Symmetry Elements and Operations

Christopher C. Cummins

Massachusetts Institute of Technology

ccummins@mit.edu

- □ → - 4 三

- Planes of Reflection, σ
- Axes of Rotation, C_n
- The Inversion Center, i
- Improper Axes of Rotation, S_n
- The Identity, E

2 Symmetry Operations

mirror planes

rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Outline

- Planes of Reflection, σ
- Axes of Rotation, C_n
- The Inversion Center, i
- Improper Axes of Rotation, S_n
- The Identity, E

2 Symmetry Operations

< 4 ₽ > < 3

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

A Molecule with Two Mirror Planes The H₂O Molecule

• The O and H atoms lie in the same plane

- The plane of the molecule is a mirror plane, σ
- The plane \perp to the molecular plane is a second σ
- The molecular plane is taken as the yz plane
- The mirrors are $\sigma_v(xz)$ and $\sigma'_v(yz)$
- The subscript v is for "vertical"

Image: A mathematical states and a mathem

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

A Molecule with Two Mirror Planes The H₂O Molecule

- The O and H atoms lie in the same plane
- $\bullet\,$ The plane of the molecule is a mirror plane, $\sigma\,$
- The plane \perp to the molecular plane is a second σ
- The molecular plane is taken as the yz plane
- The mirrors are $\sigma_v(xz)$ and $\sigma'_v(yz)$
- The subscript v is for "vertical"

Image: A math a math

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

A Molecule with Two Mirror Planes The H₂O Molecule

- The O and H atoms lie in the same plane
- $\bullet\,$ The plane of the molecule is a mirror plane, $\sigma\,$
- ullet The plane \bot to the molecular plane is a second σ
- The molecular plane is taken as the yz plane
- The mirrors are $\sigma_v(xz)$ and $\sigma'_v(yz)$
- The subscript v is for "vertical"

< □ > < 同 > < 三 >

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

A Molecule with Two Mirror Planes The H₂O Molecule

- The O and H atoms lie in the same plane
- $\bullet\,$ The plane of the molecule is a mirror plane, $\sigma\,$
- ullet The plane \bot to the molecular plane is a second σ
- The molecular plane is taken as the yz plane
- The mirrors are $\sigma_v(xz)$ and $\sigma'_v(yz)$
- The subscript v is for "vertical"

< □ > < 同 > < 三 >

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

A Molecule with Two Mirror Planes The H₂O Molecule

- The O and H atoms lie in the same plane
- $\bullet\,$ The plane of the molecule is a mirror plane, $\sigma\,$
- ullet The plane \bot to the molecular plane is a second σ
- The molecular plane is taken as the yz plane
- The mirrors are $\sigma_v(xz)$ and $\sigma'_v(yz)$
- The subscript v is for "vertical"

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

A Molecule with Two Mirror Planes The H₂O Molecule

- The O and H atoms lie in the same plane
- $\bullet\,$ The plane of the molecule is a mirror plane, $\sigma\,$
- ullet The plane \bot to the molecular plane is a second σ
- The molecular plane is taken as the yz plane
- The mirrors are $\sigma_v(xz)$ and $\sigma'_v(yz)$
- The subscript v is for "vertical"

< □ > < 同 > < 回 >

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

A Molecule with Two Mirror Planes The H₂O Molecule

- The O and H atoms lie in the same plane
- $\bullet\,$ The plane of the molecule is a mirror plane, $\sigma\,$
- ullet The plane \bot to the molecular plane is a second σ
- The molecular plane is taken as the yz plane
- The mirrors are $\sigma_v(xz)$ and $\sigma'_v(yz)$
- The subscript v is for "vertical"

< □ > < 同 > < 回 >

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Some Other Molecules Does the molecule have a mirror plane?

• Ammonia, NH₃

- Sulfur tetrafluoride, SF₄
- Dioxygen, O₂
- White phosphorus, P₄
- Diborane, B₂H₆
- Myoglobin

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Some Other Molecules Does the molecule have a mirror plane?

- Ammonia, NH₃
- Sulfur tetrafluoride, SF₄
- Dioxygen, O₂
- White phosphorus, P₄
- Diborane, B₂H₆
- Myoglobin

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Some Other Molecules Does the molecule have a mirror plane?

