Fall Term 2006

22.02 Introduction to APPLIED NUCLEAR PHYSICS

Problem Set #9

Prof. Molvig

Posted: November 30, 2006 DUE: December 7, 2006

- 1. Krane, problems 10.5, 10.6
- 2. Krane, problems 9.3, 9.6, 9.9, 9.11
- 3. This is the story of ^{99m}Tc , an amazing itotope that produces only gamma rays for diagnostic purposes in nuclear medicine. The "m" in exponent means metastable since it has half life of 6 hours. Long enough to be injected into patient and utilized. Short enough that radiation intensity is high. This metastable state has spin/parity, $\frac{1}{2}^-$, and decays by gamma emission to its ground state with, $\frac{9}{2}^+$. First a couple questions about the gamma decay.
 - Explain the $\frac{9}{2}^+$ ground state using the shell model.
 - Give the expected mode of gamma decay, i.e. multipolarity and electric/magnetic nature.
 - Estimate lifetime for transition based on Weisskopf formulas. Don't expect to get that close to 6 hours (remember how approximate those formulas are).

Now lets understand how this isotope is produced. Start with ^{98}Mo produced as a fission product (also produced in accelerators). This is bombarded with neutrons to produce, ^{99}Mo , with spin/parity of $\frac{1}{2}^+$. Compare this to shell model prediction and try to explain how the $\frac{1}{2}^+$ spin comes about. ^{99m}Tc is produced by a beta decay from ^{99}Mo . Can you explain why this results in the metastable state with $\frac{1}{2}^-$, rather than the ground state with, $\frac{9}{2}^+$? It turns out that ^{99m}Tc can be separated chemically from the ^{99}Mo that produced it and this pure gamma emitter is then what is used in applications.