Character Tables

Christopher C. Cummins

Massachusetts Institute of Technology

ccummins@mit.edu

2 The Character Table for $C_{2\nu}$

What Makes Up a Character Table

Character tables contain information about how functions transform in response to the operations of the group

Five parts of a character table

- At the upper left is the symbol for the point group
- The top row shows the operations of the point group, organized into classes
- The left column gives the Mulliken symbols for each of the irreducible representations
- The rows at the center of the table give the characters of the irreducible representations
- Solution Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis

What Makes Up a Character Table

Character tables contain information about how functions transform in response to the operations of the group

Five parts of a character table

- At the upper left is the symbol for the point group
- The top row shows the operations of the point group, organized into classes
- The left column gives the Mulliken symbols for each of the irreducible representations
- The rows at the center of the table give the characters of the irreducible representations
- Solution Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis

What Makes Up a Character Table

Character tables contain information about how functions transform in response to the operations of the group

Five parts of a character table

- At the upper left is the symbol for the point group
- The top row shows the operations of the point group, organized into classes
- The left column gives the Mulliken symbols for each of the irreducible representations
- The rows at the center of the table give the characters of the irreducible representations
- Solution State State

5.03 Lecture 3 Character Tables

What Makes Up a Character Table

Character tables contain information about how functions transform in response to the operations of the group

Five parts of a character table

- At the upper left is the symbol for the point group
- The top row shows the operations of the point group, organized into classes
- The left column gives the Mulliken symbols for each of the irreducible representations
- The rows at the center of the table give the characters of the irreducible representations
- Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis

5.03 Lecture 3 Character Tables

What Makes Up a Character Table

Character tables contain information about how functions transform in response to the operations of the group

Five parts of a character table

- At the upper left is the symbol for the point group
- The top row shows the operations of the point group, organized into classes
- The left column gives the Mulliken symbols for each of the irreducible representations
- The rows at the center of the table give the characters of the irreducible representations
- Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis

The $C_{2\nu}$ Character Table

Transformation Properties of an *s* Orbital in $C_{2\nu}$ What happens when the *E* operation is applied?

• The E operation is a rotation by 360° about an arbitrary axis

5.03 Lecture 3 Character Tables

Vassachusett: Institute of Technology

Transformation Properties of an *s* Orbital in C_{2v} What happens when the *E* operation is applied?

• The *E* operation is a rotation by 360° about an arbitrary axis

sachusett itute of nology

Transformation Properties of an *s* Orbital in C_{2v} The *E* operation returns the original configuration of the *s* orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

Massachusetts Institute of Fechnology

Transformation Properties of an *s* Orbital in C_{2v} The *E* operation returns the original configuration of the *s* orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

Vassachusett: Institute of Technology

Transformation Properties of an *s* Orbital in $C_{2\nu}$ What happens when the C_2 operation is applied?

• The C_2 operation is a rotation by 180° about the z axis

5.03 Lecture 3 Character Tables

Vassachusett: Institute of Technology

Transformation Properties of an *s* Orbital in $C_{2\nu}$ What happens when the C_2 operation is applied?

• The C_2 operation is a rotation by 180° about the z axis

itute of

Transformation Properties of an *s* Orbital in $C_{2\nu}$ The C_2 operation returns the original configuration of the *s* orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

Massachusetts Institute of Fechnology

Transformation Properties of an *s* Orbital in C_{2v} The C_2 operation returns the original configuration of the *s* orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

Massachusett: Institute of Fechnology

Transformation Properties of an *s* Orbital in C_{2v} What happens when the $\sigma_v(xz)$ operation is applied?

• The $\sigma_v(xz)$ operation is a reflection through the xz plane

5.03 Lecture 3 Character Tables

Vassachusett: Institute of Technology

Transformation Properties of an *s* Orbital in $C_{2\nu}$ What happens when the $\sigma_{\nu}(xz)$ operation is applied?

