Character Tables

Christopher C. Cummins
Massachusetts Institute of Technology

ccummins@mit.edu

Outline

(1) Introduction to Character Tables
(2) The Character Table for $\mathrm{C}_{2 v}$

What Makes Up a Character Table

Character tables contain information about how functions transform in response to the operations of the group

Five parts of a character table
(1) At the upper left is the symbol for the point group
(2) The top row shows the operations of the point group, organized into classes

B The left column gives the Mulliken symbols for each of the irreducible representations
(4) The rows at the center of the table give the characters of the irreducible representations
(5) Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis

What Makes Up a Character Table

Character tables contain information about how functions transform in response to the operations of the group

Five parts of a character table
(1) At the upper left is the symbol for the point group
(2) The top row shows the operations of the point group, organized into classes
(3) The left column gives the Mulliken symbols for each of the irreducible representations
(7) The rowis at the center of the table give the characters of the irreducible representations
(5) Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis

What Makes Up a Character Table

Character tables contain information about how functions transform in response to the operations of the group

Five parts of a character table
(1) At the upper left is the symbol for the point group
(2) The top row shows the operations of the point group, organized into classes
(3) The left column gives the Mulliken symbols for each of the irreducible representations
(1) The rows at the center of the table give the characters of the irreducible representations
(6) Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis

What Makes Up a Character Table

Character tables contain information about how functions transform in response to the operations of the group

Five parts of a character table
(1) At the upper left is the symbol for the point group
(2) The top row shows the operations of the point group, organized into classes
(3) The left column gives the Mulliken symbols for each of the irreducible representations
(9) The rows at the center of the table give the characters of the irreducible representations
(3) Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis

What Makes Up a Character Table

Character tables contain information about how functions transform in response to the operations of the group

Five parts of a character table
(1) At the upper left is the symbol for the point group
(2) The top row shows the operations of the point group, organized into classes
(3) The left column gives the Mulliken symbols for each of the irreducible representations
(4) The rows at the center of the table give the characters of the irreducible representations
(5) Listed at right are certain functions, showing the irreducible representation for which the function can serve as a basis

The $C_{2 v}$ Character Table

$C_{2 v}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1	R_{z}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

Transformation Properties of an s Orbital in $C_{2 v}$ What happens when the E operation is applied?

Transformation Properties of an s Orbital in $C_{2 v}$

What happens when the E operation is applied?

- The E operation is a rotation by 360° about an arbitrary axis

Transformation Properties of an s Orbital in $C_{2 v}$ The E operation returns the original configuration of the s orbital

- The result of this corresponds to a character of 1

Transformation Properties of an s Orbital in $C_{2 v}$ The E operation returns the original configuration of the s orbital

- The result of this corresponds to a character of 1

Transformation Properties of an s Orbital in $C_{2 v}$
 What happens when the C_{2} operation is applied?

Massachusetts

Transformation Properties of an s Orbital in $C_{2 v}$

What happens when the C_{2} operation is applied?

- The C_{2} operation is a rotation by 180° about the z axis

Transformation Properties of an s Orbital in $C_{2 v}$

 The C_{2} operation returns the original configuration of the s orbital

- The result of this corresponds to a character of 1

Transformation Properties of an s Orbital in $C_{2 v}$

 The C_{2} operation returns the original configuration of the s orbital

- The result of this corresponds to a character of 1

Transformation Properties of an s Orbital in $C_{2 v}$ What happens when the $\sigma_{v}(x z)$ operation is applied?

- The $\sigma_{v}(x z)$ operation is a reflection through the $x z$ plane

Transformation Properties of an s Orbital in $C_{2 v}$

 What happens when the $\sigma_{v}(x z)$ operation is applied?

- The $\sigma_{v}(x z)$ operation is a reflection through the $x z$ plane

Transformation Properties of an s Orbital in $C_{2 v}$

 The $\sigma_{v}(x z)$ operation returns the original configuration of the s orbital

- The result of this corresponds to a character of 1

Transformation Properties of an s Orbital in $C_{2 v}$

 The $\sigma_{v}(x z)$ operation returns the original configuration of the s orbital

- The result of this corresponds to a character of 1

Transformation Properties of an s Orbital in $C_{2 v}$ What happens when the $\sigma_{v}^{\prime}(y z)$ operation is applied?

