### Introduction to Life Cycle Assessment (LCA)

T. G. Gutowski Department of Mechanical Engineering Massachusetts Institute of Technology

## Outline

- 1. The general idea of LCA
- 2. Eco-Audit quantitative method focused on energy and CO<sub>2</sub>
- 3. Process model LCA small boundaries
- 4. Input/output LCA -economy wide
- 5. Next Steps regional & world

## The General Idea...

**Use Phase** 

#### Manufacturing

Mining

### End of Life

### Life Cycle Stages (or Phases)

Mfg Distribution Use Disposition



Mining

Primary

### **Two Steps**

• Life Cycle Inventory (LCI)



- Assessment and Improvement + LCI = LCA
  - Pathways, exposure, sensitivity
  - Aggregation, weightings
  - Comparisons

## Introduction to Product Analysis

- What is the impact of a product?
  - What impact are we interested in?
  - What unit of service is provided?
  - 1. What is it made of?
  - 2. How is it made?
  - 3. Is it transported a long distance?
  - 4. How is it used?
  - 5. How is it disposed of?









### Functional Unit (service provided)



QuickTime™ and a decompressor are needed to see this picture

QuickTime <sup>™</sup> and a decompressor are needed to see this picture.



 e.g. vehicle-km or passenger-km, 100 pages of printed sheet paper, cubic meter of refrigerated space, 1 kg of aluminum, etc.

### Not All Functional Units are Equal





#### "Eco-efficiency = service provided/impact"

### Life Cycle Perspective

- In theory boundaries start from earth as the source, and return to earth as the sink
- 2. Focus is on a product or service
- 3. Impact is evaluated at the receiver
- 4. Tracking is of materials
- 5. Time stands still
- 6. But this is hard to do, so...

### Life Cycle Perspective

- Boundaries start from earth as the source, and stop at emissions
- 2. Focus is on a product or service
- 3. Impact potentials are aggregated (e.g.CO2e)
- 4. Tracking is of materials
- 5. Time stands still
- 6. We call this Life Cycle Inventory or LCI

### Life Cycle Perspective

- This can be followed by an evaluation of the product and/or service and a redesign for improvement
- 2. Typically we evaluate alternatives for comparison
- 3. Some of the most challenging parts include
  - Identifying boundaries (what is included)
  - Functional unit to represent product or service
  - Allocation of impacts...who is responsible?

### LCA Methods

- Streamlined Life-cycle Assessment (SLCA)
- Eco-Audit (Ashby)
- Process Models (LCI)
- Input / Output Models (EIOLCA)



#### Ref: Thomas Graedel, Streamlined LCA

### Evaluation Matrix for SLCA, M<sub>ij</sub>

| Life Cycle<br>Stages                              | Materials<br>Choice | Energy<br>Use | Solid<br>Residues | Liquid<br>Residues | Gaseous<br>Residues |  |
|---------------------------------------------------|---------------------|---------------|-------------------|--------------------|---------------------|--|
| Extraction and<br>Refining                        | 11                  | 12            | 13                | 14                 | 15                  |  |
| Manufacturing                                     | 21                  | 22            | 23                | 24                 | 25                  |  |
| Produci<br>Delivery                               | 31                  | 32            | 33                | 34                 | 35                  |  |
| Product Use                                       | 41                  | 42            | 43                | 44                 | 45                  |  |
| <i>Refurbishment,<br/>Recycling,<br/>Disposal</i> | 51                  | 52            | 53                | 54                 | 55                  |  |

## Scoring $M_{21}$ (mat'ls used in mfg)

- M<sub>21</sub> = 0 when product mfg requires relatively large amounts of restricted mat'ls (limited supply, toxic, radioactive) and alternatives are available.
- M<sub>21</sub> =4 when mat'ls used in mfg are completely closed loop and minimum inputs are required.

### Automobile Example; Manufacturing Ratings 0-4 (best)

| Element Designation          |    |   | ement Value & Explanation:<br><mark>50s</mark> Auto    | <i>Element Value &amp; Explanation:</i><br>1990s Auto |                                                      |  |
|------------------------------|----|---|--------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------|--|
| Matls. choice <b>21</b>      |    | 0 | Chlorinated solvents, cyanide                          |                                                       | Good materials choices, except for lead solder waste |  |
| Energy use                   | 22 | 1 | Energy use during manufacture is high                  | 2                                                     | Energy use during manufacture is fairly high         |  |
| Solid residue                | 23 | 2 | Lots of metal scrap and packaging scrap produced       | 3                                                     | Some metal scrap and packaging scrap produced        |  |
| Liq. Residue                 | 24 | 2 | Substantial liquid residues from cleaning and painting | 3                                                     | Some liquid residues from cleaning and painting      |  |
| <i>Gas residue</i> <b>25</b> |    | 1 | Volatile hydrocarbons emitted from paint shop          | 3                                                     | Small amounts of volatile hydrocarbons emitted       |  |