- Ammonia, NH₃
- Sulfur tetrafluoride, SF₄
- Dioxygen, O₂
- White phosphorus, P₄
- Diborane, B₂H₆
- Myoglobin

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Some Other Molecules Does the molecule have a mirror plane?

- Ammonia, NH₃
- Sulfur tetrafluoride, SF₄
- Dioxygen, O₂
- White phosphorus, P₄
- Diborane, B₂H₆
- Myoglobin

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Some Other Molecules Does the molecule have a mirror plane?

- Ammonia, NH₃
- Sulfur tetrafluoride, SF₄
- Dioxygen, O₂
- White phosphorus, P₄
- Diborane, B₂H₆
- Myoglobin

<ロト < 同ト < 三ト

- ∢ ⊒ →

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Some Other Molecules Does the molecule have a mirror plane?

- Ammonia, NH₃
- Sulfur tetrafluoride, SF₄
- Dioxygen, O₂
- White phosphorus, P₄
- Diborane, B₂H₆
- Myoglobin

< □ > < 同 > < 回 >

< ∃ →

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Some Other Molecules Does the molecule have a mirror plane?

- Ammonia, NH₃
- Sulfur tetrafluoride, SF₄
- Dioxygen, O₂
- White phosphorus, P₄
- Diborane, B₂H₆
- Myoglobin

< □ > < 同 > < 回 >

< ∃ →

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Outline

Symmetry Elements

• Planes of Reflection, σ

• Axes of Rotation, C_n

- The Inversion Center, *i*
- Improper Axes of Rotation, S_n
- The Identity, E

2 Symmetry Operations

< 4 → < 三

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Axes of Rotation, C_n These have *n*-fold axes of rotation

What is *n*?

- Ammonia, NH₃
- Cubane, (CH)₈
- Water, H₂C
- Buckminsterfullerene, C₆₀
- Tick-Borne Encephalitis Virus

(日) (同) (三) (三)

э

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Axes of Rotation, C_n These have *n*-fold axes of rotation

What is *n*?

- Ammonia, NH₃
- Cubane, (CH)₈
- Water, H₂C
- Buckminsterfullerene, C₆₀
- Tick-Borne Encephalitis Virus

(日) (同) (三) (三)

э

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Axes of Rotation, C_n These have *n*-fold axes of rotation

What is *n*?

- Ammonia, NH₃
- Cubane, (CH)₈
- Water, H₂O
- Buckminsterfullerene, C₆₀
- Tick-Borne Encephalitis Virus

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Axes of Rotation, C_n These have *n*-fold axes of rotation

What is *n*?

- Ammonia, NH₃
- Cubane, (CH)₈
- Water, H₂O
- Buckminsterfullerene, C₆₀
- Tick-Borne Encephalitis Virus

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Axes of Rotation, C_n These have *n*-fold axes of rotation

What is *n*?

- Ammonia, NH₃
- Cubane, (CH)₈
- Water, H₂O
- Buckminsterfullerene, C₆₀
- Tick-Borne Encephalitis Virus

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Axes of Rotation, C_n Some observations based upon symmetry

• Ammonia, NH₃, has a single "higher-order" axis of rotation denoted C_3

- Molecules with a C_n axis where n ≥ 3 have degenerate electronic energy levels
- Molecules with a C_n axis where n ≥ 3 have degenerate vibrational energy levels
- Water, H₂O, has a single C₂ axis and thus has no degeneracies required by symmetry

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Axes of Rotation, C_n Some observations based upon symmetry

- Ammonia, NH₃, has a single "higher-order" axis of rotation denoted C_3
- Molecules with a C_n axis where n ≥ 3 have degenerate electronic energy levels
- Molecules with a C_n axis where n ≥ 3 have degenerate vibrational energy levels
- Water, H₂O, has a single C₂ axis and thus has no degeneracies required by symmetry

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Axes of Rotation, C_n Some observations based upon symmetry

- Ammonia, NH₃, has a single "higher-order" axis of rotation denoted C_3
- Molecules with a C_n axis where n ≥ 3 have degenerate electronic energy levels
- Molecules with a C_n axis where n ≥ 3 have degenerate vibrational energy levels
- Water, H₂O, has a single C₂ axis and thus has no degeneracies required by symmetry

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Axes of Rotation, C_n Some observations based upon symmetry