- The $\sigma_{v}^{\prime}(y z)$ operation is a reflection through the $y z$ plane

Transformation Properties of an s Orbital in $C_{2 v}$

 What happens when the $\sigma_{v}^{\prime}(y z)$ operation is applied?

- The $\sigma_{v}^{\prime}(y z)$ operation is a reflection through the $y z$ plane

Transformation Properties of an s Orbital in $C_{2 v}$

 The $\sigma_{v}^{\prime}(y z)$ operation returns the original configuration of the s orbital

- The result of this corresponds to a character of 1

Transformation Properties of an s Orbital in $C_{2 v}$

 The $\sigma_{v}^{\prime}(y z)$ operation returns the original configuration of the s orbital

- The result of this corresponds to a character of 1

Transformation Properties of an s Orbital
 These observations pertain to any central-atom sorbital in any point group

- Consider an s orbital located on a central atom
- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom sorbital returns the s orbital in its original configuration
- The central-atom s orbital "belongs to" or "serves as a basis for" the totally symmetric $\left(A_{1}\right)$ irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate

Transformation Properties of an s Orbital
 These observations pertain to any central-atom sorbital in any point group

- Consider an s orbital located on a central atom
- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom s orbital returns the s orbital in its original configuration
- The central-atom s orbital "belongs to" or "serves as a basis for" the totally symmetric $\left(A_{1}\right)$ irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate

Transformation Properties of an s Orbital
 These observations pertain to any central-atom s orbital in any point group

- Consider an s orbital located on a central atom
- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom s orbital returns the s orbital in its original configuration
- The central-atom s orbital "belongs to" or "serves as a basis for" the totally symmetric $\left(A_{1}\right)$ irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate

Transformation Properties of an s Orbital
 These observations pertain to any central-atom s orbital in any point group

- Consider an s orbital located on a central atom
- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom s orbital returns the s orbital in its original configuration
- The central-atom s orbital "belongs to" or "serves as a basis for" the totally symmetric $\left(A_{1}\right)$ irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate

Transformation Properties of an s Orbital
 These observations pertain to any central-atom s orbital in any point group

- Consider an s orbital located on a central atom
- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom s orbital returns the s orbital in its original configuration
- The central-atom s orbital "belongs to" or "serves as a basis for" the totally symmetric $\left(A_{1}\right)$ irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate

Transformation Properties of an s Orbital
 These observations pertain to any central-atom s orbital in any point group

- Consider an s orbital located on a central atom
- An example of a central atom is O in the case of water, or N in the case of ammonia
- Carrying out any operation on a central atom s orbital returns the s orbital in its original configuration
- The central-atom s orbital "belongs to" or "serves as a basis for" the totally symmetric $\left(A_{1}\right)$ irreducible representation
- All the characters of the totally symmetric irreducible representation are 1
- The totally symmetric irreducible representation is always singly degenerate

Transformation Properties of a p_{x} Orbital in $C_{2 v}$

 What happens when the E operation is applied?

Transformation Properties of a p_{x} Orbital in $C_{2 v}$

What happens when the E operation is applied?

- The E operation is a rotation by 360° about an arbitrary axis

Transformation Properties of a p_{x} Orbital in $C_{2 v}$ The E operation returns the original configuration of the p_{x} orbital

Massachusetts

Transformation Properties of a p_{x} Orbital in $C_{2 v}$ The E operation returns the original configuration of the p_{x} orbital

- The result of this corresponds to a character of 1

Transformation Properties of a p_{x} Orbital in $C_{2 v}$

What happens when the C_{2} operation is applied?

Massachusetts

Transformation Properties of a p_{x} Orbital in $C_{2 v}$

What happens when the C_{2} operation is applied?

- The C_{2} operation is a rotation by 180° about the z axis

Transformation Properties of a p_{x} Orbital in $C_{2 v}$ The C_{2} operation inverts the phase of the p_{x} orbital

Massachusetts

Transformation Properties of a p_{x} Orbital in $C_{2 v}$ The C_{2} operation inverts the phase of the p_{x} orbital

- The result of this corresponds to a character of -1

Transformation Properties of a p_{x} Orbital in $C_{2 v}$

What happens when the $\sigma_{v}(x z)$ operation is applied?