### Product Assessment Matrix for the Generic 1950s Automobile [Graedel 1998]

|                  | Environmental Stressor |               |                   |                    |                     |        |  |  |
|------------------|------------------------|---------------|-------------------|--------------------|---------------------|--------|--|--|
| Life Cycle Stage | Materials<br>Choice    | Energy<br>Use | Solid<br>Residues | Liquid<br>Residues | Gaseous<br>Residues | Total  |  |  |
| Premanufacture   | 2                      | 2             | 3                 | 3                  | 2                   | 12/20  |  |  |
| Product          | 0                      | 1             | 2                 | 2                  | 1                   | 6/20   |  |  |
| Manufacture      |                        |               |                   |                    |                     |        |  |  |
| Product          | 3                      | 2             | 3                 | 4                  | 2                   | 14/20  |  |  |
| Delivery         |                        |               |                   |                    |                     |        |  |  |
| Product Use      | 1                      | 0             | 1                 | 1                  | 0                   | 3/20   |  |  |
| Refurbishment,   | 3                      | 2             | 2                 | 3                  | 1                   | 11/20  |  |  |
| Recycling,       |                        |               |                   |                    |                     |        |  |  |
| Disposal         |                        |               |                   |                    |                     |        |  |  |
| Total            | 9/20                   | 7/20          | 11/20             | 13/20              | 6/20                | 46/100 |  |  |

### Product Assessment Matrix for the Generic 1990s Automobile [Graedel 1998]

|                                          | <b>Environmental Stressor</b> |               |                   |                    |                     |        |  |
|------------------------------------------|-------------------------------|---------------|-------------------|--------------------|---------------------|--------|--|
| Life Cycle Stage                         | Materials<br>Choice           | Energy<br>Use | Solid<br>Residues | Liquid<br>Residues | Gaseous<br>Residues | Total  |  |
| Premanufacture                           | 3                             | 3             | 3                 | 3                  | 3                   | 15/20  |  |
| Product<br>Manufacture                   | 3                             | 2             | 3                 | 3                  | 3                   | 14/20  |  |
| Product<br>Delivery                      | 3                             | 3             | 3                 | 4                  | 3                   | 16/20  |  |
| Product Use                              | 1                             | 2             | 2                 | 3                  | 2                   | 10/20  |  |
| Refurbishment,<br>Recycling,<br>Disposal | 3                             | 2             | 3                 | 3                  | 2                   | 13/20  |  |
| Total                                    | 13/20                         | 12/20         | 14/20             | 16/20              | 13/20               | 68/100 |  |

# *Target plot of the estimated SLCA impacts for generic automobiles for the 1950s and 1990s*



distribution [Graedel 1998]

### How to deal with the complexity-

- LCA software and data bases
  - Hundreds of inputs and outputs
  - Uniformity
  - Can be non-transparent and dated
- Simplifications
  - Streamlined LCA
  - Fossil fuel energy and carbon

## Impacts from fossil fuels

- GWP CO<sub>2</sub>, CH<sub>4</sub>
- PM especially from coal
- NO<sub>x</sub> nitrogen cycle, acid rain, ground level ozone
- SO<sub>2</sub> acid rain
- Hazardous chemicals- CO, VOCs, Hg, and heavy metals

### CO2 and Energy



### Example: Eco-Audit for Energy

- 1. Materials Production
- 2. Manufacturing
- 3. Transport
- 4. Use Phase
- 5. End of Life





Ashby p 176 1 liter water 40g PET 1g PP 550km

#### Materials

QuickTime™ and a decompressor are needed to see this picture.

Ashby 2009





2/19/14

### Transportation

| Table 6.9     The approximate energy and carbon footprint of transportation* |                                                  |                                                                            |  |  |  |  |  |  |  |
|------------------------------------------------------------------------------|--------------------------------------------------|----------------------------------------------------------------------------|--|--|--|--|--|--|--|
| Transportation type and fuel                                                 | Energy (MJ/<br>metric<br>ton · km <sup>+</sup> ) | Carbon footprint<br>(kg CO <sub>2</sub> /metric<br>ton · km <sup>+</sup> ) |  |  |  |  |  |  |  |
| Ocean shipping—Diesel                                                        | 0.16                                             | 0.015                                                                      |  |  |  |  |  |  |  |
| Coastal shipping—Diesel                                                      | 0.27                                             | 0.019                                                                      |  |  |  |  |  |  |  |
| Barge—Diesel                                                                 | 0.36                                             | 0.028                                                                      |  |  |  |  |  |  |  |
| Rail—Diesel                                                                  | 0.25                                             | 0.019                                                                      |  |  |  |  |  |  |  |
| Articulated HGV (up to 55 metric tons)—Diesel                                | 0.71                                             | 0.05                                                                       |  |  |  |  |  |  |  |
| 40 metric ton truck—Diesel                                                   | 0.82                                             | 0.06                                                                       |  |  |  |  |  |  |  |
| 32 metric ton truck—Diesel                                                   | 0.94                                             | 0.067                                                                      |  |  |  |  |  |  |  |
| 14 metric ton truck—Diesel                                                   | 1.5                                              | 0.11                                                                       |  |  |  |  |  |  |  |
| Light goods vehicle—Diesel                                                   | 2.5                                              | 0.18                                                                       |  |  |  |  |  |  |  |
| Family car—Diesel                                                            | 1.4-2.0                                          | 0.1-0.14                                                                   |  |  |  |  |  |  |  |
| Family car—Gasoline                                                          | 2.2-3.0                                          | 0.14-0.19                                                                  |  |  |  |  |  |  |  |
| Family car—LPG                                                               | 3.9                                              | 0.18                                                                       |  |  |  |  |  |  |  |
| Family car—Hybrid gasoline-electric                                          | 1.55                                             | 0.10                                                                       |  |  |  |  |  |  |  |
| Super sports car and SUV—Gasoline                                            | 4.8                                              | 0.31                                                                       |  |  |  |  |  |  |  |
| Long haul aircraft—Kerosene                                                  | 6.5                                              | 0.45                                                                       |  |  |  |  |  |  |  |
| Short haul aircraft—Kerosene                                                 | 11-15                                            | 0.76                                                                       |  |  |  |  |  |  |  |
| Helicopter (Eurocopter AS 350)—Kerosene                                      | 55                                               | 3.30                                                                       |  |  |  |  |  |  |  |