- Ammonia, NH₃, has a single "higher-order" axis of rotation denoted C_3
- Molecules with a C_n axis where n ≥ 3 have degenerate electronic energy levels
- Molecules with a C_n axis where n ≥ 3 have degenerate vibrational energy levels
- Water, H₂O, has a single C₂ axis and thus has no degeneracies required by symmetry

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Axes of Rotation, C_n Some observations based upon symmetry

- Ammonia, NH₃, has a single "higher-order" axis of rotation denoted C_3
- Molecules with a C_n axis where n ≥ 3 have degenerate electronic energy levels
- Molecules with a C_n axis where n ≥ 3 have degenerate vibrational energy levels
- Water, H₂O, has a single C₂ axis and thus has no degeneracies required by symmetry

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Outline

- Planes of Reflection, σ
- Axes of Rotation, C_n
- The Inversion Center, i
- Improper Axes of Rotation, S_n
- The Identity, E

2 Symmetry Operations

Image: A image: A

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Centers of Inversion These have identical atoms with inverted coordinates

Is there an inversion center, *i*?

- Ethylene, C₂H₄
- Methane, CH₄
- Water, H₂O
- Diborane, B₂H₆

(日) (同) (三) (三)

э

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Centers of Inversion These have identical atoms with inverted coordinates

Is there an inversion center, *i*?

- Ethylene, C₂H₄
- Methane, CH₄
- Water, H₂O
- Diborane, B₂H₆

(日) (同) (三) (三)

э

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Centers of Inversion These have identical atoms with inverted coordinates

Is there an inversion center, *i*?

- Ethylene, C₂H₄
- Methane, CH₄
- Water, H₂O
- Diborane, B₂H₆

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Centers of Inversion These have identical atoms with inverted coordinates

Is there an inversion center, *i*?

- Ethylene, C₂H₄
- Methane, CH₄
- Water, H₂O
- Diborane, B₂H₆

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

Molecules with Centers of Inversion These have identical atoms with inverted coordinates

Is there an inversion center, *i*?

- Ethylene, C₂H₄
- Methane, CH₄
- Water, H₂O
- Diborane, B₂H₆

rotation plus reflection

Outline

1 Symmetry Elements

- Planes of Reflection. σ
- Axes of Rotation. C_n
- The Inversion Center, i
- Improper Axes of Rotation, S_n
- The Identity, E

2 Symmetry Operations

Image: A = A

mirror planes rotation axes equivalent atoms at inverted coordinates **rotation plus reflection** all molecules have this symmetry element

Molecules with an Improper Axis of Rotation A Combination of Rotation Axis and Mirror Plane

Consider $Pt(SH)_4^{2-1}$

- Pt-S-H bonds are bent
- H atoms are located alternately above and below the PtS₄ plane
- There is not a C₄ axis
- There is not a mirror plane containing the four S atoms
- There is an S_4 axis passing through Pt and \perp to sulfur plane

mirror planes rotation axes equivalent atoms at inverted coordinates **rotation plus reflection** all molecules have this symmetry element

Molecules with an Improper Axis of Rotation A Combination of Rotation Axis and Mirror Plane

Consider Pt(SH)₄^{2–}

- Pt-S-H bonds are bent
- $\bullet\,$ H atoms are located alternately above and below the PtS_4 plane
- There is not a C₄ axis
- There is not a mirror plane containing the four S atoms
- There is an S_4 axis passing through Pt and \perp to sulfur plane

mirror planes rotation axes equivalent atoms at inverted coordinates **rotation plus reflection** all molecules have this symmetry element

Molecules with an Improper Axis of Rotation A Combination of Rotation Axis and Mirror Plane

Consider $Pt(SH)_4^{2-}$

- Pt-S-H bonds are bent
- $\bullet\,$ H atoms are located alternately above and below the PtS_4 plane
- There is not a C₄ axis
- There is not a mirror plane containing the four S atoms
- There is an S_4 axis passing through Pt and \perp to sulfur plane

mirror planes rotation axes equivalent atoms at inverted coordinates **rotation plus reflection** all molecules have this symmetry element

Molecules with an Improper Axis of Rotation A Combination of Rotation Axis and Mirror Plane

