Symmetry Elements and Operations

Christopher C. Cummins

Massachusetts Institute of Technology
ccummins@mit.edu

Outline

(1) Symmetry Elements

- Planes of Reflection, σ
- Axes of Rotation, C_{n}
- The Inversion Center, i
- Improper Axes of Rotation, S_{n}
- The Identity, E
(2) Symmetry Operations

Outline

(1) Symmetry Elements

- Planes of Reflection, σ
- Axes of Rotation, C_{n}
- The Inversion Center, i
- Improper Axes of Rotation, S_{n}
- The Identity, E
(2) Symmetry Operations

A Molecule with Two Mirror Planes

The $\mathrm{H}_{2} \mathrm{O}$ Molecule

- The O and H atoms lie in the same plane
- The plane of the molecule is a mirror plane, σ
- The plane \perp to the molecular plane is a second σ
- The molecular plane is taken as the $y z$ plane
- The mirrors are $\sigma_{v}(x z)$ and $\sigma_{v}^{\prime}(y z)$
- The subscript v is for "vertical"

A Molecule with Two Mirror Planes

The $\mathrm{H}_{2} \mathrm{O}$ Molecule

- The O and H atoms lie in the same plane
- The plane of the molecule is a mirror plane, σ
- The plane \perp to the molecular plane is a second σ
- The molecular plane is taken as the $y z$ plane
- The mirrors are $\sigma_{v}(x z)$ and $\sigma_{v}^{\prime}(y z)$
- The subscript v is for "vertical"

A Molecule with Two Mirror Planes

The $\mathrm{H}_{2} \mathrm{O}$ Molecule

- The O and H atoms lie in the same plane
- The plane of the molecule is a mirror plane, σ
- The plane \perp to the molecular plane is a second σ
- The molecular plane is taken as the yz plane
- The mirrors are $\sigma_{v}(x z)$ and $\sigma_{v}^{\prime}(y z)$
- The subscript v is for "vertical"

A Molecule with Two Mirror Planes
 The $\mathrm{H}_{2} \mathrm{O}$ Molecule

- The O and H atoms lie in the same plane
- The plane of the molecule is a mirror plane, σ
- The plane \perp to the molecular plane is a second σ
- The molecular plane is taken as the $y z$ plane
- The mirrors are $\sigma_{v}(x z)$ and $\sigma_{v}^{\prime}(y z)$
- The subscript v is for "vertical"

A Molecule with Two Mirror Planes

The $\mathrm{H}_{2} \mathrm{O}$ Molecule

- The O and H atoms lie in the same plane
- The plane of the molecule is a mirror plane, σ
- The plane \perp to the molecular plane is a second σ
- The molecular plane is taken as the $y z$ plane
- The mirrors are $\sigma_{v}(x z)$ and $\sigma_{v}^{\prime}(y z)$
- The subscript v is for "vertical"

A Molecule with Two Mirror Planes

The $\mathrm{H}_{2} \mathrm{O}$ Molecule

- The O and H atoms lie in the same plane
- The plane of the molecule is a mirror plane, σ
- The plane \perp to the molecular plane is a second σ
- The molecular plane is taken as the $y z$ plane
- The mirrors are $\sigma_{v}(x z)$ and $\sigma_{v}^{\prime}(y z)$
- The subscript v is for "vertical"

A Molecule with Two Mirror Planes

The $\mathrm{H}_{2} \mathrm{O}$ Molecule

- The O and H atoms lie in the same plane
- The plane of the molecule is a mirror plane, σ
- The plane \perp to the molecular plane is a second σ
- The molecular plane is taken as the $y z$ plane
- The mirrors are $\sigma_{v}(x z)$ and $\sigma_{v}^{\prime}(y z)$
- The subscript v is for "vertical"

Some Other Molecules

Does the molecule have a mirror plane?

- Ammonia, NH_{3}
- Sulfur tetrafluoride, SF_{4}
- Dioxygen, O_{2}
- White phosphorus, P_{4}
- Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$
- Myoglobin

Some Other Molecules

Does the molecule have a mirror plane?

- Ammonia, NH_{3}
- Sulfur tetrafluoride, SF_{4}
- Dioxygen, O_{2}
- White phosphorus, P_{4}
- Diborane, B2 H_{6}
- Myoglobin

Some Other Molecules

Does the molecule have a mirror plane?