\*Data sources are listed under Further reading.

 $^+1$  ton  $\cdot$  mile = 1.46 metric ton  $\cdot$  km

Ashby 2013 p142





### **Use Phase**





A-Rated Appliances-

0.12 kW/m3 (at 4°C)

and

0.15 kW/m3 (at -5° C)

Ashby p 180







2/19/14

## End of Life (EOL)

- Recycle
- Remanufacture
- •Reuse
- Landfill
- Incinerate





Recycling rates as fraction of supply

QuickTime™ and a decompressor are needed to see this picture.

Ashby 2009

| Table 7.3            | Recycle ener | gy and CO <sub>2</sub> for PET |                                                   |                                   |                       |                                        |
|----------------------|--------------|--------------------------------|---------------------------------------------------|-----------------------------------|-----------------------|----------------------------------------|
| Component            | Material     | Mass m kg                      | Recycle<br>energy <i>H<sub>rc</sub></i><br>MJ/kg* | Recycle<br>CO <sub>2</sub> kg/kg* | m.H <sub>tot</sub> MJ | m.(CO <sub>2</sub> ) <sub>tot</sub> kg |
| Bottle, 100<br>units | PET          | 4                              | 35                                                | 0.98                              | -188                  | -5.6                                   |

\*From the data sheets of Chapter 12.



Eco-Audit Result per 100 bottles: Materials dominate potential for recycle Credit, Ashby 1st ed

#### 2/19/14

Ashby 2009



Ashby 2nd ed. (Here for only one botttle) Shows disposal and potential EOL credit based on reusing the material. If the product is burned for energy the energy credit would still accrue, but not the CO2 credit. And this accounting would not indicate other potential emissions.

### Is bottled water good for the planet?

- Plastic waste
- Transportation waste
- Ground water depletion....



'96

Source: Beverage Digest

#### **Big Powers Like Coke and Pepsi** Face Threat From Bottled Waters

50

30

THE NEW YORK TIMES

#### By STEPHANIE STROM

Few things are more American than Coca-Cola.

But bottled water is washing away the palate trained to drain a bubbly soda. By the end of this decade, if not sooner, sales of bottled water are expected to surpass those of carbonated soft drinks, according to Michael C. Bellas, chief executive of the Beverage Marketing Corporation.

"I've never seen anything like it," said Mr. Bellas, who has watched water's rise in the industry since the 1980s.

Sales of water in standard lightweight plastic bottles grew at a

PHOTOGRAPH BY TONY CENI

On the other hand...

NY Times, Nov 2013



## Process Model for "U.S. Family Sedan"

- Estimated from 644 parts
- 73 different materials
- 120,000 miles life time
- 23 mpg
- total mass 1532 kg
- solvent based paints with controls



| Plastics        | 9.3% |
|-----------------|------|
| Ferrous         | 64%  |
| Non-<br>ferrous | 9%   |
| Fluids          | 4.8% |
| Other           | 13%  |
| Total           | 100% |

Sullivan et al SAE 1998<sup>35</sup>

## System Boundaries

- Extraction of materials from earth and materials processing
- 2. Sub assembly manufacture
- 3. Auto assembly
- 4. Use, maintenance & repair
- 5. Recovery, recycling and disposal