• The $\sigma_v(xz)$ operation is a reflection through the xz plane

nology

Transformation Properties of an *s* Orbital in C_{2v} The $\sigma_v(xz)$ operation returns the original configuration of the *s* orbital

• The result of this corresponds to a character of 1

Massachusetts Institute of Fechnology

Transformation Properties of an *s* Orbital in C_{2v} The $\sigma_v(xz)$ operation returns the original configuration of the *s* orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

Vassachusett: Institute of Technology

Transformation Properties of an *s* Orbital in $C_{2\nu}$ What happens when the $\sigma'_{\nu}(yz)$ operation is applied?

• The $\sigma'_{v}(yz)$ operation is a reflection through the yz plane

ssachusett: titute of hnology

Transformation Properties of an *s* Orbital in C_{2v} What happens when the $\sigma'_v(yz)$ operation is applied?

• The $\sigma'_{y}(yz)$ operation is a reflection through the yz plane

nology

Transformation Properties of an *s* Orbital in C_{2v} The $\sigma'_{v}(yz)$ operation returns the original configuration of the *s* orbital

• The result of this corresponds to a character of 1

Massachusetts Institute of Fechnology

Transformation Properties of an *s* Orbital in C_{2v} The $\sigma'_{v}(yz)$ operation returns the original configuration of the *s* orbital

• The result of this corresponds to a character of 1

Vassachusett: Institute of Technology

These observations pertain to any central-atom s orbital in any point group

$\bullet\,$ Consider an s orbital located on a central atom

- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom *s* orbital returns the *s* orbital in its original configuration
- The central-atom *s* orbital "belongs to" or "serves as a basis for" the totally symmetric (*A*₁) irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate

- Consider an s orbital located on a central atom
- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom *s* orbital returns the *s* orbital in its original configuration
- The central-atom *s* orbital "belongs to" or "serves as a basis for" the totally symmetric (*A*₁) irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate

- Consider an s orbital located on a central atom
- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom *s* orbital returns the *s* orbital in its original configuration
- The central-atom *s* orbital "belongs to" or "serves as a basis for" the totally symmetric (*A*₁) irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate

- Consider an s orbital located on a central atom
- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom *s* orbital returns the *s* orbital in its original configuration
- The central-atom *s* orbital "belongs to" or "serves as a basis for" the totally symmetric (*A*₁) irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate

- Consider an s orbital located on a central atom
- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom *s* orbital returns the *s* orbital in its original configuration
- The central-atom *s* orbital "belongs to" or "serves as a basis for" the totally symmetric (*A*₁) irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate

- Consider an s orbital located on a central atom
- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom *s* orbital returns the *s* orbital in its original configuration
- The central-atom *s* orbital "belongs to" or "serves as a basis for" the totally symmetric (*A*₁) irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate

Transformation Properties of a p_x Orbital in C_{2v} What happens when the *E* operation is applied?

• The E operation is a rotation by 360° about an arbitrary axis

ssachusetts titute of hnology

5.03 Lecture 3 Character Tables

Transformation Properties of a p_x Orbital in C_{2v} What happens when the *E* operation is applied?

• The *E* operation is a rotation by 360° about an arbitrary axis

nology

Transformation Properties of a p_x Orbital in C_{2v} The *E* operation returns the original configuration of the p_x orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

Massachusetts Institute of Fechnology

Transformation Properties of a p_x Orbital in C_{2v} The *E* operation returns the original configuration of the p_x orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

Vassachusett: Institute of Technology

Transformation Properties of a p_x Orbital in C_{2v} What happens when the C_2 operation is applied?

• The C_2 operation is a rotation by 180° about the z axis

5.03 Lecture 3 Character Tables

Vassachusetts Institute of Technology

Transformation Properties of a p_x Orbital in $C_{2\nu}$ What happens when the C_2 operation is applied?

• The C_2 operation is a rotation by 180° about the z axis

nology
Transformation Properties of a p_{χ} Orbital in $C_{2\nu}$ The C_2 operation inverts the phase of the p_{χ} orbital

• The result of this corresponds to a character of -1

5.03 Lecture 3 Character Tables

Massachusetts Institute of Fechnology

Transformation Properties of a p_{χ} Orbital in $C_{2\nu}$ The C_2 operation inverts the phase of the p_{χ} orbital

• The result of this corresponds to a character of -1

5.03 Lecture 3 Character Tables

Transformation Properties of a p_x Orbital in C_{2v} What happens when the $\sigma_v(xz)$ operation is applied?