- Ammonia, NH_{3}
- Sulfur tetrafluoride, SF_{4}
- Dioxygen, O_{2}
- White phosphorus, P_{4}
- Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$
- Mvoglobin

Some Other Molecules

Does the molecule have a mirror plane?

- Ammonia, NH_{3}
- Sulfur tetrafluoride, SF_{4}
- Dioxygen, O_{2}
- White phosphorus, P_{4}
- Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$
- Myoglobin

Some Other Molecules

Does the molecule have a mirror plane?

- Ammonia, NH_{3}
- Sulfur tetrafluoride, SF_{4}
- Dioxygen, O_{2}
- White phosphorus, P_{4}
- Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$

Some Other Molecules

Does the molecule have a mirror plane?

- Ammonia, NH_{3}
- Sulfur tetrafluoride, SF_{4}
- Dioxygen, O_{2}
- White phosphorus, P_{4}
- Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$
- Myoglobin

Some Other Molecules

Does the molecule have a mirror plane?

- Ammonia, NH_{3}
- Sulfur tetrafluoride, SF_{4}
- Dioxygen, O_{2}
- White phosphorus, P_{4}
- Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$
- Myoglobin

Outline

(1) Symmetry Elements

- Planes of Reflection, σ
- Axes of Rotation, C_{n}
- The Inversion Center, i
- Improper Axes of Rotation, S_{n}
- The Identity, E
(2) Symmetry Operations

Molecules with Axes of Rotation, C_{n}

These have n-fold axes of rotation

What is n ?

- Ammonia, NH_{3}
- Cubane, (CH)8
- Water, $\mathrm{H}_{2} \mathrm{O}$
- Buckminsterfullerene, C_{60}
- Tick-Borne Encephalitis Virus

Molecules with Axes of Rotation, C_{n}

These have n-fold axes of rotation

What is n ?

- Ammonia, NH_{3}
- Cubane, (CH) 8
- Water, $\mathrm{H}_{2} \mathrm{O}$
- Buckminsterfullerene, C_{60}
- Tick Bame Encenhalitis V/imus

Molecules with Axes of Rotation, C_{n}

These have n-fold axes of rotation

What is n ?

- Ammonia, NH_{3}
- Cubane, (CH) 8
- Water, $\mathrm{H}_{2} \mathrm{O}$
- Buckminsterfullerene, C_{60}
- Tick-Borne Encephalitis Virus

Molecules with Axes of Rotation, C_{n}

These have n-fold axes of rotation

What is n ?

- Ammonia, NH_{3}
- Cubane, (CH) 8
- Water, $\mathrm{H}_{2} \mathrm{O}$
- Buckminsterfullerene, C_{60}
- Tick-Borne Encephalitis Virus

Molecules with Axes of Rotation, C_{n}

These have n-fold axes of rotation

What is n ?

- Ammonia, NH_{3}
- Cubane, (CH) 8
- Water, $\mathrm{H}_{2} \mathrm{O}$
- Buckminsterfullerene, C_{60}
- Tick-Borne Encephalitis Virus

Molecules with Axes of Rotation, C_{n}

Some observations based upon symmetry

- Ammonia, NH_{3}, has a single "higher-order" axis of rotation denoted C_{3}
- Molecules with a C_{n} axis where $n \geq 3$ have degenerate electronic energy levels
- Molecules with a C_{n} axis where $n \geq 3$ have degenerate vibrational energy levels
- Water, $\mathrm{H}_{2} \mathrm{O}$, has a single C_{2} axis and thus has no degeneracies required by symmetry

Molecules with Axes of Rotation, C_{n}

Some observations based upon symmetry

- Ammonia, NH_{3}, has a single "higher-order" axis of rotation denoted C_{3}
- Molecules with a C_{n} axis where $n \geq 3$ have degenerate electronic energy levels

```
- Molecules with a C C axis where n }\geq3\mathrm{ have degenerate
vibrational energy levels
- Mater, H2O}\mathrm{ , has a single C2 axis and thus has no
degeneracies required by symmetry
```


Molecules with Axes of Rotation, C_{n}

Some observations based upon symmetry

- Ammonia, NH_{3}, has a single "higher-order" axis of rotation denoted C_{3}
- Molecules with a C_{n} axis where $n \geq 3$ have degenerate electronic energy levels
- Molecules with a C_{n} axis where $n \geq 3$ have degenerate vibrational energy levels
- Water, $\mathrm{H}_{2} \mathrm{O}$, has a single C_{2} axis and thus has no degeneracies required by symmetry

