Class Structure

Procedural abstraction and recursion
 6.037 - Structure and Interpretation of Computer Programs

Mike Phillips, Benjamin Barenblat, Leon Shen, Ben Vandiver, Alex Vandiver, Arthur Migdal

Massachusetts Institute of Technology

Lecture 1

- TR, 7-9PM, through end of IAP
- http://web.mit.edu/alexmv/6.037/
- E-mail: 6.001-zombies@mit.edu
- Five projects: due on the 10th, 15 th, 17 th, 24 th, and 1 st .
- Graded P/D/F
- Taking the class for credit is zero-risk!
- E-mail list sign-up on the website

Goals of the Class

Prerequisites

- This is not a class to teach Scheme
- Nor really a class about programming at all
- This is a course about Computer Science
- ...which isn't about computers
- ...nor actually a science
- This is actually a class in computation
- High confusion threshold
- Some programming clue
- A copy of Racket (Formerly PLT Scheme / DrScheme) http://www.racket-lang.org/
- Free time
- Project 0 is out today
- Due on Thursday!
- Mail to 6.037-psets@mit.edu
- Collaboration with current students is fine, as long as you note it

- Lisp invented in 1959 by John McCarthy (R.I.P. 2010)
- Scheme invented in 1975 by Guy Steele and Gerald Sussman
- Hardware Lisp machines, around 1978
- 6.001 first taught in 1980
- SICP published in 1984 and 1996
- R^{6} RS in 2007
- 6.001 last taught in 2007
- 6.037 first taught in 2009

The Book ("SICP")

```
Key ideas
```


- Structure and Interpretation of Computer Programs by Harold Abelson and Gerald Jay Sussman
- http://mitpress.mit.edu/sicp/
- Not required reading
- Useful as study aid and reference
- Roughly one lecture per chapter
- Procedural and data abstraction
- Conventional interfaces \& programming paradigms
- Type systems
- Streams
- Object-oriented programming
- Metalinguistic abstraction
- Creating new languages
- Evaluators
(1) Syntax of Scheme, procedural abstraction, and recursion
(2) Data abstractions, higher order procedures, symbols, and quotation
(3) Mutation, and the environment model
(9) Interpretation and evaluation
(0) Debugging
(6) Language design and implementation
(Continuations, concurrency, lazy evaluation, and streams
(3) 6.001 in perspective, and the Lambda Calculus

0 Basic Scheme warm-up Thursday $1 / 10$
 1 Higher-order procedures and symbols Tuesday $1 / 15$
 2 Mutable objects and procedures with state Thursday 1/17
 3 Meta-circular evaluator

4 OOP evaluator (The Adventure Game)

Computation is Imperative Knowledge

- "How to" knowledge
- To approximate \sqrt{x} (Heron's Method):
- Make a guess G
- Improve the guess by averaging G and $\frac{x}{G}$
- Keep improving until it is good enough

$$
\begin{array}{ll}
x=2 & G \\
=1 \\
\frac{x}{G}=2 & G=\frac{(1+2)}{2}=1.5 \\
\frac{x}{G}=\frac{4}{3} & G=\frac{\left(\frac{3}{2}+\frac{4}{3}\right)}{2}=1.4166 \\
\frac{x}{G}=\frac{24}{17} & G=\frac{\left(\frac{17}{12}+\frac{24}{17}\right)}{2}=1.4142
\end{array}
$$

"How to" knowledge

- Could just store tons of "what is" information
- Much more useful to capture "how to" knowledge - a series of steps to be followed to deduce a value - a procedure.

Describing "How to" knowledge

Representing basic information

Need a language for describing processes:

- Vocabulary - basic primitives
- Rules for writing compound expressions - syntax
- Rules for assigning meaning to constructs - semantics
- Rules for capturing process of evaluation - procedures
- Numbers
- As floating point values
- In IEEE 754 format
- Stored in binary
- In registers
- Made up of bits
- Made up of bits
- Made of logic gate
- Implemented by transistors
- In silicon wells
- With electrical potential
- Ot individual electrons
- Of individual electrons
- With mass, charge, spin, and chirality
- Whose mass is imparted by interaction with the Higgs field
- ...

Assuming a basic level of abstraction

Rules for describing processes in Scheme

- We assume that our language provides us with a basic set of data elements
- Numbers
- Characters
- Booleans
- It also provides a basic set of operations on these primitive elements
- We can then focus on using these basic elements to construct more complex processes
- Legal expressions have rules for constructing from simpler pieces - the syntax.
- (Almost) every expression has a value, which is "returned" when an expression is "evaluated."
- Every value has a type.
- The latter two are the semantics of the language.