Massachusetts

Transformation Properties of a p_{x} Orbital in $C_{2 v}$

What happens when the $\sigma_{v}(x z)$ operation is applied?

- The $\sigma_{v}(x z)$ operation is a reflection through the $x z$ plane

Transformation Properties of a p_{x} Orbital in $C_{2 v}$

 The $\sigma_{v}(x z)$ operation does nothing to the phase of the p_{x} orbital

Massachusetts

Transformation Properties of a p_{x} Orbital in $C_{2 v}$ The $\sigma_{v}(x z)$ operation does nothing to the phase of the p_{x} orbital

- The result of this corresponds to a character of 1

Transformation Properties of a p_{x} Orbital in $C_{2 v}$

 What happens when the $\sigma_{v}^{\prime}(y z)$ operation is applied?

Massachusetts

Transformation Properties of a p_{x} Orbital in $C_{2 v}$

 What happens when the $\sigma_{v}^{\prime}(y z)$ operation is applied?

- The $\sigma_{v}^{\prime}(y z)$ operation is a reflection through the $y z$ plane

Transformation Properties of a p_{x} Orbital in $C_{2 v}$

 The $\sigma_{v}^{\prime}(y z)$ operation inverts the phase of the p_{x} orbital

- The result of this corresponds to a character of -1

Transformation Properties of a p_{x} Orbital in $C_{2 v}$ The $\sigma_{v}^{\prime}(y z)$ operation inverts the phase of the p_{x} orbital

- The result of this corresponds to a character of -1

A p_{x} Orbital has B_{1} Symmetry in $C_{2 v}$

- We carried out the operations of $C_{2 v}$ on a central-atom p_{x} orbital
- This generated the following row of characters: $1,-1,1,-1$
- This row of characters in the $C_{2 v}$ character table is labeled B_{1}
- Any orbital having these transformation properties in $C_{2 v}$ is said to have B_{1} symmetry

A p_{x} Orbital has B_{1} Symmetry in $C_{2 v}$

- We carried out the operations of $C_{2 v}$ on a central-atom p_{x} orbital
- This generated the following row of characters: $1,-1,1,-1$
- This row of characters in the $C_{2 v}$ character table is labeled B_{1}
- Any orbital having these transformation properties in $C_{2 v}$ is said to have B_{1} symmetry

A p_{x} Orbital has B_{1} Symmetry in $C_{2 v}$

- We carried out the operations of $C_{2 v}$ on a central-atom p_{x} orbital
- This generated the following row of characters: $1,-1,1,-1$
- This row of characters in the $C_{2 v}$ character table is labeled B_{1}
- Any orbital having these transformation properties in $C_{2 v}$ is said to have B_{1} symmetry

A p_{x} Orbital has B_{1} Symmetry in $C_{2 v}$

- We carried out the operations of $C_{2 v}$ on a central-atom p_{x} orbital
- This generated the following row of characters: $1,-1,1,-1$
- This row of characters in the $C_{2 v}$ character table is labeled B_{1}
- Any orbital having these transformation properties in $C_{2 v}$ is said to have B_{1} symmetry

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

 What happens when the E operation is applied?

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

 What happens when the E operation is applied?

- The E operation is a rotation by 360° about an arbitrary axis

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

The E operation returns the original configuration of the p_{y} orbital

- The result of this corresponds to a character of 1

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

The E operation returns the original configuration of the p_{y} orbital

- The result of this corresponds to a character of 1

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

What happens when the C_{2} operation is applied?

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

 What happens when the C_{2} operation is applied?

- The C_{2} operation is a rotation by 180° about the z axis

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

The C_{2} operation inverts the phase of the p_{y} orbital

- The result of this corresponds to a character of -1

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

The C_{2} operation inverts the phase of the p_{y} orbital

- The result of this corresponds to a character of -1

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

 What happens when the $\sigma_{v}(x z)$ operation is applied?

Massachusetts

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

 What happens when the $\sigma_{v}(x z)$ operation is applied?