Consider $Pt(SH)_4^{2-}$

- Pt-S-H bonds are bent
- $\bullet\,$ H atoms are located alternately above and below the PtS_4 plane
- There is not a C_4 axis
- There is not a mirror plane containing the four S atoms
- There is an S_4 axis passing through Pt and \perp to sulfur plane

mirror planes rotation axes equivalent atoms at inverted coordinates **rotation plus reflection** all molecules have this symmetry element

Molecules with an Improper Axis of Rotation A Combination of Rotation Axis and Mirror Plane

Consider $Pt(SH)_4^{2-}$

- Pt-S-H bonds are bent
- $\bullet\,$ H atoms are located alternately above and below the PtS_4 plane
- There is not a C_4 axis
- There is not a mirror plane containing the four S atoms
- There is an S_4 axis passing through Pt and \perp to sulfur plane

all molecules have this symmetry element

Outline

1 Symmetry Elements

- Planes of Reflection. σ
- Axes of Rotation. C_n
- The Inversion Center, i
- Improper Axes of Rotation, S_n
- The Identity, E

2 Symmetry Operations

Image: A image: A

-

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

The Identity Symmetry Element This is present by default

- $\bullet~\mbox{Rotation}$ by $360^\circ~\mbox{about}$ an arbitrary axis returns an equivalent configuration
- This axis is referred to as the identity symmetry element, E

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

The Identity Symmetry Element This is present by default

- Rotation by 360° about an arbitrary axis returns an equivalent configuration
- This axis is referred to as the identity symmetry element, E

mirror planes rotation axes equivalent atoms at inverted coordinates rotation plus reflection all molecules have this symmetry element

The Identity Symmetry Element This is present by default

- Rotation by 360° about an arbitrary axis returns an equivalent configuration
- This axis is referred to as the identity symmetry element, E

• A mirror plane, σ , generates a single reflection operation

- Two consecutive reflections with respect to a given σ is equivalent to the identity operation
- A C_2 axis generates a single two-fold rotation operation
- A C_3 axis generates two operations: rotation by $\frac{2\pi}{3}$ and rotation by $\frac{4\pi}{3}$
- The latter operations are called C_3 and C_3^2 , respectively

• note that
$$C_3^3 = E$$

- A mirror plane, σ , generates a single reflection operation
- Two consecutive reflections with respect to a given σ is equivalent to the identity operation
- A C_2 axis generates a single two-fold rotation operation
- A C_3 axis generates two operations: rotation by $\frac{2\pi}{3}$ and rotation by $\frac{4\pi}{3}$
- The latter operations are called C_3 and C_3^2 , respectively

• note that
$$C_3^3 = E$$

- A mirror plane, σ , generates a single reflection operation
- Two consecutive reflections with respect to a given σ is equivalent to the identity operation
- A C_2 axis generates a single two-fold rotation operation
- A C_3 axis generates two operations: rotation by $\frac{2\pi}{3}$ and rotation by $\frac{4\pi}{3}$
- The latter operations are called C_3 and C_3^2 , respectively
- note that $C_3^3 = E$

- A mirror plane, σ , generates a single reflection operation
- Two consecutive reflections with respect to a given σ is equivalent to the identity operation
- A C_2 axis generates a single two-fold rotation operation
- A C_3 axis generates two operations: rotation by $\frac{2\pi}{3}$ and rotation by $\frac{4\pi}{3}$
- The latter operations are called C₃ and C₃², respectively
 note that C₃³ = E

- A mirror plane, σ , generates a single reflection operation
- Two consecutive reflections with respect to a given σ is equivalent to the identity operation
- A C_2 axis generates a single two-fold rotation operation
- A C_3 axis generates two operations: rotation by $\frac{2\pi}{3}$ and rotation by $\frac{4\pi}{3}$
- The latter operations are called C₃ and C₃², respectively
 note that C₃³ = E

| 4 同 1 4 三 1 4 三 1

- A mirror plane, σ , generates a single reflection operation
- Two consecutive reflections with respect to a given σ is equivalent to the identity operation
- A C_2 axis generates a single two-fold rotation operation
- A C_3 axis generates two operations: rotation by $\frac{2\pi}{3}$ and rotation by $\frac{4\pi}{3}$
- The latter operations are called C_3 and C_3^2 , respectively
- note that $C_3^3 = E$