Self-evaluating primitives - value of expression is just object itself:
Numbers 29, -35, 1.34, 1.2e5
Strings "this is a string" "odd \#\$@\%\#\$ thing number 35"
Booleans \#t, \#£

Built-in procedures to manipulate primitive objects:
Numbers +, -, *, /, >, <, >=, <=, =
Strings string-length, string=?
Booleans and, or, not

Language elements - primitives

Language elements - combinations

Names for built-in procedures

- +, -, *, /, =, ...
- What is the value of them?
- + \rightarrow \#procedure:+
- Evaluate by looking up value associated with the name in a special table - the environment.
- How to we create expressions using these procedures?
- (+ 2 3)
- Open paren
- Expression whose value is a procedure
- Other expressions
- Close paren
- This type of expression is called a combination
- Evaluate it by getting values of sub-expressions, then applying operator to values of arguments.
- You now know all there is to know about Scheme syntax! (almost)
- In order to abstract an expression, need a way to give it a name (define score 23)
- Note the recursive definition - can use combinations as expressions to other combinations:

(+ (* 23 3) 4)	\rightarrow	10
(* (+ 3 4) (- 8 2))	\rightarrow	42

- This is a special form
- Does not evaluate the second expression
- Rather, it pairs the name with the value of the third expression
- The return value is unspecified

Language elements - abstractions

Language elements - common errors

$(5+6)$
=> procedure application: expected procedure, given: 5; arguments were: \#procedure:+ 6
$((+56))$
=> procedure application: expected procedure, given: 11 (no arguments)
(* 100 (/ score totla))
=> reference to undefined identifier: totla

(define score 23)	\rightarrow	undefined
score	\rightarrow	23
(define total (+12 13))	\rightarrow	undefined
$(* 100(/$ score total))	\rightarrow	92

Scheme basics

Mathematical operators are just names

Rules for evaluation:

- If self-evaluating, return value
- If a name, return value associated with name in environment
- If a special form, do something special
- If a combination, then
- Evaluate all of the sub-expressions, in any order
- Apply the operator to the values of the operands and return the result

(+ 3 5)	\rightarrow	8
(define fred +)	\rightarrow	undefined
(fred 3 6)	\rightarrow	9

(fred 3 6)
un
9

- + is just a name
- + is bound to a value which is a procedure
- line 2 binds the name $f r e d$ to that same value

Making our own procedures

$(+35)$	\rightarrow	8
$($ define $+*)$	\rightarrow	undefined
$(+35)$	\rightarrow	15

- There's nothing "special" about the operators you take for granted, either!
- Their values can be changed using define just as well
- Of course, this is generally a horrible idea
- To capture a way of doing things, create a procedure:
(lambda (x) (* x x))
- (x) is the list of parameters
- ($* \mathrm{x} x$) is the body
- lambda is a special form: create a procedure and returns it

Substitution

Scheme basics

- Use this anywhere you would use a built-in procedure like +: ((lambda (x) (* x x)) 5)
- Substitute the value of the provided arguments into the body (* 5 5)
- Can also give it a name
(define square (lambda(x) (* x x)))
(square 5) $\rightarrow 25$
- This creates a loop in our system, where we can create a complex thing, name it, and treat it as a primitive like +

Rules for evaluation:

- If self-evaluating, return value
- If a name, return value associated with name in environment
- If a special form, do something special.
- If a combination, then
- Evaluate all of the sub-expressions, in any order
- Apply the operator to the values of the operands and return the result

Rules for applying:

- If primitive, just do it
- If a compound procedure, then substitute each formal parameter with the corresponding argument value, and evaluate the body

Interaction of define and lambda

Lambda special form

```
(lambda (x) (* x x))
    => #<procedure>
(define square (lambda (x) (* x x)))
    => undefined
(square 4)
    => (* 4 4)
    => 16
```

"Syntactic sugar":
(define (square x) (* x x))
=> undefined

```
(define x (lambda () (+ 3 2)))
x
(x)
```


$\rightarrow \quad$ undefined

```
\(\rightarrow\) \#<procedure>
\(\rightarrow \quad 5\)
```

The value of a lambda expression is a procedure

Capturing a common pattern:

- (* 3 3)
- (* 25 25)
- (* foobar foobar)
(lambda (x) (* x x))
Name for the thing that changes Common pattern to capture

Modularity of common patterns

Here is a common pattern:

- (sqrt (+ (* 3 3) (* 4 4)))
- (sqrt (+ (* 9 9) (* 16 16)))
- (sqrt (+ (* 4 4) (* 4 4)))

Here is one way to capture this pattern:

```
(define square (lambda (x) (* x x)))
(define pythagoras
    (lambda (x y)
        (sqrt (+ (* x x) (* y y)))))
```


Why?