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

The $\sigma_{v}(x z)$ operation inverts the phase of the p_{y} orbital

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

 The $\sigma_{v}(x z)$ operation inverts the phase of the p_{y} orbital

- The result of this corresponds to a character of -1

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

 What happens when the $\sigma_{v}^{\prime}(y z)$ operation is applied?

- The $\sigma_{v}^{\prime}(y z)$ operation is a reflection through the $y z$ plane

Massachusetts

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

 What happens when the $\sigma_{v}^{\prime}(y z)$ operation is applied?

- The $\sigma_{v}^{\prime}(y z)$ operation is a reflection through the $y z$ plane

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

The $\sigma_{v}^{\prime}(y z)$ operation does nothing to the phase of the p_{y} orbital

Transformation Properties of a p_{y} Orbital in $C_{2 v}$

 The $\sigma_{v}^{\prime}(y z)$ operation does nothing to the phase of the p_{y} orbital

- The result of this corresponds to a character of 1

A py Orbital has B_{2} Symmetry in $C_{2 v}$

- We carried out the operations of $C_{2 v}$ on a central-atom p_{y} orbital
- This generated the following row of characters: $1,-1,-1,1$
- This row of characters in the $C_{2 v}$ character table is labeled B_{2}
- Any orbital having these transformation properties in $C_{2 v}$ is said to have B_{2} symmetry

A py Orbital has B_{2} Symmetry in $C_{2 v}$

- We carried out the operations of $C_{2 v}$ on a central-atom p_{y} orbital
- This generated the following row of characters: $1,-1,-1,1$
- This row of characters in the $C_{2 v}$ character table is labeled B_{2}
- Any orbital having these transformation properties in $C_{2 v}$ is said to have B_{2} symmetry

A py Orbital has B_{2} Symmetry in $C_{2 v}$

- We carried out the operations of $C_{2 v}$ on a central-atom p_{y} orbital
- This generated the following row of characters: $1,-1,-1,1$
- This row of characters in the $C_{2 v}$ character table is labeled B_{2}
- Any orbital having these transformation properties in $C_{2 v}$ is said to have B_{2} symmetry

A py Orbital has B_{2} Symmetry in $C_{2 v}$

- We carried out the operations of $C_{2 v}$ on a central-atom p_{y} orbital
- This generated the following row of characters: $1,-1,-1,1$
- This row of characters in the $C_{2 v}$ character table is labeled B_{2}
- Any orbital having these transformation properties in $C_{2 v}$ is said to have B_{2} symmetry

Transformation Properties of a p_{z} Orbital in $C_{2 v}$

What happens when the E operation is applied?

- The E operation is a rotation by 360° about an arbitrary axis

Transformation Properties of a p_{z} Orbital in $C_{2 v}$

What happens when the E operation is applied?

- The E operation is a rotation by 360° about an arbitrary axis

Transformation Properties of a p_{z} Orbital in $C_{2 v}$ The E operation returns the original configuration of the p_{z} orbital

Transformation Properties of a p_{z} Orbital in $C_{2 v}$ The E operation returns the original configuration of the p_{z} orbital

- The result of this corresponds to a character of 1

Transformation Properties of a p_{z} Orbital in $C_{2 v}$

What happens when the C_{2} operation is applied?

Transformation Properties of a p_{z} Orbital in $C_{2 v}$

What happens when the C_{2} operation is applied?

- The C_{2} operation is a rotation by 180° about the z axis

Transformation Properties of a p_{z} Orbital in $C_{2 v}$ The C_{2} operation does nothing to the phase of the p_{z} orbital

Transformation Properties of a p_{z} Orbital in $C_{2 v}$ The C_{2} operation does nothing to the phase of the p_{z} orbital

- The result of this corresponds to a character of 1

Transformation Properties of a p_{z} Orbital in $C_{2 v}$

What happens when the $\sigma_{v}(x z)$ operation is applied?

- The $\sigma_{v}(x z)$ operation is a reflection through the $x z$ plane

Transformation Properties of a p_{z} Orbital in $C_{2 v}$

What happens when the $\sigma_{v}(x z)$ operation is applied?