• The $\sigma_v(xz)$ operation is a reflection through the xz plane

5.03 Lecture 3 Character Tables

Vassachusett: Institute of Technology

Transformation Properties of a p_x Orbital in C_{2v} What happens when the $\sigma_v(xz)$ operation is applied?

• The $\sigma_v(xz)$ operation is a reflection through the xz plane

noloav

Transformation Properties of a p_x Orbital in C_{2v} The $\sigma_v(xz)$ operation does nothing to the phase of the p_x orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

Massachusetts Institute of Fechnology

Transformation Properties of a p_x Orbital in C_{2v} The $\sigma_v(xz)$ operation does nothing to the phase of the p_x orbital

• The result of this corresponds to a character of 1

Transformation Properties of a p_x Orbital in $C_{2\nu}$ What happens when the $\sigma'_{\nu}(yz)$ operation is applied?

• The $\sigma'_{v}(yz)$ operation is a reflection through the yz plane

Massachusett: Institute of Fechnology

Transformation Properties of a p_x Orbital in C_{2v} What happens when the $\sigma'_v(yz)$ operation is applied?

• The $\sigma'_{v}(yz)$ operation is a reflection through the yz plane

noloav

Transformation Properties of a p_{χ} Orbital in $C_{2\nu}$ The $\sigma'_{\nu}(yz)$ operation inverts the phase of the p_{χ} orbital

• The result of this corresponds to a character of -1

5.03 Lecture 3 Character Tables

Massachusetts Institute of Fechnology

Transformation Properties of a p_{χ} Orbital in $C_{2\nu}$ The $\sigma'_{\nu}(yz)$ operation inverts the phase of the p_{χ} orbital

• The result of this corresponds to a character of -1

- We carried out the operations of C_{2v} on a central-atom p_x orbital
- This generated the following row of characters: 1, -1, 1, -1
- This row of characters in the $C_{2\nu}$ character table is labeled B_1
- Any orbital having these transformation properties in $C_{2\nu}$ is said to have B_1 symmetry

- We carried out the operations of C_{2v} on a central-atom p_x orbital
- This generated the following row of characters: 1, -1, 1, -1
- This row of characters in the $C_{2\nu}$ character table is labeled B_1
- Any orbital having these transformation properties in $C_{2\nu}$ is said to have B_1 symmetry

- We carried out the operations of C_{2v} on a central-atom p_x orbital
- This generated the following row of characters: 1, -1, 1, -1
- This row of characters in the $C_{2\nu}$ character table is labeled B_1
- Any orbital having these transformation properties in $C_{2\nu}$ is said to have B_1 symmetry

- We carried out the operations of C_{2v} on a central-atom p_x orbital
- This generated the following row of characters: 1, -1, 1, -1
- This row of characters in the $C_{2\nu}$ character table is labeled B_1
- Any orbital having these transformation properties in $C_{2\nu}$ is said to have B_1 symmetry

Transformation Properties of a p_y Orbital in C_{2y}

What happens when the E operation is applied?

• The E operation is a rotation by 360° about an arbitrary axis

Transformation Properties of a p_y Orbital in C_{2y}

What happens when the *E* operation is applied?

• The E operation is a rotation by 360° about an arbitrary axis

Transformation Properties of a p_y Orbital in C_{2v}

The *E* operation returns the original configuration of the p_y orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

echnology

Transformation Properties of a p_y Orbital in C_{2v}

The *E* operation returns the original configuration of the p_{y} orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

Transformation Properties of a p_y Orbital in C_{2v}

What happens when the C_2 operation is applied?

• The C_2 operation is a rotation by 180° about the z axis

5.03 Lecture 3 Character Tables

echnology

Transformation Properties of a p_y Orbital in C_{2v}

What happens when the C_2 operation is applied?