- Breaking computation into modules that capture commonality
- Enables reuse in other places (e.g. square)
- Isolates (abstracts away) details of computation within a procedure from use of the procedure
- May be many ways to divide up:
(define square (lambda (x) (* x x)))
(define pythagoras
(lambda (x y)
(sqrt (+ (square x) (square y)))))
(define square (lambda (x) (* x x)))
(define sum-squares
(lambda (x y) (+ (square x) (square y))))
(define pythagoras
(lambda (x y)
(sqrt (sum-squares x y))))

A more complex example

Procedural abstractions

To approximate \sqrt{x} :

- Make a guess G
(3) Improve the guess by averaging G and $\frac{\chi}{G}$:
- Keep improving until it is good enough

Sub-problems:

- When is "close enough"?
- How do we create a new guess?
- How do we control the process of using the new guess in place of the old one?
"When the square of the guess is within 0.001 of the value"
(define close-enough?
(lambda (guess x)
$(<$ (abs (- (square guess) $x)$) 0.001))

Note the use of the square procedural abstraction from earlier!

Procedural abstractions

(define average
(lambda (a b) (/ (+ a b) 2)))
(define improve
(lambda (guess x)
(average guess (/ x guess))))

Why this modularity?

- average is something we are likely to want to use again
- Abstraction lets us separate implementation details from use
- Originally:
(define average
(lambda (a b) (/ (+ a b) 2)))
- Could redefine as:
(define average
(lambda (x y) (* (+ x y) 0.5)))
- There's actually a difference between those in Racket (exact vs inexact numbers)
- No other changes needed to procedures that use average
- Also note that parameters are internal to the procedure - cannot be referred to by name outside of the lambda

(if predicate consequent alternative)

- Given x and guess, want (improve guess x) as new guess
- But only if the guess isn't good enough already
- We need to make a decision - for this, we need a new special form
(if predicate consequent alternative)
- Evaluator first evaluates the predicate expression
- If it returns a true value (\#t), then the evaluator evaluates and returns the value of the consequent expression
- Otherwise, it evaluates and returns the value of the alternative expression
- Why must this be a special form? Why can't it be implemented as a regular lambda procedure?

Using if

Putting it together

- So the heart of the process should be:
(define (sqrt-loop guess x)
(if (close-enough? guess x)
guess
(sqrt-loop (improve guess x) x)))
- But somehow we need to use the value returned by improve as the new guess, keep the same x , and repeat the process
- Call the sqrt-loop function again and reuse it!

Now we just need to kick the process off with an initial guess:

```
(define sqrt
    (lambda (x)
        (sqrt-loop 1.0 x)))
(define (sqrt-loop guess x)
    (if (close-enough? guess x)
        guess
        (sqrt-loop (improve guess x) x)))
```

- How do we know it works?
- Fall back to rules for evaluation from earlier

Rules for evaluation:

- If self-evaluating, return value
- If a name, return value associated with name in environment
- If a special form, do something special.
- If a combination, then
- Evaluate all of the sub-expressions, in any order
- Apply the operator to the values of the operands and return the result

Rules for applying:

- If primitive, just do it
- If a compound procedure, then substitute each formal parameter with the corresponding argument value, and evaluate the body
The substitution model of evaluation
is a lie and a simplification, but a useful one!

A canonical example

```
```

(lambda (x) (sqrt-loop 1.0 x)) 2)

```
```

(lambda (x) (sqrt-loop 1.0 x)) 2)
((lambda (guess x)
((lambda (guess x)
(if (close-enough? guess x)
(if (close-enough? guess x)
guess
guess
(sqrt-loop (improve guess x) x))) 1.0 2)
(sqrt-loop (improve guess x) x))) 1.0 2)
if (close-enough? 1.0 2)
if (close-enough? 1.0 2)
(sqrt-loop (improve 1.0 2) 2))
(sqrt-loop (improve 1.0 2) 2))
(sqrt-loop ((lambda (a b) (/ (+ a b) 2)) 1.0 2) 2
(sqrt-loop ((lambda (a b) (/ (+ a b) 2)) 1.0 2) 2
(sqrt-loop (/ (+ 1.0 2) 2) 2)
(sqrt-loop (/ (+ 1.0 2) 2) 2)
. ..
. ..
(sqrt-loop 1.4166 2)
(sqrt-loop 1.4166 2)
...

```
...
```

```
    1.0
```

 1.0
 (sqre-loop 1.5 2)

```
(sqre-loop 1.5 2)
```


Recursive algorithms

Minor difficulty
(1) Wishful thinking
(2) Decompose the problem
(3) Identify non-decomposable (smallest) problems

