 0.3Smax
for roller bearings.

(85a)

(85b)

Comparison of Bearing Life Models

The loannides-Harris model without a fatigue limit is identi-
cal to the Lundberg-Palmgren model. The Weibull model is
similar to that of Zaretsky if the exponents are chosen to be
identical. Comparison of the Lundberg-Palmgren model and the
Zaretsky model with the ANSI/ABMA and ISO standards is
shown in Figure 15 for ball and cylindrical roller bearings. The
theoretical lives were normalized to a maximum Hertz stress of
4.14 GPa (600 ksi) and subsequently normalized to the calculat-
ed ANSI/ABMA and ISO standards at each stress level. For the
Ioannides-Harris comparison shown in Figure 15, a fatigue-
limiting stress of 276 MPa (40 ksi) was assumed. For ball
bearings, the ANSI/ABMA and ISO standards and the
Lundberg-Palmgren model give identical results. For roller
bearings, the results are not identical (Ref. 85).

The ANSI/ABMA and ISO standards use a load-life expo-
nent p of 10/3 (3.33) for line contact (roller bearings). This
results in a value of n equal to 6.6 and can account in part for
lower life predictions than those experienced in the field.
From Lundberg and Palmgren (Ref. 9), the load-life exponent
p for line contact should be 4. However, Lundberg and
Palmgren’s justification for a p of 10/3 was that a roller
bearing can experience “mixed contact”; that is, one raceway
can experience line contact and the other raceway point
contact (Ref. 10). This may be true in a limited number of
roller bearing designs, but it is certainly not consistent with the
vast majority of cylindrical roller and tapered roller bearings
designed and used today.

Both the load-life and stress-life relations of Weibull,
Lundberg and Palmgren, and loannides and Harris reflect a
strong dependence on the Weibull slope. The existing
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a fatigue limit. Fatigue-limiting shear stress for t45
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rolling-element fatigue data reported by Parker and Zaretsky
(Ref. 47) reflect slopes in the range of 1 to 2 but in some cases
higher or lower. If the slope were factored into these equations
(see Egs. (41) and (43)), then the stress-life (load-life) expo-
nent significantly decreases with increases in Weibull slope,
whereby the relation no longer matches reality.

The Zaretsky model that decouples the dependence of the
critical shear stress-life relation and the Weibull slope shows
only a slight variation in the maximum Hertz stress-life
exponent n with Weibull slope e.

These results would indicate that for 9th- and 8th-power
Hertz stress-life exponents for ball and roller bearings,
respectively, the Lundberg-Palmgren model best predicts life.
However, for 12th- and 10th-power Hertz stress-life relations
reflected by modern bearing steels, the Zaretsky model based
on the Weibull equation is superior (Ref. 85).

Under the range of stresses examined, the use of a fatigue
limit would suggest that (for most operating conditions under
which a rolling-element bearing will operate) the bearing will
not fail from classical rolling-element fatigue. Realistically,
this does not occur. The use of a fatigue limit will significantly
overpredict life over a range of normal operating Hertz
stresses. (The use of ISO 281:2007 (Ref. 39) in these calcula-
tions would result in a bearing life approaching infinity.) Since
the predicted lives of rolling-element bearings can be signifi-
cantly higher when using a fatigue limit to calculate bearing
life, the problem can become one of undersizing a bearing for
a particular application (Ref. 31).
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Comparing Life Data With Predictions

Bearing Life Factors

As previously discussed, the Lundberg-Palmgren model
(Ref. 9) for bearing life prediction is semiempirical. The
material and geometry coefficient f, in Equations (53a)
through (53g) was chosen by Lundberg and Palmgren to
match their pre-1940 bearing database. Their bearing data
were not published. However, it can be speculated that the
data comprised endurance tests of rolling-element bearings
made from air-melt AISI 52100 type steel lubricated with a
mineral oil under predominately radial load.

Anderson (Ref. 86) discussed the limitations of the
Lundberg-Palmgren model. He stated that in the decades since
its development a number of shortcomings have become
apparent. These shortcomings, which manifest themselves as
discrepancies between predicted and actual bearing behavior,
are partly due to limitations of the original model in account-
ing for all relevant phenomena and partly due to continuously
advancing bearing technology.

In 1971 the Rolling Elements Committee of the American
Society of Mechanical Engineers published an engineering
design guide for rolling-element bearings (Ref. 87) that
provided for the first time-life adjustment factors bench-
marked to the Lundberg-Palmgren model to account for those
material, design, and operating factors that were not part of the
Lundberg-Palmgren model. The Anti-Friction Bearing
Manufacturers Association-International Standards Organiza-
tion (AFBMA/ISO) method for determining bearing-load
rating and rolling-element fatigue life, along with the basic
ratings as published by the various bearing manufacturers, was
the heart of the ASME design guide. The ASME committee
assumed that the various environmental and design factors are,
at least for first-order effects, multiplicative. These life
adjustment factors accounted for the effects of material
chemistry, metallurgical processing, EHD film thickness,
speed, and misalignment.

During the late 1960s the AFBMA (now the American
Bearing Manufacturers Association, ABMA) debated whether
to incorporate improvements in bearing design, material, and
manufacturing technology into the capacity values or into the
life estimates. The latter course was finally chosen. Based on
the ASME work, the AFBMA standards committee in 1977
modified their standards to include life adjustment factors
(Refs. 88 and 89). The AFBMA and the ISO combined the
three factors together with Equation (48) into the following
formula to adjust for life:

C p
L., = aayasLyy = ayaya3 (Fj (86)



where a; is a reliability factor, a, is a materials and processing
factor, and a3 is an operating conditions factor such as lubrica-
tion. Also, L,, is the adjusted life of the bearing based on the
Lundberg-Palmgren model, C is the bearing dynamic load
capacity, and P is the bearing equivalent load. For ball
bearings p = 3 and for roller bearings p = 10/3. Table X
contains a list of representative variables affecting bearing life
that contribute to these factors (Ref. 18).

TABLE X—RERESENTATIVE VARIABLES AFFECTING
BEARING LIFE AND RELIABILITY
[From Ref. 18.]