- The $\sigma_{v}(x z)$ operation is a reflection through the $x z$ plane

Transformation Properties of a p_{z} Orbital in $C_{2 v}$

 The $\sigma_{v}(x z)$ operation inverts the phase of the p_{z} orbital

Massachusetts

Transformation Properties of a p_{z} Orbital in $C_{2 v}$

 The $\sigma_{v}(x z)$ operation inverts the phase of the p_{z} orbital

- The result of this corresponds to a character of 1

Transformation Properties of a p_{z} Orbital in $C_{2 v}$

 What happens when the $\sigma_{v}^{\prime}(y z)$ operation is applied?

- The $\sigma_{v}^{\prime}(y z)$ operation is a reflection through the $y z$ plane

Transformation Properties of a p_{z} Orbital in $C_{2 v}$

 What happens when the $\sigma_{v}^{\prime}(y z)$ operation is applied?

- The $\sigma_{v}^{\prime}(y z)$ operation is a reflection through the $y z$ plane

Transformation Properties of a p_{z} Orbital in $C_{2 v}$

 The $\sigma_{v}^{\prime}(y z)$ operation does nothing to the phase of the p_{z} orbital

Transformation Properties of a p_{z} Orbital in $C_{2 v}$

 The $\sigma_{v}^{\prime}(y z)$ operation does nothing to the phase of the p_{z} orbital

- The result of this corresponds to a character of 1

A p_{z} Orbital has A_{1} Symmetry in $C_{2 v}$

- We carried out the operations of $C_{2 v}$ on a central-atom p_{z} orbital
- This generated the following row of characters: $1,1,1,1$
- This row of characters in the $C_{2 v}$ character table is labeled A_{1}
- Any orbital having these transformation properties in $C_{2 v}$ is said to have A_{1} symmetry

A p_{z} Orbital has A_{1} Symmetry in $C_{2 v}$

- We carried out the operations of $C_{2 v}$ on a central-atom p_{z} orbital
- This generated the following row of characters: $1,1,1,1$
- This row of characters in the $C_{2 v}$ character table is labeled A_{1}
- Any orbital having these transformation properties in $C_{2 v}$ is said to have A_{1} symmetry

A p_{z} Orbital has A_{1} Symmetry in $C_{2 v}$

- We carried out the operations of $C_{2 v}$ on a central-atom p_{z} orbital
- This generated the following row of characters: $1,1,1,1$
- This row of characters in the $C_{2 v}$ character table is labeled A_{1}
- Any orbital having these transformation properties in $C_{2 v}$ is said to have A_{1} symmetry

A p_{z} Orbital has A_{1} Symmetry in $C_{2 v}$

- We carried out the operations of $C_{2 v}$ on a central-atom p_{z} orbital
- This generated the following row of characters: $1,1,1,1$
- This row of characters in the $C_{2 v}$ character table is labeled A_{1}
- Any orbital having these transformation properties in $C_{2 v}$ is said to have A_{1} symmetry

Symmetry Restrictions on Molecular Orbitals (MOs)

- Only orbitals of the same symmetry may mix
- "Orbitals of the same symmetry" belong to the same irreducible representation
- For the $C_{2 v}$ water molecule, the oxygen s and p_{z} atomic orbitals may contribute to any molecular orbital of A_{1} symmetry, but p_{x} and p_{y} may not
- Any valid molecular orbital must transform according to one of the irreducible representations of the molecular point group

Symmetry Restrictions on Molecular Orbitals (MOs)

- Only orbitals of the same symmetry may mix
- "Orbitals of the same symmetry" belong to the same irreducible representation
- For the $C_{2 v}$ water molecule, the oxygen s and p_{z} atomic orbitals may contribute to any molecular orbital of A_{1} symmetry, but p_{x} and p_{y} may not
- Any valid molecular orbital must transform according to one of the irreducible representations of the molecular point group

Symmetry Restrictions on Molecular Orbitals (MOs)

- Only orbitals of the same symmetry may mix
- "Orbitals of the same symmetry" belong to the same irreducible representation
- For the $C_{2 v}$ water molecule, the oxygen s and p_{z} atomic orbitals may contribute to any molecular orbital of A_{1} symmetry, but p_{x} and p_{y} may not
- Any valid molecular orbital must transform according to one of the irreducible representations of the molecular point group