• The C_2 operation is a rotation by 180° about the z axis

Transformation Properties of a p_y Orbital in C_{2v}

The C_2 operation inverts the phase of the p_y orbital

• The result of this corresponds to a character of -1

5.03 Lecture 3 Character Tables

echnology

Transformation Properties of a p_y Orbital in C_{2v}

The C_2 operation inverts the phase of the p_{γ} orbital

• The result of this corresponds to a character of -1

5.03 Lecture 3 Character Tables

Transformation Properties of a p_y Orbital in C_{2v}

What happens when the $\sigma_v(xz)$ operation is applied?

• The $\sigma_v(xz)$ operation is a reflection through the xz plane

Transformation Properties of a p_y Orbital in C_{2v}

What happens when the $\sigma_v(xz)$ operation is applied?

• The $\sigma_v(xz)$ operation is a reflection through the xz plane

noloav

Transformation Properties of a p_y Orbital in C_{2v} The $\sigma_v(xz)$ operation inverts the phase of the p_v orbital

• The result of this corresponds to a character of -1

5.03 Lecture 3 Character Tables

echnology

Transformation Properties of a p_y Orbital in C_{2v} The $\sigma_v(xz)$ operation inverts the phase of the p_v orbital

• The result of this corresponds to a character of -1

5.03 Lecture 3 Character Tables

Transformation Properties of a p_y Orbital in C_{2v} What happens when the $\sigma'_v(yz)$ operation is applied?

• The $\sigma'_{v}(yz)$ operation is a reflection through the yz plane

Transformation Properties of a p_y Orbital in C_{2v} What happens when the $\sigma'_v(yz)$ operation is applied?

• The $\sigma'_{y}(yz)$ operation is a reflection through the yz plane

noloav

Transformation Properties of a p_y Orbital in C_{2v}

The $\sigma'_{v}(yz)$ operation does nothing to the phase of the p_{y} orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

Transformation Properties of a p_y Orbital in C_{2v}

The $\sigma'_{v}(yz)$ operation does nothing to the phase of the p_{y} orbital

• The result of this corresponds to a character of 1

- We carried out the operations of C_{2v} on a central-atom p_y orbital
- This generated the following row of characters: 1, -1, -1, 1
- This row of characters in the $C_{2\nu}$ character table is labeled B_2
- Any orbital having these transformation properties in $C_{2\nu}$ is said to have B_2 symmetry

- We carried out the operations of C_{2v} on a central-atom p_y orbital
- This generated the following row of characters: 1, -1, -1, 1
- This row of characters in the $C_{2\nu}$ character table is labeled B_2
- Any orbital having these transformation properties in $C_{2\nu}$ is said to have B_2 symmetry

- We carried out the operations of C_{2v} on a central-atom p_y orbital
- This generated the following row of characters: 1, -1, -1, 1
- This row of characters in the $C_{2\nu}$ character table is labeled B_2
- Any orbital having these transformation properties in $C_{2\nu}$ is said to have B_2 symmetry

- We carried out the operations of C_{2v} on a central-atom p_y orbital
- This generated the following row of characters: 1, -1, -1, 1
- This row of characters in the $C_{2\nu}$ character table is labeled B_2
- Any orbital having these transformation properties in $C_{2\nu}$ is said to have B_2 symmetry

Transformation Properties of a p_z Orbital in C_{2v} What happens when the *E* operation is applied?

• The *E* operation is a rotation by 360° about an arbitrary axis

assachusetts stitute of chnology

5.03 Lecture 3 Character Tables

Transformation Properties of a p_z Orbital in C_{2v} What happens when the *E* operation is applied?

• The E operation is a rotation by 360° about an arbitrary axis

noloav
Transformation Properties of a p_z Orbital in $C_{2\nu}$ The *E* operation returns the original configuration of the p_z orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

Vassachusetts Institute of Technology

Transformation Properties of a p_z Orbital in C_{2v} The *E* operation returns the original configuration of the p_z orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

nology

Transformation Properties of a p_z Orbital in $C_{2\nu}$ What happens when the C_2 operation is applied?

• The C_2 operation is a rotation by 180° about the z axis

5.03 Lecture 3 Character Tables

Vassachusetts Institute of Technology

Transformation Properties of a p_z Orbital in $C_{2\nu}$ What happens when the C_2 operation is applied?