|                                         | Units | Generic  | Material   | Manufact | Operation | Maintenanc | End Of Life |
|-----------------------------------------|-------|----------|------------|----------|-----------|------------|-------------|
|                                         |       | Vehicle  | Production | uring    |           | e & Repair |             |
| Inflow                                  |       |          |            | ×        |           |            |             |
| (r) Bauxite (Al2O3, ore)                | Kg    | 32       | 32         | 0.0026   | 0         | 0.021      | 0           |
| (r) Bauxite Rich Soil                   | Kg    | 222      | 222        | 0        | 0         | 0          | 0 ·         |
| (r) Chromium (Cr, in ground)            | Kg    | 0.91     | 0.91       | 0        | 0         | 0          | 0           |
| (r) Coal (in ground)                    | Kg    | 2,509    | 1,033      | 618      | 748       | 100        | 11          |
| (r) Copper (Cu, in ground)              | Kg    | 23       | 23         | 0        | 0         | 0          | 0           |
| (r) Ilmenite (FeO.TiO2, in ground)      | Kg    | 0.97     | 0.32       | 0.65     | 0         | 9.9 E-05   | 0           |
| (r) Iron (Fe, in ground)                | Kg    | 1,443    | 1,440      | 0.38     | 0         | 3.0        | 0.045       |
| (r) Lead (Pb, in ground)                | Kg    | 33       | 13         | 0.26     | 0         | 20         | 0           |
| (r) Limestone (CaCO3, in ground)        | Kg    | 458      | 199        | 95       | 142       | 21         | 2.          |
| (r) Manganese (Mn, in ground)           | Kg    | 24       | 23         | 0        | 0         | 0.76       | 0           |
| (r) Natural Gas (in ground)             | Kg    | 1,810    | 491        | 216      | 1,027     | 73         | 2.2         |
| (r) Oil (in ground)                     | Kg    | 16,486   | 631        | 87       | 15,562    | 171        | 35          |
| (r) Olivine (in ground)                 | Kg    | 8.3      | 8.3        | 0        | 0         | 0.0032     | 0           |
| (r) Perlite (SiO2, in ground)           | Kg    | 2.4      | 2.3        | 0.056    | 0         | 0          | 0           |
| (r) Platinum (Pt, in ground)            | Kg    | 0.0015   | 0.0015     | 0        | 0         | 0          | 0           |
| (r) Pyrite (FeS2, in ground)            | Kg    | 13       | 13         | 0        | 0         | 4.3 E-05   | 0           |
| (r) Rhodium (Rh, in ground)             | Kg    | 2.9 E-04 | 2.9 E-04   | 0        | 0         | 0          | 0           |
| (r) Sand (in ground)                    | Kg    | 179      | 140        | 0        | 0         | 12         | 27          |
| (r) Sulfur (S)                          | Kg    | 0.1      | 0.08       | 0.022    | 0         | 4.0 E-05   | 0           |
| (r) Tin (Sn, in ground)                 | Kg    | 0.48     | 0.067      | 0.41     | 0         | 0          | 0           |
| (r) Tungsten (W, in ground)             | Kg    | 0.012    | 0.011      | 0        | 0         | 6.8 E-04   | 0           |
| (r) Uranium (U, in ground) <sup>*</sup> | Kg    | 0.039    | 0.01       | 0.0089   | 0.018     | 0.0019     | 2.5 E-04    |
| (r) Zinc (Zn, in ground)                | Kg    | 22       | 22         | 0        | 0         | 4.3 E-04   | 0           |
| Cullet (from stock)                     | Kg    | 0.013    | 0          | 0.013    | 0         | 0          | 0           |
| Iron Scrap                              | Kg    | 243      | 200        | 0.05     | 0         | 43         | 0           |
| Natural Rubber                          | Kg    | 25       | 8.8        | 0        | 0         | 16         | 0           |
| Raw Materials (alloying additives)      | Kg    | 4.0      | 4.0        | 0        | 0         | 0          | 0           |
| Raw Materials (Iron Casting Alloys)     | Kg    | 12       | 12         | 0        | 0         | 0          | 0           |
| Raw Materials (unspecified)             | Kg    | 17       | 7.4        | 9.2      | 0         | 0.32       | 0           |
| Steel Scrap                             | Kg    | 474      | 428        | 0        | 0         | 46         | 0           |
| Water Used (total)                      | Liter | 76,959   | 59,672     | 9,818    | 2,007     | 5,459      | 4.0         |

Table 7: LCI of the Generic Vehicle (Raw Materials Use)