Life adjustment factor
Reliability, a1
Materials and processing, a2

Variable
Probability of failure

Bearing steel
Material hardness
Residual stress
Melting process
Metal working
Load
Misalignment
Housing clearance
Axially loaded cylindrical
bearings
Rotordynamics
Hoop stresses
Speed
Temperature
Steel
Lubrication

Operating conditions, a3

Lubricant film thickness
Surface finish

Water

Oil

Filtration

The life factors and method put forth in the ASME design
guide had withstood the test of time. Based on the ASME
design guide (Ref. 87) and Equation (86) above, the STLE Life
Factors Committee began in 1985 to update and expand the
ASME life factors in light of the significant technology advanc-
es in the state of the art since the ASME design guide was
published in 1971. New approaches to predicting bearing life
include assessing the effect of operating and material variables
on the inner and outer races and the rolling elements separate
from each other. Life factors for case-carburized steel are given
for the first time, as well as the effect on bearing life of bearing
refurbishment and restoration. The life of ceramic bearings is
for the first time tied to the ANSI/AFBMA/ISO standards. New
and simplified EHD lubrication formulas are given. Life factors
are assigned to processing variables such as melting practice,
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metalworking, and heat treatment. Coatings and surface
treatments are discussed in light of their potential effect on
bearing life together with the effect of lubricant additives. All of
these and other variables are discussed both for industrial and
aerospace applications. The STLE Life Factors for Rolling
Bearings was first published in 1992 (Ref. 18).

Bearing Life Variation

Vicek et al. (Ref. 90) randomly assembled and tested 340
virtual bearing sets totaling 31 400 radially loaded and thrust-
loaded rolling-element bearings. It was assumed that each
bearing was assembled from three separate bins of compo-
nents, with one bin containing 1000 inner rings; one with 1000
rolling-element sets, and one with 1000 outer rings. The
median ranks of the individual components were assigned and
then virtual bearing assemblies were created using a Monte
Carlo technique. The corresponding lives of the bearing
components were determined using Equation (17). The
weakest link theory was applied; that is, it was assumed that
the life of the shortest-lived component of the system was the
life of the system. A linear curve fit of these system lives
results in a Weibull plot. Weibull parameters from the plot and
Equation (17) can be used to determine lives at any percentage
of survivability.

Vlcek et al. (Ref. 90) determined the Lo maximum limit and
Lo minimum limit for the number of bearings failed, 7, using a
Weibull-based Monte Carlo method. By fitting the resultant
lives for different size populations of failed bearings (Fig. 16),
equations were determined for both of these limits:

Maximum variation Lg life

= calculated Lo life (1+67706) (87a)

Minimum variation Lo life
= calculated Ly life (1-1.5793%) where r > 3 (87b)
Minimum Lo life = 0 where » < 3 (87¢c)

These curves compared favorably with the 90-percent con-
fidence limits of Johnson (Ref. 24) at a Weibull slope of 1.5
(Fig. 16) (Ref. 90).

Rules can be implied from these results to compare and dis-
tinguish resultant lives of similar bearings from two or more
sources and/or made using different manufacturing methods.
The following rules are suggested to determine if the bearings
are acceptable for their intended application and if there are
significant differences between two groups of bearings.

(1) If the Ly lives of both bearing sets are between the maxi-
mum and minimum Lo life variations, there can be no conclu-
sion that there is a significant difference between the two sets of
bearings regardless of the ratio of the Lo lives. The bearing sets
are acceptable for their intended application (Fig. 17(a)).



(2) If the Ly life of one set of bearings is greater than the
maximum variation and the second set is less than the
minimum value, there exists a significant difference between
the bearing sets. Only one bearing set is acceptable for its
intended application (Fig. 17(b)).

(3) If the Ly lives of both sets of bearings exceed the maxi-
mum variation, the bearing life differences may or may not be
significant and should be evaluated based upon calculation of
confidence numbers according to the method of Johnson
(Ref. 24). Both sets of bearings are acceptable for their
intended application (Fig. 17(c)).

(4) If the Lo lives of both sets of bearings are less than the
minimum variation, the bearing life differences may or may
not be significant. However, neither set of bearings is accepta-
ble for its intended application (Fig. 17(d)).

(5) If the Ly life of one set of bearings exceeds the maxi-
mum variation and the other set is between the maximum and
minimum variation, the bearing life differences may or may
not be significant and should be evaluated based upon calcula-
tion of confidence numbers according to the method of
Johnson. Both sets of bearings are acceptable for their intend-
ed application (Fig. 17(e)).

(6) If the Lo life of one set of bearings is less than the min-
imum variation and the other set is between the maximum and
minimum variation, there exists a significant difference
between the bearing sets. Only one set of bearings is accepta-
ble for its intended application (Fig. 17(f)).

Harris (Ref. 91) and Harris and McCool (Ref. 92) analyzed
endurance data for 62 rolling-element bearing sets. These data
were obtained from four bearing manufacturers, two helicop-
ter manufacturers, three aircraft engine manufacturers, and
U.S. Government agency-sponsored technical reports. The
data sets comprised deep-groove radial ball bearings, angular-
contact ball bearings, and cylindrical roller bearings for a total
of 7935 bearings. Of these, 5321 bearings comprised one
sample size for a single cylindrical roller bearing, leaving
2614 bearings distributed among the remaining bearing types
and sizes. Among the 62 rolling-element bearing endurance
sets, 11 had one or no failures and could not be used for the
analysis. These data are summarized in Reference 90 and
plotted in Figure 18. A discussion of the Harris data can be
found in References 28 and 46.

Of these data, 39 percent fall between the maximum and
minimum life variations suggesting that the statistical variations
of these lives are within that predicted. Four bearing sets
representing 8 percent of the bearing sets had lives less than
what was predicted. Thirty bearing sets, or 59 percent of the
bearing sets, exceeded the maximum life variation of the Monte
Carlo study of Vlcek et al. (Ref. 90). Eight of these bearing sets,
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or 16 percent, exceeded the 90-percent confidence upper limit
of Johnson (Ref. 24). However, only one bearing set, represent-
ing 2 percent of the bearing sets, falls below the lower life limit.
Therefore, it can be reasonably concluded that 98 percent of the
bearing sets have acceptable life results using the Lundberg-
Palmgren equations with the life adjustment factors from
Reference 18 to predict bearing life.
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Figure 17.—Rules for comparing bearing life results to calculated life (Ref. 90).
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set A is acceptable. Bearing set B is not acceptable.

