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1. Liboff, problem 5.12

2. The parity operation flips the sign of the spatial coordinates. This can be formalized
by defining the parity operator (in one dimension), P,

Pf(z) = f(-=)
Now consider a free particle in one dimension with Hamiltonian, H= p?/2m. Prove

that parity commutes with this Hamiltonian, [f[ , ﬁ] = 0. Now there must be a set of

eigenfunctions common to both energy and parity. Starting from the two independent
energy eigenfunctions,

¢1(z) = eik‘z
¢y (z) = e

construct two linear combinations of ¢; and ¢,,

Py = Tugy + T2,
Yy = To¢) + Ty

that are common eigenfunctions to both energy and parity. State all the eigenvalues
for both operators.

3. For a quantum particle moving in a 3D potential, V(x) = V(x,y,z), state which
directions, if any, of the particle’s momentum commute with the Hamiltonian if the
potential takes the following form:

(a) V = ax + by? + cz3, where the constants, a, b, and ¢ are all positive.
(b) V = aarctan(xz/L)
(c) V =bexp(—y?/d?)

4. For which systems characterized by the potentials listed below, do the energy and
parity (in 3D) observables have common eigenfunctions?

(a) V = e?/r; where r = \/m
(b) V =ax+ by2 +cz?
(c) V =axy