• The C_2 operation is a rotation by 180° about the z axis

ssachusett: titute of hnology

Transformation Properties of a p_z Orbital in $C_{2\nu}$ The C_2 operation does nothing to the phase of the p_z orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

Vassachusetts Institute of Technology

Transformation Properties of a p_z Orbital in C_{2v} The C_2 operation does nothing to the phase of the p_z orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

nology

Transformation Properties of a p_z Orbital in $C_{2\nu}$ What happens when the $\sigma_{\nu}(xz)$ operation is applied?

• The $\sigma_v(xz)$ operation is a reflection through the xz plane

5.03 Lecture 3 Character Tables

assachusetts stitute of chnology

Transformation Properties of a p_z Orbital in $C_{2\nu}$ What happens when the $\sigma_{\nu}(xz)$ operation is applied?

• The $\sigma_v(xz)$ operation is a reflection through the xz plane

5.03 Lecture 3 Character Tables

ssachusetts

Transformation Properties of a p_z Orbital in C_{2v} The $\sigma_v(xz)$ operation inverts the phase of the p_z orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

assachusetts stitute of chnology

Transformation Properties of a p_z Orbital in C_{2v} The $\sigma_v(xz)$ operation inverts the phase of the p_z orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

nology

Transformation Properties of a p_z Orbital in $C_{2\nu}$ What happens when the $\sigma'_{\nu}(yz)$ operation is applied?

• The $\sigma'_{v}(yz)$ operation is a reflection through the yz plane

5.03 Lecture 3 Character Tables

assachusetts stitute of chnology

Transformation Properties of a p_z Orbital in C_{2v} What happens when the $\sigma'_v(yz)$ operation is applied?

• The $\sigma'_v(yz)$ operation is a reflection through the yz plane

5.03 Lecture 3 Character Tables

ssachusetts

Transformation Properties of a p_z Orbital in C_{2v} The $\sigma'_v(yz)$ operation does nothing to the phase of the p_z orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

Vassachusetts Institute of Technology

Transformation Properties of a p_z Orbital in C_{2v} The $\sigma'_v(yz)$ operation does nothing to the phase of the p_z orbital

• The result of this corresponds to a character of 1

5.03 Lecture 3 Character Tables

nology

- We carried out the operations of $C_{2\nu}$ on a central-atom p_z orbital
- This generated the following row of characters: 1, 1, 1, 1
- This row of characters in the $C_{2\nu}$ character table is labeled A_1
- Any orbital having these transformation properties in C_{2v} is said to have A₁ symmetry

- We carried out the operations of $C_{2\nu}$ on a central-atom p_z orbital
- This generated the following row of characters: 1, 1, 1, 1
- This row of characters in the $C_{2\nu}$ character table is labeled A_1
- Any orbital having these transformation properties in C_{2v} is said to have A₁ symmetry

- We carried out the operations of C_{2v} on a central-atom p_z orbital
- This generated the following row of characters: 1, 1, 1, 1
- This row of characters in the $C_{2\nu}$ character table is labeled A_1
- Any orbital having these transformation properties in C_{2v} is said to have A₁ symmetry

- We carried out the operations of C_{2v} on a central-atom p_z orbital
- This generated the following row of characters: 1, 1, 1, 1
- This row of characters in the $C_{2\nu}$ character table is labeled A_1
- Any orbital having these transformation properties in C_{2v} is said to have A₁ symmetry

• Only orbitals of the same symmetry may mix

- "Orbitals of the same symmetry" belong to the same irreducible representation
- For the C_{2v} water molecule, the oxygen s and p_z atomic orbitals may contribute to any molecular orbital of A_1 symmetry, but p_x and p_y may not
- Any valid molecular orbital must transform according to one of the irreducible representations of the molecular point group

- Only orbitals of the same symmetry may mix
- "Orbitals of the same symmetry" belong to the same irreducible representation
- For the C_{2v} water molecule, the oxygen s and p_z atomic orbitals may contribute to any molecular orbital of A₁ symmetry, but p_x and p_y may not
- Any valid molecular orbital must transform according to one of the irreducible representations of the molecular point group