The life calculations for the data of Figure 18 have material
and steel processing life factors from Reference 18 incorpo-
rated in them. Table XI summarizes these life factors for each
of the materials. The data of Figure 18 are broken down and
plotted in parts (a) of Figures 19 through 22 based on the steel
type and processing. These data were adjusted for a load-life
exponent p of 4 for ball bearings and 5 for roller bearings and
are shown in parts (b) of Figures 19 through 22. The adjusted
life results correlated with those of the Monte Carlo tests
shown in Figure 16. Based upon these material and processing
life factors and load-life exponents, each bearing data set
appears consistent with the other.

NASA/TP—2013-215305/REV1

35

TABLE XI.—LIFE FACTORS FOR BEARING STEELS AND

STEEL PROCESSING
[From Ref. 18.]
Material and process Life factor
Material Process Resultant

CVD? AISI 52100 3 1.5 4.5
CVD*? AISI 8620 1.5 1.5 2.25
VAR AISI M50 2 3 6
VIM-VAR® AISI M-50 2 6 12
VIM-VAR®MS50 NiL 4 6 24

*Carbon vacuum degassing.
®Vacuum arc remelting.
‘Vacuum induction melting and vacuum arc remelting.
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Figure 19.—Effect of CVD AISI 52100 steel and load-life
exponent on bearing life (Ref. 90). (a) Load-life ex-
ponent p is 3 for ball bearings and 10/3 for cylindrical
roller bearings (from Fig. 18). (b) Load-life exponent
p is 4 for ball bearings and 5 for cylindrical roller
bearings.
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gure 20.—Effect of VAR AISI M-50 steel and load-life
exponent on bearing life (Ref. 90). (a) Load-life ex-
ponent p is 3 for ball bearings and 10/3 for cylindrical
roller bearings (from Fig. 18). (b) Load-life exponent
p is 4 for ball bearings and 5 for cylindrical roller
bearings.
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Figure 21.—Effect of VIM-VAR AISI M-50 steel and
load-life exponent on bearing life (Ref.90). (a) Load-life
exponent p is 3 for ball bearings and 10/3 for cylindrical
roller bearings (from Fig. 18). (b) Load-life exponent p

is 4 for ball bearings and 5 for cylindrical roller bearings.
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(from Fig. 18). (b) Load-life exponent p is 4 for ball
bearings.
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Lundberg and Palmgren (Ref. 9) assumed the value of the
Weibull slope e in Equation (17) to be 1.11 for ball bearings
(Ref. 9) and 1.125 for roller bearings (Ref. 10). These values
were necessary in their analysis because it approximated those
values exhibited by their experimental data, and it made the
end result of their life prediction analysis correlate with their
bearing life database at that time. Experience has shown that
most rolling bearing life data exhibit Weibull slopes between 1
and 2. For the analysis in Reference 90 a Weibull slope of
1.11 was assumed for all of the components for each bearing.
This should theoretically result in a bearing Weibull slope of
1.11 as shown in Figure 23 for the deep-groove and angular-
contact ball bearings.
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Figure 23.—Variation of Weibull slope e compared
with predicted 90% probable error. (a) Extremes
of Weibull slope from Monte Carlo testing for each
group of 10 bearing trials of r bearings (data from
Ref. 90). (b) Weibull slopes from 51 sets of ball
and roller bearings (data from Refs. 91 and 92).
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Weibull Slope Variation

Johnson (Ref. 24) analyzed the probable variation of the
Weibull slope as a function of the number of bearings tested to
failure. Based on the Johnson analysis, in 90 percent of all
possible cases the resultant Weibull slope will be within the
limits shown in Figure 23 based upon a Weibull slope of 1.11.
Based on Johnson, the approximate relation for the number of
bearings failed » and the limits of the value of Weibull slope e
equal to 1.11 are as follows:

Maximum Weibull slope = 1.11 + 1.31 %5 (88a)

Minimum Weibull slope = 1.11 - 1.31 %5 (88b)

The results of the extremes in the Weibull slopes for each
group of the 10 bearing trials of » bearings are compared with
the Johnson analysis in Figure 23(a). (Note that the Weibull
slopes for the data summarized in Fig. 18 for the maximum
and minimum bearing lives are not necessarily the same as the
maximum and minimum values of the Weibull slopes for each
of trials of r bearings.) For the data shown in Figure 18 the
relation between the number of bearings tested and the limits
of the Weibull slope are as follows:

Maximum Weibull slope = 1.2 + 5(Inr)~? (89a)

Minimum Weibull slope = 1.11 —0.957%3  (89b)

Where the number of bearings failed is 10 or greater, there
is a reasonably good correlation between the limits of the
slopes generated from the Johnson analysis (Ref. 24) and
those from the Monte Carlo bearing tests shown in Fig-
ure 23(a). Where the number of failed bearings is below 10,
there are differences between the extremes in Weibull slope
between the Monte Carlo bearing tests and those of Johnson,
especially at the upper limits for the Weibull slopes (Ref. 90).

Turboprop Gearbox Case Study

The commercial turboprop gearbox used for this analysis
(Fig. 24) consists of two stages with a single mesh spur
reduction followed by a 5-planet planetary gearbox consisting
of 11 rolling-element bearings and 9 spur gears (Ref. 93). The
first stage consists of the input pinion gear meshing with the
main drive gear. The second stage is provided by the fixed-
ring planetary gear driven by a floating sun gear as input with
a five-planet carrier as output. At cruise conditions, the input
pinion speed is constant at 13 820 rpm, producing a carrier
output speed of 1021 rpm. A list of the component parts of the
gearbox is given in Table XII.



TABLE XII.—PREDICTED TURBOPROP GEARBOX COMPONENT LIVES FROM
LUNDBERG-PALMGREN ANALYSIS WITH LIFE FACTORS AND
STRICT-SERIES SYSTEM RELIABILITY
[From Ref. 94.]