<sup>a</sup> From electricity production

Inputs

|                                    | Units | Generic    | Material   | Manufacturing | Operation  | Maintenanc | End Of   |
|------------------------------------|-------|------------|------------|---------------|------------|------------|----------|
|                                    | 5     | Vehicle    | Production |               |            | e & Repair | Life     |
| Outflow                            |       |            |            |               |            |            |          |
| (a) Carbon Dioxide (CO2, fossil)   | gm    | 59,092,200 | 4,439,850  | 2,562,160     | 51,331,400 | 615,481    | 143,273  |
| (a) Carbon Monoxide (CO)           | gm    | 1,942,230  | 63,813     | 5,914         | 1,832,728  | 39,088     | 683      |
| (a) Hydrocarbons (except methane)  | gm    | 256,640    | 12,627     | 7,349         | 234,520    | 1,974      | 170      |
| (a) Hydrogen Chloride (HCI)        | gm    | 725        | 278        | 10            | 402        | 29         | 5.7      |
| (a) Hydrogen Fluoride (HF)         | gm    | 113        | 59         | 1.1           | 50         | 2.0        | 0.71     |
| (a) Lead (Pb)                      | gm    | 115        | 50         | 1.2           | 1.1        | 63         | 0.015    |
| (a) Methane (CH4)                  | gm    | 65,806     | 11,773     | 5,534         | 44,500     | 3,854      | 144      |
| (a) Nitrogen Oxides (NOx as NO2)   | gm    | 254,193    | 12,871     | 8,295         | 229,465    | 2,755      | 806      |
| (a) Particulates (unspecified)     | gm    | 53,526     | 26,470     | 8,235         | 16,525     | 2,050      | 247      |
| (a) Sulfur Oxides (SOx as SO2)     | gm    | 133,326    | 30,491     | 14,917        | 83,180     | 4,424      | 315      |
| (w) Ammonia (NH4+, NH3, as N)      | gm    | 2,354      | 116        | 17            | 2,208      | 12         | 1.9      |
| (w) Dissolved Matter (unspecified) | gm    | 7,686      | 4,527      | 1,118         | 982        | 1,041      | 17       |
| (w) Heavy Metals (total)           | gm    | 39         | 29         | 7.5           | 0          | 3.1        | 0.0013   |
| (w) Oils (unspecified)             | gm    | 7,611      | 130        | 516           | 6,918      | 39         | 7.4      |
| (w) Other Organics (unspecified)   | gm    | 80         | 77         | 0.43          | 0          | 2.5        | 2.2 E-04 |
| (w) Phosphates (as P)              | gm    | 15         | 7.2        | 7.8           | 0          | 0.42       | 1.6 E-05 |
| (w) Suspended Matter (unspecified) | gm    | 74,321     | 2,779      | 2,450         | 68,522     | 512        | 58       |
| Waste (municipal and industrial)   | Kg    | 415        | 22         | 56            | 8.0 E-05   | 41         | 296      |
| Waste (total)                      | Kg    | 4,213      | 2,440      | 386           | 783        | 277        | 326      |
| Energy Reminder                    |       |            |            |               |            |            |          |
| E (HHV) Feedstock Energy           | MJ    | 28,016     | 18,574     | 953           | 308        | 8,182      | 0        |
| E (HHV) Fossil Energy              | MJ    | 967,367    | 90,741     | 38,414        | 819,791    | 16,274     | 2,147    |
| E (HHV) Non-Fossil Energy          | MJ    | 6,053      | 3,719      | 803           | 1,142      | 373        | 16       |
| E (HHV) Process Energy             | MJ    | 934,369    | 74,531     | 36,691        | 814,014    | 8,389      | 746      |
| E (HHV) Total Energy               | MJ    | 973,418    | 94,460     | 39,217        | 820,933    | 16,645     | 2,164    |
| E (HHV) Transportation Energy      | MJ    | 11,033     | 1,355      | 1,574         | 6,612      | 74         | 1,418    |
| Electricity                        | MJ    | 10,577     | 2,468      | 6,769         | 0          | 1,203      | 136      |

#### Table 8: LCI of the Generic Vehicle (Outflows and Energy Use)

#### **Total Energy Use by Lifecycle Stage**

Total Energy 973 GJ/car



### Compare eco-audit and Sullivan

### Table 1Eco-Audit for SullivanÕsAutomobile (Primarily using energy values from Smil)

| Bill of Materials (BOM)          | Mass (kg) | MJ/kg      | Energy (MJ) |
|----------------------------------|-----------|------------|-------------|
| Plastics (PUR, PVC, Nylon, ABSÉ) | 143kg     | 100 M J/kg | 14,300      |
| Non-Ferrous                      |           |            |             |
| Alu                              | 93kg      | 200        | 18,600      |
| Cu                               | 18        | 100        | 1,800       |
| Brass (Copper ~ 65%, zinc ~ 35%) | 8.5       | 90         | 765         |
| Lead                             | 13        | 50         | 650         |
| Other (Zn, CrÉ)                  | 5.5       | 30         | 165         |
| Iron                             | 156.5 kg  | 25         | 3,913       |
| Steel                            | 828.5 kg  | 50         | 41,425      |
| Fluids (gasoline, oil,É .)       | 74        | 10         | 740         |
| Rubber (not tire)                | 60        | 100        | 6,000       |
| Glass                            | 42        | 20         | 820         |
| Tires                            | 45        | 100        | 4,500       |
| Other (textiles, carpetÉ)        | 45        | 20         | 900         |
| TOTAL                            |           |            | 94,578      |

### LCA software

- Boustead Consulting Database and Software
- <u>ECO-it:</u> Eco-Indicator Tool for environmentally friendly design PRé Consultants
- EDIP Environmental design of industrial products Danish EPA
- <u>EIOLCA</u> Economic Input-Output LCA at Carnegie Mellon University
- GaBi (Ganzheitlichen Bilanzierung holistic balancing) Five Winds International/University of Stuttgart (IKP)/PE Product Engineering
- IDEMAT Delft University Clean Technology Institute Interduct Environmental Product Development
- <u>KCL-ECO</u> KCL LCA software
- <u>LCAiT</u> CIT EkoLogik (Chalmers Industriteknik)
- <u>SimaPro</u> PRé Consultants
- <u>TEAM</u>(TM) (Tools for Environmental Analysis and Management) Ecobalance, Inc.
- <u>Umberto</u> An advanced software tool for Life Cycle Assessment Institut für Umweltinformatik