Wishful thinking

- Assume the desired procedure exists
- Want to implement factorial? Assume it exists.
- But, it only solves a smaller version of the problem
- This is just finding the common pattern; but here, solving the bigger problem involves the same pattern in a smaller problem
Decompose the problem
- Solve a smaller instance
- Convert that solution into desired solution
$n!=n(n-1)(n-2) \ldots=n[(n-1)(n-2) \ldots]=n *(n-1)!$
(define fact (lambda (n) (* n (fact (- n 1)))))
Identify non-decomposable problems
- Must identify the "smallest" problems and solve explicitly
- Define 1 ! to be 1

Recursive algorithms

Recursive algorithms

(1) Wishful thinking
(2) Decompose the problem
(3) Identify non-decomposable (smallest) problems

Wishful thinking

- Assume the desired procedure exists
- Want to implement factorial? Assume it exists.
- But, it only solves a smaller version of the problem
- This is just finding the common pattern; but here, solving the bigger problem involves the same pattern in a smaller problem
Decompose the problem
- Solve a smaller instance
- Convert that solution into desired solution
$n!=n(n-1)(n-2) \ldots=n[(n-1)(n-2) \ldots]=n *(n-1)!$
(define fact (lambda (n) (* n (fact (- n 1)))))
Identify non-decomposable problems
- Must identify the "smallest" problems and solve explicitly
- Define 1 ! to be 1

Effects of recursive algorithms

Recursive algorithms consume more space with bigger operands!

An alternative

Iterative algorithms as tables

- Try computing 101 !
$101 * 100 * 99 * 98 * 97 * 96 * \ldots * 2 * 1$
- How much space do we consume with pending operations?
- Better idea: count up, doing one multiplication at a time
- Start with 1 as the answer
- Multiply by 2 , store 2 as the current answer, remember we've done up to 2
- Multiply by 3 , store 6 , remember we're done up to 3
- Multiply by 4 , store 24 , remember we're done up to 4
- Mu

Multiply by 101 , get 9425947759838359420851623124482936749562 312794702543768327889353416977599316221476503087
861591808346911623490003549599583369706302603264000000000000000000000000

- Realize we're done up to the number we want, and stop
- This is an iterative algorithm - it uses constant space

```
(define (ifact n) (ifact-helper 1 1 n))
(define (ifact-helper product done max)
    (if (= done max)
        product
        (ifact-helper (* product (+ done 1))
                        (+ done 1)
        max)))
```

- The helper has one argument per column
- Which is called by ifact
- Which provides the values for the first row
- The recursive call to ifact-helper computes the next row
- And the if statement checks the end condition and output value

```
(define (ifact-helper product done max)
    (if (= done max)
        product
        (ifact-helper (* product (+ done 1))
                        (+ done 1)
            max)))
(ifact-helper 1 1 4)
(if (= 1 4) 1 (ifact-helper (* 1 (+ 1 1 1)) (+ lllllll
(ifact-helper 2 2 4)
(ifact-helper 6 3 4)
if (=3 4) 6 (ifact-helper (* 6 (+ 3 1)) (+ 3 1) 4))
(ifact-helper 24 4 4)
(1才 (= 4 4) 24 (ifact-helper (* 24 (+ 4 1)) (+ 4 1) 4))
```


Recursive algorithms have pending operations

- Recursive factorial:
(define (fact n)
(if (= n 1) 1
(* n (fact (- n 1))))
(fact 4)
(* 4 (fact 3))
(* 4 (* 3 (fact 2))
(* 4 (* 3 (* $2($ fact 1$)))$)
- Pending operations make the expression grow continuously.

Iterative algorithms have no pending operations

- Iterative factorial:
(define (ifact n) (ifact-helper 11 n))
(define (ifact-helper product done max)
(if (= done max)
product
(ifact-helper (* product (+ done 1))
(+ done 1)
max)))
(ifact-helper 114)
(ifact-helper 22 4)
(ifact-helper 63 4)
(ifact-helper 244 4)
- Fixed space because no pending operations

Summary

- Iterative algorithms have constant space
- To develop an iterative algorithm:
(1) Figure out a way to accumulate partial answers
(2) Write out a table to analyze:
- initialization of first row
- update rules for other rows
- how to know when to stop
(3) Translate rules into Scheme
- Iterative algorithms have no pending operations
- Lambdas allow us to create procedures which capture processes
- Procedural abstraction creates building blocks for complex processes
- Recursive algorithms capitalize on "wishful thinking" to reduce problems to smaller subproblems
- Iterative algorithms similarly reduce problems, but based on data you can express in tabular form

Recitation Time!

Reminders

- Project 0 is due Thursday
- Submit to 6.037-psets@mit. edu
- http://web.mit.edu/alexmv/6.037/
- E-mail: 6.001-zombies@mit.edu