Component description Predicted life, hr Weibull
(see Fig. 24) Lo | Lso slope, e
Rolling-element bearings

Cylindrical roller bearings

Front pinion 20 890 111 476 1.125

Rear pinion 21312 113 728

Main drive 26 459 141 194

Carrier support 312 881 1 669 635

Propeller radial 68 194 363 905
Propeller thrust ball bearing 33 065 180 484 1.11
Planet double-row spherical roller bearing set, five bearings 844 4503 1.125
Bearing system life 774 4132 1.125

Gears

Pinion 53 477 131 552 2.5
Ring 4540212 11 168 760
Sun 19 033 46 821
Main drive 108 148 266 040
Planet gear set, five gears 28 092 69 105
Gear system life 16 680 44 032 2.5
Gearbox life 774 4132 1.125

Front pinion
roller bearing o ;~ Pinion gear
Fixed-ring gear- ‘\‘ /’ ~Rear pinion

Planet spherical

~

roller bearing

TABLE XIII.—MISSION PROFILE OF COMMERCIAL
TURBOPROP GEARBOX
[From Ref. 94.]

roller bearing —_ _

Input shaft
Main drive gear

—Main drive

Qutput shaft g
roller bearing

Radial cylindrical _—-

Mission Percent time Propeller shaft power,

segment of segment kW (hp)
Takeoff 2.84 3132 (4200)
Climb 17.02 2461 (3300)
Cruise 68.08 1516 (2033)
Descent 12.06 945 (1267)
Equivalent 100.00 1833 (2457)

“—Carrier support

bearing —" .
9 roller bearing

/
Thrust ball bearing" /o~ gear

Figure 24.—Commercial turboprop gearbox (Ref. 94).

A typical mission profile for this commercial gearbox is
given in Table XIII, which presents the duration as a percent-
age and the propeller shaft power for each flight condition.
This profile includes loads for (a) takeoff, (b) climb, (c) cruise,
and (d) descent. The cruise segment of the profile consumes
68 percent of the flight time with a little less than half of the
power required for the takeoff, which lasts for less than
3 percent of the flight time (Ref. 94).

The cause for removal can be assumed to be one or more
bearings or gears that had fatigue or damage resulting in wear
and/or vibration detected by magnetic chip detectors and/or
vibration pickups. The gearbox is removed from service
before secondary damage occurs and is inspected. After the
failed part or parts are replaced, the gearbox is put back into
service (Ref. 94).
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Individual failure occurrences are not predictable but are
probabilistic. No two gearboxes run under the same conditions
fail necessarily from the same cause and/or at the same time.
At a given probability of survival, the life of the gearbox
system will always be less than that of the lowest lived
element in it.

Historical field data for 64 gearboxes were collected. The
first part of these data covered the time from their field
installation and first field operation to their removal for cause
(failure) and refurbishment (Ref. 94).

Analysis
Bearing Life Analysis

Equation (86), based on the Lundberg-Palmgren model with
life modifying factors from Reference 18, were used to
calculate the bearing lives listed in Table XII and shown in
Figure 25(a). For the purpose of the bearing life analysis
summarized in Table XII, for ball bearings p = 3, and for
roller bearings p = 4 (Ref. 94).
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Figure 25.—Weibull plots of predicted lives for commercial turboprop gearbox and its respective bearing
and gear components using Lundberg-Palmgren life theory (Ref. 94). (a) Bearing component lives.
(b) Gear component lives. (c) Gearbox life and component lives.
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The Ly life of a single double-row spherical bearing is 3529
hr. The system Ly life for the five-bearing planetary set is 774
hr. For all the bearings in the gearbox, the bearing system Lo
life is also predicted to be 774 hr (Ref. 94).

Gear Life Analysis

Between 1975 and 1981, Coy, Townsend, and Zaretsky
(Refs. 95 to 97) published a series of papers developing a
methodology for calculating the life of spur and helical gears
based upon the Lundberg-Palmgren theory and methodology
for rolling-element bearings. Townsend, Coy, and Zaretsky
(Ref. 51) reported that for AISI 9310 spur gears, the Weibull
slope e is 2.5. Based on Equation (20), for all gears except a
planet gear, the gear life can be written as

N*l/e(;
Lo, :w (90)
k
For a planet gear, the life is
—1/eg
N-Ves|n ¢ ynrc ¢
B, = 22l i) o

k

The Ly life in millions of stress cycles of a single gear tooth
can be written as

C,; PG
= a ad| — 92
Nio, 2 {RJ (92)
where
C, = Bf 0907 p-1.1651-0.093 (93)
and
p=(i+i] - 94)
R )sing

The value for My, can be determined by using Equa-

tion (92) where for bearings C; is the basic load capacity of the
gear tooth, P; is the normal tooth load, p¢ is the load-life
exponent usually taken as 4.3 for gears based on experimental
data for AISI 9310 steel, and a, and a3 are life adjustment
factors similar to those for rolling-element bearings. The value
for C; can be determined by using Equation (93), where B is a
material constant that is based on experimental data and is
approximately equal to 1.39x10% when calculating C, in SI
units (Newtons and meters) and is 21 800 in English units
(pounds and inches) for AISI 9310 steel spur gears. Also, f'is
the tooth width, and p is the curvature sum at the start of
single-tooth contact.
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The L, life of the gear (all teeth) in millions of input

shaft revolutions at which 90 percent will survive can be
determined from Equation (90) or (91) where N is the total
number of teeth on the gear, eg is the Weibull slope for the
gear and is assumed to be 2.5 (from (Ref. 51)), and & is the
number of load (stress) cycles on a gear tooth per input shaft
revolution.

For all gears except the planet gears, each tooth will see a
load on only one side of its face for a given direction of input
shaft rotation. However, each tooth on a planet gear will see
contact on both sides of its face for a given direction of input
shaft rotation. One side of its face will contact a tooth on the
sun gear, and the other side of its face will contact a tooth on
the ring gear. This results in reverse bending of the gear teeth
on the planetary gears. Since the gears are operated at bending
stresses less than those that may cause bending fatigue in
carburized gear steels, this effect is ignored. However, for
purposes of contact fatigue, Equation (91) takes into account
that both sides of the gear tooth are stressed, where L is the

al
Ly life in millions of stress cycles of a planet tooth meshing

with the sun gear, and N, is the Ly life in millions of stress
t2

cycles of a planet tooth meshing with the ring gear.

The calculated gear lives are summarized in Table XII and
shown in the Weibull plots of Figure 25(b). The gear system
predicted Ly life is 16 680 hr (Ref. 94).

Gearbox System Life

The Lo lives of the individual bearings and gears that make
up a rotating machine are calculated for each condition of their
operating profiles. For each component, the resulting lives
from each of the operating conditions are combined using the
linear damage (Palmgren-Langer-Miner) rule, Equation (14).