Symmetry Restrictions on Molecular Orbitals (MOs)

- Only orbitals of the same symmetry may mix
- "Orbitals of the same symmetry" belong to the same irreducible representation
- For the $C_{2 v}$ water molecule, the oxygen s and p_{z} atomic orbitals may contribute to any molecular orbital of A_{1} symmetry, but p_{x} and p_{y} may not
- Any valid molecular orbital must transform according to one of the irreducible representations of the molecular point group

The $C_{2 v}$ Character Table

$C_{2 v}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1	R_{z}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

The Molecular Orbitals of Water

- Notice that the water HOMO is a pure oxygen p_{x} orbital of B_{1} symmetry
- The hydrogen atoms with their $1 s$ valence orbitals lie in the nodal plane of the oxygen p_{x} orbital
- The two hydrogen $1 s$ orbitals give rise to linear combinations of A_{1} and B_{2} symmetry
- The $\mathrm{O}-\mathrm{H}$ bonding molecular orbitals must likewise be of A_{1} and B_{2} symmetry
- Given that all the irreducible representations of $C_{2 v}$ are singly degenerate, so must be all the MOs of the water molecule
- Click on Link to Water MOs

The Molecular Orbitals of Water

- Notice that the water HOMO is a pure oxygen p_{x} orbital of B_{1} symmetry
- The hydrogen atoms with their $1 s$ valence orbitals lie in the nodal plane of the oxygen p_{x} orbital
- The two hydrogen 1s orbitals give rise to linear combinations of A_{1} and B_{2} symmetry
- The O-H bonding molecular orbitals must likewise be of A_{1} and B_{2} symmetry
- Given that all the irreducible representations of $C_{2 v}$ are singly degenerate, so must be all the MOs of the water molecule
- Click on Link to Water MOs

The Molecular Orbitals of Water

- Notice that the water HOMO is a pure oxygen p_{x} orbital of B_{1} symmetry
- The hydrogen atoms with their $1 s$ valence orbitals lie in the nodal plane of the oxygen p_{x} orbital
- The two hydrogen 1 s orbitals give rise to linear combinations of A_{1} and B_{2} symmetry
- The $\mathrm{O}-\mathrm{H}$ bonding molecular orbitals must likewise be of A_{1} and B_{2} symmetry
- Given that all the irreducible representations of $C_{2 v}$ are singly degenerate, so must be all the MOs of the water molecule
- Click on Link to Water MOs

The Molecular Orbitals of Water

- Notice that the water HOMO is a pure oxygen p_{x} orbital of B_{1} symmetry
- The hydrogen atoms with their $1 s$ valence orbitals lie in the nodal plane of the oxygen p_{x} orbital
- The two hydrogen 1 s orbitals give rise to linear combinations of A_{1} and B_{2} symmetry
- The O-H bonding molecular orbitals must likewise be of A_{1} and B_{2} symmetry
- Given that all the irreducible representations of $C_{2 v}$ are singly degenerate, so must be all the MOs of the water molecule
- Click on I ink to Water MOs

The Molecular Orbitals of Water

- Notice that the water HOMO is a pure oxygen p_{x} orbital of B_{1} symmetry
- The hydrogen atoms with their $1 s$ valence orbitals lie in the nodal plane of the oxygen p_{x} orbital
- The two hydrogen 1 s orbitals give rise to linear combinations of A_{1} and B_{2} symmetry
- The O-H bonding molecular orbitals must likewise be of A_{1} and B_{2} symmetry
- Given that all the irreducible representations of $C_{2 v}$ are singly degenerate, so must be all the MOs of the water molecule

The Molecular Orbitals of Water

- Notice that the water HOMO is a pure oxygen p_{x} orbital of B_{1} symmetry
- The hydrogen atoms with their $1 s$ valence orbitals lie in the nodal plane of the oxygen p_{x} orbital
- The two hydrogen 1 s orbitals give rise to linear combinations of A_{1} and B_{2} symmetry
- The O-H bonding molecular orbitals must likewise be of A_{1} and B_{2} symmetry
- Given that all the irreducible representations of $C_{2 v}$ are singly degenerate, so must be all the MOs of the water molecule
- Click on Link to Water MOs