- Only orbitals of the same symmetry may mix
- "Orbitals of the same symmetry" belong to the same irreducible representation
- For the C_{2v} water molecule, the oxygen s and p_z atomic orbitals may contribute to any molecular orbital of A_1 symmetry, but p_x and p_y may not
- Any valid molecular orbital must transform according to one of the irreducible representations of the molecular point group

- Only orbitals of the same symmetry may mix
- "Orbitals of the same symmetry" belong to the same irreducible representation
- For the C_{2v} water molecule, the oxygen s and p_z atomic orbitals may contribute to any molecular orbital of A₁ symmetry, but p_x and p_y may not
- Any valid molecular orbital must transform according to one of the irreducible representations of the molecular point group

Introduction to Character Tables The Character Table for C_{2v}

The $C_{2\nu}$ Character Table

- Notice that the water HOMO is a pure oxygen p_x orbital of B_1 symmetry
- The hydrogen atoms with their 1s valence orbitals lie in the nodal plane of the oxygen *p_x* orbital
- The two hydrogen 1s orbitals give rise to linear combinations of A₁ and B₂ symmetry
- The O-H bonding molecular orbitals must likewise be of A₁ and B₂ symmetry
- Given that all the irreducible representations of $C_{2\nu}$ are singly degenerate, so must be all the MOs of the water molecule
- Click on Link to Water MOs

- Notice that the water HOMO is a pure oxygen p_x orbital of B₁ symmetry
- The hydrogen atoms with their 1s valence orbitals lie in the nodal plane of the oxygen *p_x* orbital
- The two hydrogen 1s orbitals give rise to linear combinations of *A*₁ and *B*₂ symmetry
- The O-H bonding molecular orbitals must likewise be of A₁ and B₂ symmetry
- Given that all the irreducible representations of $C_{2\nu}$ are singly degenerate, so must be all the MOs of the water molecule
- Click on Link to Water MOs

- Notice that the water HOMO is a pure oxygen p_x orbital of B₁ symmetry
- The hydrogen atoms with their 1s valence orbitals lie in the nodal plane of the oxygen *p_x* orbital
- The two hydrogen 1s orbitals give rise to linear combinations of A₁ and B₂ symmetry
- The O-H bonding molecular orbitals must likewise be of A₁ and B₂ symmetry
- Given that all the irreducible representations of $C_{2\nu}$ are singly degenerate, so must be all the MOs of the water molecule
- Click on Link to Water MOs

- Notice that the water HOMO is a pure oxygen p_x orbital of B₁ symmetry
- The hydrogen atoms with their 1s valence orbitals lie in the nodal plane of the oxygen *p_x* orbital
- The two hydrogen 1s orbitals give rise to linear combinations of A₁ and B₂ symmetry
- The O-H bonding molecular orbitals must likewise be of A₁ and B₂ symmetry
- Given that all the irreducible representations of $C_{2\nu}$ are singly degenerate, so must be all the MOs of the water molecule
- Click on Link to Water MOs

- Notice that the water HOMO is a pure oxygen p_x orbital of B₁ symmetry
- The hydrogen atoms with their 1s valence orbitals lie in the nodal plane of the oxygen *p_x* orbital
- The two hydrogen 1s orbitals give rise to linear combinations of A₁ and B₂ symmetry
- The O-H bonding molecular orbitals must likewise be of A₁ and B₂ symmetry
- Given that all the irreducible representations of $C_{2\nu}$ are singly degenerate, so must be all the MOs of the water molecule
- Click on Link to Water MOs

- Notice that the water HOMO is a pure oxygen p_x orbital of B₁ symmetry
- The hydrogen atoms with their 1s valence orbitals lie in the nodal plane of the oxygen *p_x* orbital
- The two hydrogen 1s orbitals give rise to linear combinations of A₁ and B₂ symmetry
- The O-H bonding molecular orbitals must likewise be of A₁ and B₂ symmetry
- Given that all the irreducible representations of $C_{2\nu}$ are singly degenerate, so must be all the MOs of the water molecule
- Click on Link to Water MOs