The resultant lives of each of the gearbox components are
then combined to determine the calculated system Ljo life
using the two-parameter Weibull distribution function (Eq.
(17)) for the bearings and gears comprising the system and
strict-series system reliability (Eq. (49a)) as follows:

1 &1 11 1
= = —+—+..—
Le, “=Le (Lo Ly L

n

(952)

The resultant system lives previously discussed for the
bearings and gears are shown in Figures 25(a) and (b),
respectively, and summarized in Table XII.

The system Weibull slope using strict-series reliability
(Eq. (95a)) where each component or combinations of multi-
ple bearings and gears have different Weibull slopes is not
intuitively obvious. If at each time sequence the probability of
survival of each component is multiplied together, the system
reliability at that time and, hence, the probability of failure can
be determined. When these values are plotted on Weibull



paper, a Weibull slope (shape parameter) can be determined
for the system life distribution using a least squares fit. When
this is done, it is found that the system Weibull slope approx-
imates that of the lowest lived component in the system. For
the gearbox, where the subscripts B and G relate the Ly life to
a bearing or a gear, respectively,

1 1
+ +—t
Ly Lg

The lowest lived components in the gearbox are the roller
bearings. As a result, the Weibull slope assumed for the
planetary gear spherical roller bearings is assumed to be the
Weibull slope e of the entire gearbox system in Equation (95b).
The individual system and combined system lives are shown in
the Weibull plots of Figure 25(c) and summarized in Table XII.
The predicted Ly life of the gearbox is 774 hr (Ref. 94).

1 1 1 1 1
= —t——t..— s (95b)
L, \Lg L Ly Lg

Gearbox Field Data

The application of the Lundberg-Palmgren model (Ref. 9) to
predict gearbox life and reliability needs to be benchmarked
and verified under a varied load and operating profile. The
cost and time to laboratory test a statistically significant
number of gearboxes to determine their life and reliability is
prohibitive. A practical solution to this problem is to bench-
mark the analysis to field data. Fortunately, these data were
available for the commercial turboprop gearbox used in this
study.

No two gearboxes are expected to operate in exactly the
same manner. Flight variables include operating temperature
and load. Small variations in operational load can result in
significant changes in life. Hence, the accuracy of the calcula-
tions is dependent on how close the defined mission profile is
to actual flight operation.

The condition of the gearboxes is monitored, and they are
removed from service upon the detection of a perceived
component failure. At the time of removal, the gearboxes are
functional. The removal precludes secondary damage; that is,
the damage is limited to the failed component.

Field data were collected for 64 new commercial turboprop
gearboxes. From these field data, the resultant time to removal
of each gearbox is presented in the Weibull plot of Figure 26.
The failure index was 59 out of 64. That is, 59 out of the 64
gearboxes removed from service were considered failed. For
these data, there was no breakdown of the cause for removal
or the percent of each component that had failed. The resultant
Ly life from the field data was 5627 hr and the Weibull slope
e was 2.189. Using the Lundberg-Palmgren method (above),
the predicted Lo life was 774 hr and the Weibull slope e was
1.125. The field data suggest that the Lo life of the gearbox
was underpredicted by a factor of 7.56 (Ref. 94).
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Figure 26.—Weibull plot of field data for lives of turboprop
gearboxes compared with predicted lives using Lundberg-
Palmgren life model. Failure index, 59 out of 64 (Ref. 94).

Reevaluation of Bearing Load-Life Exponent p

Although errors in the assumed operating profile of the
gearbox may account for the difference between actual and
predicted life, it is suggested that using the Lundberg-
Palmgren equations results in a life prediction that is too low
for the bearings.

With reference to Equation (48), in their 1952 publication
(Ref. 10), Lundberg and Palmgren proposed a load-life
exponent p = 10/3 for roller bearings, where one raceway has
point contact and the other raceway has line contact. The 10/3
load-life exponent has been incorporated in the ANSI/ABMA
and ISO standards first published in 1953 (Refs. 12 to 14).
Their assumption of point and line contact may have been
correct for many types of roller bearings in use at that time.
However, it is no longer the case for most roller bearings
manufactured today, and most certainly not for cylindrical
roller bearings. The analysis employed for the bearing life
calculations used a value of p = 3 for ball bearings and p = 4
for roller bearings. Poplawski, Peters, and Zaretsky (Refs. 98
and 99) suggest the use of p = 4 for ball bearings and p = 5 for
roller bearings (Ref. 94).

From Equation (95b), assuming that the bearing system,
which is the shortest lived component in the gearbox and
has the same Weibull slope as that of the gearbox system
(i.e.,e=2.189),



1 1 1

=—+
Ly Ly LE

(96a)

and substituting in the known values

I I 1
(56271 3% T, 680)°

(96b)

and solving for the bearing system life, results in a value of

Ly =5627 hr (96¢)

From Lundberg-Palmgren (Ref.9), the predicted bearing
system life is

(97a)

then,

C

(—D} ~5.27 (97b)
By

Calculating a revised value for the load-life exponent p for the

gearbox bearings based on the actual bearing system life of
5627 hr,

P
[@j ~(5.27) ~5627 hr (98a)
eq
Solving for load-life exponent p,
p=52 (98b)

Referring to Equation (43c), for line contact (roller bearing)
the Hertz stress-life exponent n = 2p. From Equation (98b),
n= 10.4 for line contact for the turboprop gearbox data.
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Referring to the Zaretsky model for line contact, Equation
(62b), the shear stress-life exponent is

1
c=n—— (99a)
e
and where n = 10.4 and e = 2.189,
1
c=104-———-=9943 (99b)
2.189

Using the value of ¢ from Equation (99b) in Equation (62a) for
point contact where e is assumed to equal 1.11, then

n:c+£:9.943+i: 11.74
e 1.11

(100a)

and for point contact,

n_ 1174

_n =391
PE3TTS

(100b)

The apparent load-life exponent p for the roller bearings is
equal to 5.2 and correlates with the Zaretsky model. Were the
roller bearing lives to be recalculated using a load-life exponent
p = 5.2, the predicted L10 life of the gearbox would be equal to
the actual life obtained in the field, 5627 hr. It should be noted
that if an exponent p = 5 were used, the predicted Lo life of the
gearbox would be 4065 hr. This result suggests a strong reliance
of the predicted bearing life upon the load-life exponent p. The
values of the load-life exponent p for roller bearings equal to
10/3 from the ANSI/ABMA and ISO standards (Refs. 12 and
14) and 4 from computer codes may provide predicted roller
bearing lives that are too conservative for design purposes. The
use of the ANSI/ABMA and ISO standards load-life exponent
of 10/3 to predict roller bearing life is not reflective of modern
roller bearings. It will underpredict bearing lives.