Molecules with Axes of Rotation, C_{n}

Some observations based upon symmetry

- Ammonia, NH_{3}, has a single "higher-order" axis of rotation denoted C_{3}
- Molecules with a C_{n} axis where $n \geq 3$ have degenerate electronic energy levels
- Molecules with a C_{n} axis where $n \geq 3$ have degenerate vibrational energy levels
- Water, $\mathrm{H}_{2} \mathrm{O}$, has a single C_{2} axis and thus has no degeneracies required by symmetry

Molecules with Axes of Rotation, C_{n}

Some observations based upon symmetry

- Ammonia, NH_{3}, has a single "higher-order" axis of rotation denoted C_{3}
- Molecules with a C_{n} axis where $n \geq 3$ have degenerate electronic energy levels
- Molecules with a C_{n} axis where $n \geq 3$ have degenerate vibrational energy levels
- Water, $\mathrm{H}_{2} \mathrm{O}$, has a single C_{2} axis and thus has no degeneracies required by symmetry

Outline

(1) Symmetry Elements

- Planes of Reflection, σ
- Axes of Rotation, C_{n}
- The Inversion Center, i
- Improper Axes of Rotation, S_{n}
- The Identity, E
(2) Symmetry Operations

Molecules with Centers of Inversion

These have identical atoms with inverted coordinates

Is there an inversion center, i?

- Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$
- Methane, CH_{4}
- Water, $\mathrm{H}_{2} \mathrm{O}$
- Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$

Molecules with Centers of Inversion

These have identical atoms with inverted coordinates

Is there an inversion center, i?

- Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$
- Methane, CH_{4}
- Water, $\mathrm{H}_{2} \mathrm{O}$
- Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$

Molecules with Centers of Inversion

These have identical atoms with inverted coordinates

Is there an inversion center, i?

- Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$
- Methane, CH_{4}
- Water, $\mathrm{H}_{2} \mathrm{O}$
- Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$

Molecules with Centers of Inversion

These have identical atoms with inverted coordinates

Is there an inversion center, i ?

- Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$
- Methane, CH_{4}
- Water, $\mathrm{H}_{2} \mathrm{O}$
- Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$

Molecules with Centers of Inversion

These have identical atoms with inverted coordinates

Is there an inversion center, i ?

- Ethylene, $\mathrm{C}_{2} \mathrm{H}_{4}$
- Methane, CH_{4}
- Water, $\mathrm{H}_{2} \mathrm{O}$
- Diborane, $\mathrm{B}_{2} \mathrm{H}_{6}$

Outline

(1) Symmetry Elements

- Planes of Reflection, σ
- Axes of Rotation, C_{n}
- The Inversion Center, i
- Improper Axes of Rotation, S_{n}
- The Identity, E
(2) Symmetry Operations

Molecules with an Improper Axis of Rotation A Combination of Rotation Axis and Mirror Plane

Consider Pt(SH) ${ }_{4}{ }^{2-}$

- Pt-S-H bonds are bent
- H atoms are located alternately above and below the PtS_{4}
plane
- There is not a C_{4} axis
- There is not a mirror plane containing the four S atoms
- There is an S_{4} axis passing through Pt and \perp to sulfur plane

Molecules with an Improper Axis of Rotation A Combination of Rotation Axis and Mirror Plane

Consider $\mathrm{Pt}(\mathrm{SH})_{4}{ }^{2-}$

- Pt-S-H bonds are bent
- H atoms are located alternately above and below the PtS_{4} plane
- There is not a C_{4} axis
- There is not a mirror plane containing the four S atoms - There is an S_{4} axis passing through Pt and \perp to sulfur plane

Molecules with an Improper Axis of Rotation A Combination of Rotation Axis and Mirror Plane

Consider $\mathrm{Pt}(\mathrm{SH})_{4}{ }^{2-}$

- Pt-S-H bonds are bent
- H atoms are located alternately above and below the PtS_{4} plane
- There is not a C_{4} axis
- There is not a mirror plane containing the four S atoms - There is an S_{4} axis passing through Pt and \perp to sulfur plane

Molecules with an Improper Axis of Rotation A Combination of Rotation Axis and Mirror Plane