### LCA software

- Input structuring and management
- Data bases
  - EcoInvent with SimaPro
  - GaBi data bases
- Data analysis and structuring

### LCI - Inventory 1 kg of Cardboard Box

| No | Substance                          | Compartment | Unit | Total       | Production cardboard box I | Paper wood-free C B250 |
|----|------------------------------------|-------------|------|-------------|----------------------------|------------------------|
| 1  | Additives                          | Raw         | kg   | 0.007       | 0.007                      | х                      |
| 2  | Artificial fertilizer              | Raw         | kg   | 0.0000473   | х                          | 0.0000473              |
| 3  | Bauxite, in ground                 | Raw         | kg   | 0.00000343  | х                          | 0.00000879             |
| 4  | Biomass                            | Raw         | kg   | 0.000629    | х                          | 0.000629               |
| 5  | Clay, unspecified, in ground       | Raw         | kg   | 0.013       | х                          | 0.013                  |
| 6  | Coal, 18 MJ per kg, in ground      | Raw         | kg   | 0.0146      | х                          | 0.0021                 |
| 7  | Coal, brown, 8 MJ per kg, in grou  | Raw         | kg   | 0.0112      | х                          | 0.00135                |
| 8  | Complexing agent                   | Raw         | kg   | 0.00000417  | х                          | 0.00000417             |
| 9  | Defoamer                           | Raw         | kg   | 0.0000158   | х                          | 0.0000158              |
| 10 | Energy, potential, stock, in barra | Raw         | MJ   | 0.688       | х                          | 0.0567                 |
| 11 | Gas, natural, 35 MJ per m3, in g   | Raw         | m3   | 0.00247     | х                          | х                      |
| 12 | Gas, natural, 36.6 MJ per m3, in   | Raw         | m3   | 0.0154      | х                          | 0.0106                 |
| 13 | Gas, natural, feedstock, 35 MJ pe  | Raw         | m3   | 0.0051      | х                          | х                      |
| 14 | Glue                               | Raw         | kg   | 0.0052      | 0.0052                     | х                      |
| 15 | Ink                                | Raw         | kg   | 0.0183      | 0.0183                     | Х                      |
| 16 | Iron ore, in ground                | Raw         | kg   | 0.000002    | х                          | 0.00000302             |
| 17 | Limestone, in ground               | Raw         | kg   | 0.0232      | х                          | 0.0232                 |
| 18 | Magnesium sulfate                  | Raw         | kg   | 0.0000251   | x                          | 0.0000251              |
| 19 | Manure                             | Raw         | kg   | 0.00506     | х                          | 0.00506                |
| 20 | Oil                                | Raw         | kg   | 0.0002      | 0.0002                     | х                      |
| 21 | Oil, crude, 42.6 MJ per kg, in gro | Raw         | kg   | 0.0202      | х                          | 0.00254                |
| 22 | Oil, crude, feedstock, 41 MJ per   | Raw         | kg   | 0.00561     | х                          | 0.0011                 |
| 23 | Pesticides                         | Raw         | kg   | 0.00000407  | х                          | 0.00000407             |
| 24 | Potatoes                           | Raw         | kg   | 0.00105     | х                          | 0.00105                |
| 25 | Sand and clay, unspecified, in g   | Raw         | kg   | 0.00000017  | x                          | x                      |
| 26 | Sand, unspecified, in ground       | Raw         | kg   | 0.000000135 | х                          | 0.00000135             |
| 27 | Sodium chloride, in ground         | Raw         | kg   | 0.000817    | x                          | 0.000749               |

### Pros and Cons of Methods

- Streamlined- there is a need for an early design evaluation tool but this one maybe too subjective
- Eco-Audit very hands on, often good enough, but limited in the number of impacts
- Software does the heavy lifting, can be referenced, but depends on the data base

### Limits to Process Model



## Input/Output Analysis



Subdividing the economy in sectors that interact with each other. The sectors include all activities so there are no truncation errors, however to be manageable we can only handle a few hundred sectors, therefore each sector will include a lot of different activities. "Aggregation errors"  $_{2/19/14}$ 

### Simplified input-output table for a

### three-sector economy

Table 2.1 from Leontief, Oxford Press '86

|                          | to | Sector 1:<br>:Agriculture | Sector 2:<br>Manufacture | Sector 3:<br>House- | Total<br>Output               |
|--------------------------|----|---------------------------|--------------------------|---------------------|-------------------------------|
| From:                    |    |                           |                          | Holds               |                               |
| Sector 1:<br>Agriculture |    | 25                        | 20                       | 55                  | 100<br>bushels of<br>wheat    |
| Sector 2:<br>Manufacture |    | 14                        | 6                        | 30                  | 50 yards<br>of cloth          |
| Sector 3:<br>Households  |    | 80                        | 180                      | 40                  | 300 man-<br>years of<br>labor |