Glenn Research Center
National Aeronautics and Space Administration
Cleveland, Ohio, March 6, 2013






Appendix A.—Fatigue Limit

Shimizu and Zaretsky (Ref. 100) and Zaretsky (Ref. 101)
discuss the history, origin, concept, and application of a
fatigue limit to rolling-element bearings. They discuss that in
the mid-1880s, Wohler (Refs. 102 and 103) undertook to
demonstrate that the cause of failure was repeated stressing.
He conceived of a test machine that simulated a railcar axle, in
which a sample could be subject to completely reversed
bending without changing the direction of the loading.
Changing the applied load varied the bending stress. The
objective of Wohler’s work was to determine a stress level
below which an “indefinite” number of reversals could be
sustained without specimen fracture (Ref. 104). Traditionally,
the indefinite number of reversals was considered to be
between 1 million (10°) and 10 million (107) stress cycles.

Wohler was seeking to determine what was later determined
as an “endurance limit” or “fatigue limit.” He conducted tests
at stress amplitudes at which fatigue life was finite and
reduced the stress until there appeared to be no further
failure—usually at times greater than 10° stress cycles. Wohler
actually never plotted his data in the four reports that he
published. However, engineers using Wohler’s data later
constructed S-N (stress-life) curves (Ref. 104). Alternately, the
data can be plotted as the log of stress (In S) versus the log of
the number of stress cycles to failure (In N) whereby life is
proportionally to stress to a power. On these graphs, a straight

horizontal line is drawn from the region corresponding to the
stress cycles of 10° to 107 to indicate a fatigue limit. The
concept of an S-N curve has served the engineering profession
for over 100 years (Ref. 104).

It is generally accepted that the life of a component in terms
of repeated stress cycles is inversely related to a critical
shearing stress T to a power where

L~ ri” (Al)
The critical shearing stress t can be the orthogonal shear,
maximum shear, or octahedral shear stress. Some investigators
have also used the Von Mises or “effective” stress as the
decisive stress. This relation when plotted on log-log graph
paper will plot as a straight line as illustrated in Figure 27(a)
and referred to as Case 1. The slope or tangent of the line is
the value of the stress life exponent n.

The classic Wohler curve illustrated in Figure 27(b) intro-
duces the concept of a fatigue limit, where the stress-life
relation is that of Equation (A1) until the stress reaches the
value of the fatigue limit 11, at approximately 10° to 107 stress
cycles; here the life is considered infinite. That is, no fatigue
failures would be expected to occur. This will be referred to as
Case 2.

Case 2—Classic Wohler
Curve With Fatigue Limit

Case 3—Fatigue Limit
(Palmgren, 1924)

Case 1—No Fatigue Limit :

-
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Figure 27.—Stress-life (S-N) curves illustrating concept of fatigue limit (Ref
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.102).



In practice, fatigue data for material types that have fatigue
limits do not manifest a linear line on a log-log S-N plot, but a
curved line as illustrated in Figure 27(c). This will be referred
to as Case 3. The apparent relation between life, shearing
stress T, and fatigue limit tris

1
) — (A2)
(T - Tf)r

For an applied stress and the presence of a fatigue limit, the
resultant life from Equation (A2) will be longer than that from
Equation (A1) with a fatigue limit (Refs. 100 and 101).

Allan (Ref. 105) discusses the contributions of Goodman to
rolling bearing technology. Goodman (Refs.2 and 106)
derived for thrust and radial ball bearings and the cylindrical
roller bearing empirical formulae for “safe loads” at or below
which no failure should occur (Refs. 105 and 107).
Goodman’s experiments began in 1896 (Ref. 105). He
experimentally adopted an approach for rolling-element
bearings similar to that of Wohler for rotating beam fatigue.
Bearing endurance tests were conducted under varying loads.
He categorized his testing into low-speed bearings and high-
speed bearings. Although Goodman was familiar with Hertzi-
an theory, he plotted the results in terms of load versus life in
total shaft revolutions (inner-race revolutions) and curve-fit
the data (Ref. 105). Where Wohler defined life in terms of
stress cycles, Goodman defined a “safe load” for “low-speed”
bearings at a life of 1 million shaft (inner-race) revolutions
where no failure has occurred and “several million” shaft
(inner-race) revolutions for high-speed bearings (Ref. 105).
The failure mode as defined by Goodman could be any
damage to the ball surface of a ball bearing and not just that
caused by fatigue. For bearing running times (life) equal to or
greater than 10° shaft (inner-race) revolutions without failure
(damage), Goodman’s empirical formulae for “safe loads” are
as follows (Ref. 107):

Thrust bearings, grooved races:
1250 000Zd?

Thrust load =————— (A3)
2R;N; +200d
Radial bearings, grooved races:
3
Radial load = _2000000zd” (A4)
2R;N; +2000d
Cylindrical roller bearings, radially loaded:
2
Radial load = —RZ14° (A5)
2R;N; +2000d
where
Z number of balls or rollers
d Dball or roller diameter, in.
R; effective radius of inner ring, in.
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N; speed of inner ring, rpm
K constant of 1 200 000 to 2 000 000
[ length of rollers, in.

Although the above loads are not a “fatigue limit” per se, they
can be considered an “endurance limit” that reflected rolling
bearing state of the art in the United Kingdom at the turn of
the 20th century.

In 1924 Palmgren (Ref. 4) published an empirical formula
based on the concept of an Lo life, or the time that 90 percent
of a bearing population would equal or exceed without rolling-
element fatigue failure. This paper by Palmgren represents the
first time in the literature that a probabilistic approach to life
prediction of a machine element was formulated. Assuming
that a ball or roller bearing was properly designed, manufac-
tured, installed, lubricated, and maintained, rolling-element
fatigue would limit the useable life of the bearing. In the life
equations that Palmgren presented he incorporated a “fatigue
limit,” or load below which no failure will occur, as well as a
time or “location parameter” before which time no failure
should occur (Ref. 20). The Palmgren form (Ref. 4) of the
“fatigue limit” takes the form of Case 3, but, as with Good-
man, it uses load and not stress. Although Palmgren does not
reference either Wohler or Goodman, it is not unreasonable to
assume that the inclusion of a fatigue limit in his life equation
(see Eq. (5)) was influenced by their respective works.