Consider $\mathrm{Pt}(\mathrm{SH}) 4^{2-}$

- Pt-S-H bonds are bent
- H atoms are located alternately above and below the PtS_{4} plane
- There is not a C_{4} axis
- There is not a mirror plane containing the four S atoms
- There is an S_{4} axis passing through Pt and \perp to sulfur plane

Molecules with an Improper Axis of Rotation A Combination of Rotation Axis and Mirror Plane

Consider $\mathrm{Pt}(\mathrm{SH}) 4^{2-}$

- Pt-S-H bonds are bent
- H atoms are located alternately above and below the PtS_{4} plane
- There is not a C_{4} axis
- There is not a mirror plane containing the four S atoms
- There is an S_{4} axis passing through Pt and \perp to sulfur plane

Outline

(1) Symmetry Elements

- Planes of Reflection, σ
- Axes of Rotation, C_{n}
- The Inversion Center, i
- Improper Axes of Rotation, S_{n}
- The Identity, E
(2) Symmetry Operations

The Identity Symmetry Element

This is present by default

- Rotation by 360° about an arbitrary axis returns an equivalent configuration
- This axis is referred to as the identity symmetry element, E

The Identity Symmetry Element

This is present by default

- Rotation by 360° about an arbitrary axis returns an equivalent configuration
- This axis is referred to as the identity symmetry element, E

The Identity Symmetry Element

This is present by default

- Rotation by 360° about an arbitrary axis returns an equivalent configuration
- This axis is referred to as the identity symmetry element, E

Symmetry Operations

These are carried out with respect to symmetry elements

- A mirror plane, σ, generates a single reflection operation
- Two consecutive reflections with respect to a given σ is equivalent to the identity operation
- $A C_{2}$ axis generates a single two-fold rotation operation
- $\mathrm{A} C_{3}$ axis generates two operations: rotation by $\frac{2 \pi}{3}$ and rotation by $\frac{4 \pi}{3}$
- The latter operations are called C_{3} and C_{3}^{2}, respectively

Symmetry Operations

These are carried out with respect to symmetry elements

- A mirror plane, σ, generates a single reflection operation
- Two consecutive reflections with respect to a given σ is equivalent to the identity operation
- $A C_{2}$ axis generates a single two-fold rotation operation
- $\mathrm{A} C_{3}$ axis generates two operations: rotation by $\frac{2 \pi}{3}$ and rotation by $\frac{4 \pi}{3}$
- The latter operations are called C_{3} and C_{3}^{2}, respectively

Symmetry Operations
 These are carried out with respect to symmetry elements

- A mirror plane, σ, generates a single reflection operation
- Two consecutive reflections with respect to a given σ is equivalent to the identity operation
- A C_{2} axis generates a single two-fold rotation operation
 rotation by $\frac{4 \pi}{3}$
- The latter operations are called C_{3} and C_{3}^{2}, respectively

Symmetry Operations
 These are carried out with respect to symmetry elements

- A mirror plane, σ, generates a single reflection operation
- Two consecutive reflections with respect to a given σ is equivalent to the identity operation
- A C_{2} axis generates a single two-fold rotation operation
- A C_{3} axis generates two operations: rotation by $\frac{2 \pi}{3}$ and rotation by $\frac{4 \pi}{3}$
- The latter operations are called C_{3} and C_{3}^{2}, respectively
- note that $C_{3}^{3}=E$

Symmetry Operations
 These are carried out with respect to symmetry elements

- A mirror plane, σ, generates a single reflection operation
- Two consecutive reflections with respect to a given σ is equivalent to the identity operation
- A C_{2} axis generates a single two-fold rotation operation
- A C_{3} axis generates two operations: rotation by $\frac{2 \pi}{3}$ and rotation by $\frac{4 \pi}{3}$
- The latter operations are called C_{3} and C_{3}^{2}, respectively
- note that $C_{3}^{3}=E$

Symmetry Operations
 These are carried out with respect to symmetry elements

- A mirror plane, σ, generates a single reflection operation
- Two consecutive reflections with respect to a given σ is equivalent to the identity operation
- A C_{2} axis generates a single two-fold rotation operation
- A C_{3} axis generates two operations: rotation by $\frac{2 \pi}{3}$ and rotation by $\frac{4 \pi}{3}$
- The latter operations are called C_{3} and C_{3}^{2}, respectively
- note that $C_{3}^{3}=E$