Physical Units

| From:                    | to | Sector 1:<br>:Agriculture | Sector 2:<br>Manufacture | Sector 3:<br>House-<br>Holds | Total<br>Output               |
|--------------------------|----|---------------------------|--------------------------|------------------------------|-------------------------------|
| Sector 1:<br>Agriculture |    | 25                        | 20                       | 55                           | 100<br>bushels of<br>wheat    |
| Sector 2:<br>Manufacture |    | 14                        | 6                        | 30                           | 50 yards<br>of cloth          |
| Sector 3:<br>Households  |    | 80                        | 180                      | 40                           | 300 man-<br>years of<br>labor |



1

### In matrix form

 $(X_1 - X_{11}) - X_{12} = f_1$  $-X_{21} + (X_2 - X_{22}) = f_2$ or using coefficients  $a_{ii} = X_{ii}/X_i$  $(1 - a_{11})X_1 - a_{12}X_2 = f_1$  $-a_{21}X_1 + (1 - a_{22})X_2 = f_2$ or  $[I-a] \{x\} = \{f\}$ 

2/19/14

 $[I - a] \{x\} = \{f\}$ 

 $\{x\} = [I - a]^{-1} \{f\}$ 

 $\{e\} = [R]_{\{X\}}$ 

 $\{e\} = [R] [I-a]^{-1} \{f\}$ 

where [R] is a matrix with diagonal elements (impact/dollar) and {e} = environmental impacts

### *CMU website* <u>http://www.eiolca.net/</u>

| Image: Second state Image: Second state   Imag | Economic Input-Output Life Cycle Assessment - Carne<br>http://www.eiolca.net/<br>ce Groupch Projects Nanotubes cature News MIT Course Home Page Hotel Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | egie Mellon University<br>mbasr - Contact Information                                                                                                                                                                      | • Q+ Goo  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Economic Input-Output Lif                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                            |           |
| <b>Carnegie Mellon</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Search Only Economic Input-Output Life Cycle A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ssessment SEARCH                                                                                                                                                                                                           | GO        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | GREEN DESIGN INSTITUTE   ANNOUNCEMENTS   ACKNOWLEDGEMENTS   NEED HELP?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                            |           |
| Method<br>Models<br>Use the Tool<br>Usage and Copyright                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>EIO-LCA:</b> Free, Fast, Easy Life Cycle Assessment<br>The Economic Input-Output Life Cycle Assessment (EIO-LCA) method<br>estimates the materials and energy resources required for, and the<br>environmental emissions resulting from, activities in our economy. The<br>EIO-LCA method was theorized and developed by economist Wassily<br>Leontief in the 1970s based on his earlier input-output work from the 1930s<br>for which he received the Nobel Prize in Economics. Researchers at the<br>Green Design Institute of Carnegie Mellon University operationalized<br>Leontief's method in the mid-1990s, once sufficient computing power was<br>widely available to perform the large-scale matrix manipulations required | An EIO-LCA model of the<br>2002 US economy is<br>available on the <u>Use The</u><br><u>Model</u> page for non-<br>commercial use. <u>Contact u</u><br>for details on commercial<br>use licenses.<br>An EIO-LCA model based | <u>IS</u> |
| Practitioners<br>Corporate Users                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in real-time. This website takes the EIO-LCA method and transforms it into<br>a user-friendly on-line tool to quickly and easily evaluate a commodity or<br>service, as well as its supply chain. The results from the EIO-LCA model<br>and this website are free for non-commercial use and may not be used in<br>other derivative works or websites without permission.                                                                                                                                                                                                                                                                                                                                                              | on the 2002 China econom<br>is now publicly available.<br>See the <u>Models</u> page for<br>more information.                                                                                                              | ny        |

Results from using the EIO-LCA on-line tool provide guidance on the relative impacts of different types of products, materials, services, or industries with respect to resource use and emissions throughout the curply chain. Thus, the effect of producing an automobile would include