In 1936 Palmgren (Ref. 33) abandoned the concept of a
fatigue limit for rolling-element bearings. The concept of a
fatigue limit does not appear in his 1945 book (Ref. 5) nor is it
included in the Lundberg-Palmgren life theory (Refs.9 and
10). In 1985 Ioannides and Harris (Ref. 32) applied
Palmgren’s 1924 concept of a “fatigue limit” (Eq. (A3), Case
3, Fig.27(c)) to the 1947 Lundberg-Palmgren equations
(Ref. 9) (see Egs. (54) to (55)). However, there is no database
for rolling-element bearings or for conventional fatigue
specimens that supports the existence of a fatigue limit for
through-hardened bearing steels or, more specifically,
through-hardened AISI 52100 bearing steel.

A leader in the effort to determine if a fatigue limit exists
for AISI 52100 steel is Professor Shigeo Shimizu (Ref. 100) of
the School of Science and Technology, Meiji University,
Kawasaki, Kanagawa, Japan. He reasoned that a material
when tested should only react to its state of stress and envi-
ronment. That is, if AISI 52100 steel had a fatigue limit, a
stress below which no failure will occur, it should exhibit this
“fatigue limit” no matter what type of fatigue test was per-
formed. A statistically significant number of fatigue tests are
required over a range of shearing stresses to assure with
reasonable engineering and scientific certainty that the steel
either did or did not exhibit a fatigue limit; also, if a fatigue
limit did exist, what its value was (Ref. 101).



In 2008, Shimizu together with his colleagues, Professors K.
Tosha, D. Ueda, and H. Shimoda published a journal paper in
STLE Tribology Transactions reporting the results of rotating
beam fatigue experiments for through-hardened AISI 52100
steel at very low shearing stresses as low as 0.48 GPA (69.6
ksi) (Ref.35). “The test results produced fatigue lives in
excess of 100 million stress cycles without the manifestation
of a fatigue limit.”

In order to assure the credibility of his work, additional re-
search was conducted and published by Shimizu together with his
colleagues, Professors K. Tsuchiya, and K. Tosha in the 2009
STLE Tribology Transactions (Ref. 36). They tested six groups of
AISI 52100 bearing steel specimens using four-alternating torsion
fatigue life test rigs to determine whether a fatigue limit exists or
not and to compare the resultant shear stress-life relation with that
used for rolling-element bearing life prediction.
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The number of specimens in each sample size ranged from
19 to 33 specimens for a total of 150 tests. The tests were run
at 0.5, 0.63, 0.76, 0.80, 0.95, and 1.00 GPa (75.5, 91.4, 110.2,
116.0, 137.8, and 145 ksi) maximum shearing stress ampli-
tudes. The stress-life curves of these data shown in Figure 28
show an inverse dependence of life on the shearing stress as in
Case 1 (Fig. 27(a)), but do not show an inverse relation on the
difference of the shearing stress minus a fatigue limiting stress
as in Case 3 (Fig. 27(c)). The shear stress-life exponent n for
the AISI 52100 steel was 10.34 from the three-parameter
Weibull analysis and was independent of the Weibull slope e
(Ref. 36). This compares with a shear stress-life exponent of
9.3 from Lundberg and Palmgren (Ref. 9). From these tests, it
can be concluded with reasonable engineering and statistical
certainty that a “fatigue limit” does not exist for through-
hardened AISI 52100 bearing steel (Refs. 100 and 101).






Appendix B.—Derivation of Weibull Distribution Function

According to Weibull (Refs. 6 and 7) and as presented in
Reference 108 (see also Ref. 98), any distribution function can
be written as

F(X)=1-exp-[f(x)] (B1)
where F(X) is the probability of an event (failure) occurring
and f(X) is a function of an operating variable X. Conversely,
from Equation (B1) the probability of an event not occurring
(survival) can be written as

1-F(X)=exp-[f(X)] (B2a)

or

1-F =exp-[f(x)] (B2b)
where F'= F(X) and (1 — F) = S, the probability of survival.

If there are n independent components, each with a proba-
bility of the event (failure) not occurring (1 — F), the probabil-
ity of the event not occurring in the combined total of all
components can be expressed from Equation (B2b) as

1- F7 = exp—[nf(X)] (B3)

Equation (B3) gives the appropriate mathematical expres-
sion for the principle of the weakest link in a chain or, more
generally, for the size effect on failures in solids. The applica-
tion of Equation (B3) is illustrated by a chain consisting of
several links. Testing finds the probability of failure F' at any
load X applied to a “single” link. To find the probability of
failure F, of a chain consisting of » links, one must assume
that if one link has failed the whole chain fails. That is, if any
single part of a component fails, the whole component has
failed. Accordingly, the probability of nonfailure of the chain
(1-F,), is equal to the probability of the simultaneous nonfail-
ure of all the links. Thus,

1-F, =

n

(1-Fy (B4a)

or

Sy =8" (B4b)

where the probabilities of failure (or survival) of each link are
not necessarily equal (i.e., S1 # S2 # S3 #...), Equation (B4b)
can be expressed as

S, =88 -S;... (B4c)

NASA/TP—2013-215305/REV1

49

This is the same as Equation (18) of the main text.
From equation (B3) for a uniform distribution of stresses
throughout a volume 7,

F, =1-exp—[Vf(c)] (B5a)
or
S=1-F, =exp-[Vf(o)] (B5b)
Equation (B5b) can be expressed as follows:
In 1{%} =Inf(c)+InV (B6)

It follows that if In In (1/S) is plotted as the ordinate and In
f(o) as the abscissa in a system of rectangular coordinates, a
variation of volume V of the test specimen will imply only a
parallel displacement but no deformation of the distribution
function. Weibull (Ref. 6) assumed the form

JE
where e is the Weibull slope, o is a stress at a given probabil-
ity of failure, o, is a location parameter below which stress no
failure will occur, and op is the characteristic stress at which

63.2 percent of the population will fail. Equation (B6) be-
comes

c-0,

(B7)

f(o)= (

GB_GM

In ln[éj = eln(cs—cu)—eln(csﬁ —csl,)+1nV (B8)

If the location parameter G, is assumed to be zero, and V'
is normalized whereby In V is zero, equation (A8) can be
written as

In 1{%} - eln[iJ where 0<o<wand0<S<1  (BY)
O,
B

Equation (B9) is identical to Equation (17) of the main text.

