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5.03, Inorganic Chemistry 
Prof. Daniel G. Nocera 

Lecture 2 May 11: Ligand Field Theory 
 
 
The ligand field problem is defined by the following Hamiltonian, 
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 free ion or atom ligand field  
     
 
The Hamiltonian contains three types of terms arising from the electrons interacting 
with the positively charged nucleus of the atom (defined by 1e– interactions, ri), 2e– 
interactions arising from e––e– repulsions (rij), the interaction of electrons with 
electron cloud of the ligands (|R-ri| where R is the position of the ligand), 
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The electronic part of the Hamiltonian is spectroscopically probed in two regimes, 
depending on the strength of the ligand field. 
 

In the weak field, the 2e– energies are greater than the 1e- energies, i.e. Qij hO
ij
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of which ∆O is a measure of VOh. So the strategy here is to first determine state 
symmetries followed by applications of ligand field. 

 

 
 
 

In the strong field, the 1e– energies (orbital energies) are first determined, followed by 
the perturbation of 2e– terms… begin with configurations and see how they are perturbed 
by Qij. 
 
 

 
 
 
The overall approach to determining the energy levels of a molecule is: 

 determine free ion states 

 determine how atomic states are split in a weak field limit (PE >> ∆O) 

 determine states arising from configurations in a strong field limit (PE << ∆O) 

 correlate between strong and weak fields (Tanabe-Sugano diagrams). 

 
  



3 
 

The Weak Field 
 
The problem begins by considering a free ion (Kh symmetry). Different atomic 
configurations give rise to different terms or energy levels. The many e– system 
is characterized by a total orbital and total spin angular momentum, 
 

total orbital angular momentum, L 
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total spin angular momentum, S 
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A term is symbolized by 
 

L = 0, 1, 2, 3, 4…    
  

 S  P  D  F  G… 

  
2S+1L J 

   
 J = L+S, L+S–1, L+S–2 …. L–S–1, L–S 

 
 
We will therefore need to 

1) determine terms of a given configuration 

2) determine the eigenfunction of these terms 

3) calculate terms energies 
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As an illustrative example, consider the p2 configuration, 

ML     +1 0     –1 

   
 
A shorthand notation for this configuration is )0 1(

−+
, which is a Slater determinant 
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All the possible configurations are summarized in the following table which defines 
the configurations in terms of ML and MS 
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The table summarizing the number of constituent configurations in terms of ML and MS, 
 

MS 

ML 
1 0 –1 

  2  1  

  1 1 2 1 

  0 1 3 1 

–1 1 2 1 

–2  1  

ML = 2, MS = 0, which is a 1D term

Considering the definitions of L and S, begin with highest 
ML wavefunction and eliminate 1e– wavefunctions from 
+L to –L and +S to –S. The highest ML is 2, MS = 0 
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Removing the count of configurations arising from a 1D term (i.e., from ML = 2, 1, 0, 
–1, –2 and MS = 1, 0, –1), leaves 
 

MS 

ML 
1 0 –1 

  2    

  1 1 1 1 

  0 1 2 1 

–1 1 1 1 

–2    

 
Again, eliminating states of the 3P term, 
 

MS 

ML 
1 0 –1 

  2    

 1    

  0  1  

–1    

–2    

Thus the terms arising from a p2 configuration are: 1D, 3P, and 1S. May predict the 
ground state from Hund’s rule: 

1) state with maximum MS is lowest in energy 

2) for states of the same spin multiplicity, the state with largest ML will be 
lowest in energy 

3) note, Hund’s rule does not address excited state ordering 
 

Hund’s rule identifies 3P as the ground state. Summarizing the energy (term) levels  

  

1S

1D

3P

p2

The highest ML is 1 and highest MS of this ML 
value is also 1, thus giving rise to a 3P term 

this ordering must be determined from spectroscopy 
 

This leaves only one configuration of ML = 0 
and MS = 0, which is a 1S term 
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How about the d ion states? 
 
d1 ion 
 
… is straightforward. There are 10 permutations of an electron in 5 d orbitals, s = 
½ or s = –½ in orbitals of m of 2 to –2 
 