|                                                                       |                                                                                           | eiolca.net – Free Life                       | Cycle Assessment on th | le Internet    |             |           |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------|------------------------|----------------|-------------|-----------|
| • • • • •                                                             | http://www.eiolca.net/cgi-bin/d                                                           | ft/use.pl                                    |                        |                | G           | • Q+ G    |
| Mill (grindiencyclopedia Po                                           | arce Groupch Projects Nanotub                                                             | es cature News MIT Course                    | e Home Page Hotel Am   | basr - Contact | Information | 004 for M |
| eiolca.net - Free Life Cycle                                          |                                                                                           |                                              |                        | Gree           | Deni        | 2         |
|                                                                       |                                                                                           |                                              |                        | INST           | ITUTE       |           |
| eloica.net                                                            |                                                                                           |                                              |                        |                |             |           |
| LOG OUT   HOME >> BROWSE INDUSTRY E                                   | ENCHMARK US DEPT OF COMMERCE EI                                                           | O MODEL FROM 1997 MODEL                      |                        |                |             |           |
| Use Standard M                                                        | odels Create Custom M                                                                     | lodel Document                               | tation                 |                |             |           |
| Choose a mo                                                           | odel:                                                                                     |                                              |                        |                |             |           |
| Your current mod<br>from 1997, white<br>US 1997 (491)<br>Select indus | el is the Industry Benchmark U<br>ch is a Producer Price Model. (Sh<br>try and sector:    | JS Dept of Commerce EIO<br>now more details) | model                  |                |             |           |
| Search for a sector                                                   | or by keyword:                                                                            |                                              |                        |                |             |           |
| Or browse for a s                                                     | ector below:                                                                              |                                              |                        |                |             |           |
| Select a Broad Sec                                                    | tor Group                                                                                 | Select a Deta                                | ailed Sector           |                | A<br>Y      |           |
| 3 Select the an<br>1 Million (<br>4 Select the ca                     | mount of economic acti<br>Collars <u>(Show more details)</u><br>Ategory of results to dis | ivity for this sector:<br>splay:             |                        |                |             |           |
| Economic Activity                                                     | (Show more details)                                                                       |                                              |                        |                |             |           |
| 5 Run the mod                                                         | lel:                                                                                      |                                              |                        |                |             |           |

# *I/O Example: Automobile* see Ch 6 of HLM

- Sector #336110: Automobile and light truck manufacturing
- 7.57 TJ/M\$ = 7.57 MJ/\$
- 7.57 MJ/\$ X \$16,000 = 121 GJ
- 193,800 miles/23.6 mpg = 8212 gal
- Smil (p 392) ~45 MJ/kg, 2.8 kg/gal
- 8212 X 2.8 x 45 = 1035 GJ



FIGURE 6-3. Energy Use in the Automobile Life Cycle

### Comparisons between Models

#### Summary for Different Modeling Approaches

Late 1990 Gearly 2000 family auto (~1500 kg)

| Model                   | Materials (GJ) | Mfg (GJ)           | Total (GJ)     |
|-------------------------|----------------|--------------------|----------------|
| Sullivan                | 94.5           | 39                 | 133.5          |
| HLM (Ch 6 see text p    |                |                    | 138            |
| 73)                     |                |                    |                |
| EIOLCA 1997 (\$16,009   |                |                    | 121            |
| ĞHLM deflator,          |                |                    |                |
| producer price)         |                |                    |                |
| EIOLCA 1997 (\$15,276   |                |                    | 116            |
| Čepi deflator, producer |                |                    |                |
| price)                  |                |                    |                |
| EIOLCA 2002 (\$17,126   |                |                    | 143            |
| producer price)         |                |                    |                |
| Eco-Audit (above)       | 94.6           | 30.6 (est 20MJ/kg) | 125            |
| Mean Value (n=6)        |                |                    | 129.4          |
| Standard Deviation      |                |                    | 9.5 (about 7%) |

### Issues with EIOLCA

- Builds on economic data
- Economy wide effects
- Highly aggregated
- Time delay
- Normalized by economic activity (e.g. MJ/\$)
- Trouble with foreign trade
- Very powerful ("requires professional supervision")

## Issues with LCI



- Accuracy
  - Time and location dependent
  - Possible variation not usually addressed
  - Monte Carlo simulations
  - Product competitions and claims
- Dynamic
  - "attributional" and,
  - "consequential" how things might change

## Accuracy:e.g. Aluminum



University of Bath, 2008

 Sources of errors: Boundaries;time, space, truncation, aggregation, unavailable data

## Defining the Boundaries



 Analysis generally goes outside your area of immediate data access

## Issues with LCI

- Assessment LCI to LCA
  - Path ways, exposure, sensitivity
  - Aggregation of impacts

Midpoint

categories

Human toxicity Respiratory effects

Ionizing radiation Ozone layer depletion Photochemical oxidation

Aquatic ecotoxicity

Terrestrial ecotoxicity
Aquatic acidification

Aquatic eutrophication Terrestrial acid/nutr

Land occupation Global warming Non-renewable energy

Mineral extraction

Water (turbined)

Water (non-turbined)

- Weightings

LCI results



Resources

## New Developments

- Standards ISO 14040series, SETAC, UNEP
- Boundaries
  - Custom and Hybrid EIOLCA (CMU site)
  - Cost of ownership models (Williams Ch 7 TDR)
  - Process + I/O = Hybrid (Williams...)
  - Eco-system services (Bakshi Ch 3 TDR)
  - Multiregional I/O models, e.g trading (Hertwich, Mueller...)



### References

- 1) Thomas Graedel, Streamlined Life-Cycle Assessment, 1998
- 2) Michael F. Ashby "Materials and the Environment" 2nd ed. Butterworth - Heinemann, 2013
- 3) Sullivan, J., et al, "Life Cycle Inventory of a Generic US Family Sedan" Proceed Total Life Cycle Conf. SAE Internat'l, 1998
- 4) Chris T. Hendrickson, Lester B. Lave and H. Scott Matthews Environmental Life Cycle Assessment of Goods and Services – An Input-Output Approach RFF Press book, 2006 (Ch 1, 2, 5, 6)