The form of equation (B9), where o, in Equation (BS8) is
assumed to be zero, is referred to as “two-parameter Weibull.”
Where o, is not assumed to be zero, the form of the equation
is referred to as “three-parameter Weibull.”






Appendix C.—Derivation of Strict Series Reliability

As discussed and presented in References 98 and 108,
Lundberg and Palmgren (Ref. 9) in 1947, using the Weibull
equation for rolling-element bearing life analysis, first derived
the relationship between individual component lives and
system life. The following derivation is based on, but is not
identical to, the Lundberg-Palmgren analysis.

Referring to Figure 1(a), from Equation (B9) in Appendix B
the Weibull equation can be written as

Inln L =e¢ln i
Seys Ly

where L is the number of cycles to failure at a given system
reliability Ssys, and Lp is the characteristic life at which
63.2 percent of the population has failed.

Figure 28 is a sketch of multiple Weibull plots where each
Weibull plot represents a cumulative distribution of each
component in the system. The system Weibull plot represents
the combined Weibull plots 1, 2, 3, and so forth. All plots are
assumed to have the same Weibull slope e (Ref. 98). The slope
e can be defined as follows:

Inln RN —Inln| RN
Ssys Sref

e= C2a
InL—-InL. (€22)

jﬁgzie
%IJ@J

(ChH

or

(C2b)

S

ref

where Ly is a reference life at a reference reliability S.r. From
equations (C1) and (C2b),

mic@Lmazi ©3)
Ssys Srcf chf lﬁ
and
L e
Seys = exp—[—] (c4)
Lg
where Sss = S in equation (C1). For a given time or life L,

each component or stressed volume in a system will have a
different reliability S. From equation (B4c) for a series
reliability system,
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S.

sys = Sl 'Sz . S3 (CS)

Combining equations (C4) and (C5) gives

exp— [i] =exp— (LJ X eXp— [LJ X... (C6a)
LB LB] L[B
exp— i =exp— i + i + i +... (C6b)
Ly Ly, Ly, Lg;

It is assumed that the Weibull slope e is the same for all
components. From equation (C6b),

&)1 )
— = = = +| =1 +| =1 +... (C7a)
Ly Ly, Ly, Lgs

Factoring out L from equation (C7a) gives

[1je[lje(lJe(l)e
— | = — | | — | ] —| +..
Ly Lg Lg, Lgs

From equation (C3) the characteristic lives Lgi, Lp2, and Lg3
(and so forth) can be replaced with the respective lives L, L,

and L3, at Srr (or the lives of each component that have the
same probability of survival Scr) as follows:

1Y 1Y 1Y 1Y
In =|In —
S ref L ref S ref L 1

(CTb)

. . (C8)
1 1 1 1
HIn—~7 || —| +|In— || — | +
S ref L 2 S ref L3
where, in general, from equation (C3),
1 = 1HL 1 (C9a)
L[} Sref Lref
and
L:@LWJ (Cob)
LBI Srcf Ll

and so forth. Factoring out In (1/Srr) from equation (C8) gives



BT o R e

or rewriting equation (C10) results in Equation (C11) is identical to Equations (47) and (49a) of the

text.

Ssys
a3
@ Sq 1
o
o 2
o
> S2 N
T |2
= —
= c S3 3
> | ¢ Arctan e
s Sref /
2 System (from
§ Fig. 1(a))~
o
CIL. /// Sgy3:S1‘SQ‘S3'...

Lref L1 L2 L3L

InL
.

Life L increases

Figure 28.—Sketch of multiple Weibull plots where each numbered
plot represents cumulative distribution of each component in
system and system Weibull plot represents combined distribution
of plots 1, 2, 3, etc. (all plots are assumed to have same Weibull
slope e) (Ref. 98).
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Appendix D.—Contact (Hertz) Stress

The contact (Hertz) stresses at the respective races of a
bearing are a function of the bearing geometry, the normal
load at the contact, and the elastic properties of the bearing
materials. Jones (ref. 29) relates the Hertz contact theory for
the stresses of nonconforming bodies in contact for both ball
and roller bearings. From Jones, the following three relations
for the maximum Hertz stresses Smax at the inner and outer
races of ball bearings can be derived:

(1) For deep-groove ball bearings with a radial load only,

7
K(2+4— 1 ] R,

D, d d
Smax,,,. = - f;)r (Dla)
1AL
for the outer race, and
1Y
K[D ", dj Fom
Smax, - r (D1b)
1Y
for the inner race, where
P =W, el (D2)
max r Z

(2) For angular-contact ball bearings with a thrust load only,

2/3
1\%
d,+dcosp d f,d

K( 2cosf +4 1

Smax, = (D3a)
[0y
for the outer race, and
2 4 1 Y\"
K[d C;SB i dj v
Shmax, = e —d cosp S (D3b)
v
for the inner race, where
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py ]

= D4
Nz sinf3 (D4)
(3) For roller bearings with a radial load only
Soax =K iy __2+£ (D5a)
o ¢ \ D, d
for the outer race, and
Smax, =K T 2 2 (D5b)
! ¢t \D, d
for the inner race, where
4
P max — Wr =
A (D6)
for
D,.  outer-race diameter
Dj,  inner-race diameter
d ball diameter
d, pitch diameter
for, fir - outer- and inner-race conformity, respectively
w, radial load
Prax  normal load on maximum loaded ball
W, v transcendental functions (ref. 29)
K constant based on elastic properties of bearing steel
Py normal ball load
/4 bearing thrust load
B contact angle
0 effective roller length

For bearing steel on bearing steel, K = 1.58x107 with Spax
in gigapascals and K = 23.58 with Sua in kilopounds per
square inch. The values for the transcendental functions p and
v vary with conformity f/ and are found in Reference 29.
Values of their product pv can be found in Table V.
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