MS 

ML 
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  1 1 1 1 

  0 1 2 1 

–1 1 1 1 

–2    

  
d2 ion 
 
… has many terms that result from the permutation of 2e– in the orbital subshells 
derived from  = 2,m = 2, 1, 0, –1, –2  
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where the ML terms are not shown for the convenience of space. Reducing the 
terms yields for a d2 system: 3F, 3P, 1G, 1D and 1S  
 
  

This gives ML = 2, 1, 0, –1, –2 and MS = 1, 0, –1, thus 
giving values of L = 2 and S = 1 or a 2D state. This is 
the only term for the d1 configuration 
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The Russell-Saunders terms for all dn free ions: 
 

2D 3F

3P

1G

1S

4F

4P

2G

2P
2H
2P

2F

2D

1S

1G

3F
3P

1F

1S
3D
1I
3P3F
3G
3H

5D

2D
2P

2G
2D
2S

2F
4E, 2D

2F
2G, 2H

2I

4P, 4D
4G

6S
d1, d9 d2, d8 d3, d7 d4, d6 d5

1D

1D

1D

1G

 
 
 
Now need to determine the states that arise from the application of an Oh field on 
the free ion. 
 
The degeneracy of the wavefunction is removed upon application of the ligand field. 
The ligand field causes the terms to split owing to the change in symmetry from Kh 
to Oh. We can use the basis functions of the Oh character table to determine how 
the fee ion states split, 
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 0 E 6C4 3C2 (≡C4
2) 8C3 6C2   ℓ = 0 Γs 1 1 1 1 1 → A1g ℓ = 1 Γp 3 1  –1 0 1 → T1u ℓ = 2 Γd 5  –1 1  –1 1  → Eg + T2g 

       ⋮ 
Γf = A2u + T1u + T2u 

Γg = A1g + Eg + T1g + T2g 

 
Taking the terms of a p2 ion in a spherical field (Kh) to an Oh ligand field leads to 
the further splitting, 
 

  
 
 
The Strong Field 
 
The problem in the strong field begins with the electron configurations derived from 
the molecular orbital. As an example, consider the strong field configurations for 
two electrons in an octahedral ligand field. The two-electron occupancy of the 
ML6(Oh) MO gives rise to three configurations: 
 
 (t2g)2 < (t2g)1(eg)1 < (eg)2 

 ground state 1e– excitation 2e– excitation 
 

Must now determine what states from d2 weak field correlate to these 
configurations. Because the electrons interact differently with each other, when in 
different orbitals (different rij), for a given electronic configuration, many states can 
arise. 
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Let’s begin with the 1e– excited state, (t2g)1(eg)1. The state symmetry takes the 
symmetry of the individually occupied orbitals, and the electrons can be singlet or 
triplet paired, 1(χ·χ’) and 3(χ·χ’) 

 

t2g x eg = T1g + T2g 

 
The spin can be S = 0 (singlet) or S = 1 (triplet), thus all potential states that arise 
from the one electron excitation of a d2 ion in a Oh field are: 
 
1T1g + 1T2g + 3T1g + 3T2g 
 
 
The (t2g)2 and (eg)2 configurations are more problematic because the electrons are 
degenerate. The direct product electrons in n degenerate orbitals of χ and χ′ 
symmetry will give χ·χ’ orbital symmetries.  
 
(t2g)2          t2g x t2g  =  A1g + Eg + T2g + T1g 
 
(eg)2          eg x eg  =  A1g + A2g + Eg  
 
 
But there is a problem, t singlet and triplet spin pairing cannot be assigned to each 
state because some of these states will violate the Pauli exclusion principle. In 5.04 
a procedure will be derived that shows how to eliminate these Pauli violating states. 
Here the result will be given: 
 
(t2g)2          t2g x t2g  =  1A1g + 1Eg + 1T2g + 3T1g 
 
(eg)2          eg x eg  =  1A1g + 3A2g +1Eg  
 
 
The states created in the weak field must be the same as the states obtained in the 
strong field since we are dealing with the d2 problem, just from different 
perspectives. We see this is the case. A correlation diagram relates the weak and 
strong field configurations. The d2 correlation diagram is: 
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Weak Field  Strong Field 

 
 
 
 
Note that for d2 (dn) in Oh, the same diagram is obtained for d8 (d10–n) Td. Td 
symmetry does not require the g or u subscripts. 
 


