
6.037, IAP 2019—Project 1 1

MASSACHVSETTS INSTITVTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science
6.037—Structure and Interpretation of Computer Programs

IAP 2019

Project 1

Release date: 10 January, 2019
Due date: 15 January, 2019 at 1900h

In this project you will write more sophisticated procedures, including higher-order procedures and
list manipulation. This project is divided into two parts, which you should submit together.

Part 1: Numerical integration reloaded

Problem 1: Integrating any function

In Project 0, you wrote procedures to integrate the function from Ben Bitdiddle’s dream. Since we
might want to approximate the area under other curves, let’s generalize that code. We will pass
the function to integrate as a parameter. You may implement integral using either a recursive or
iterative algorithm.

(define (integral func num-steps x1 x2)

'your-code-here)

Problem 2: Area of a unit circle

Integration is good for more than just dream interpretation. Recall that a circle of radius 1 is the
set of points (x, y) such that

x2 + y2 = 1.

With a little algebra, we get

y = ±
√

1 − x2.



6.037, IAP 2019—Project 1 2

The area of our circle is four times the area of the upper-right quarter-circle:

Therefore,

π = 4

∫ 1

0

√
1 − x2 dx.

Write a procedure to approximate π using integral. Try to do it without any additional
defines.

(define (approx-pi num-steps)

'your-code-here)



6.037, IAP 2019—Project 1 3

Problem 3: Integrating with pieces of any shape

Alyssa P. Hacker points out to Ben that a rectangle is a rather poor approximation of a curve.
What’s better than a rectangle with one corner on a curve? A trapezoid with two corners on the
curve!

Recall that integral sums a bunch of areas obtained from rectangles, like bitfunc-rect did for
Ben’s original function. We could change integral to use trapezoids – but instead, let’s make this
another parameter. Write procedures rectangle and trapezoid to compute the area of
the respective shapes. Then write integral-with, which is like integral, but takes one
of these procedures as its first argument, and uses it for each segment of the integral.

(define (rectangle func x1 x2)

'your-code-here)

(define (trapezoid func x1 x2)

'your-code-here)

(define (integral-with piece func num-steps x1 x2)

'your-code-here)

The idea is that (integral-with rectangle f n x1 x2) should give exactly the same result as
(integral f n x1 x2), while (integral-with trapezoid f n x1 x2) might be more accurate
(for the same num-steps).



6.037, IAP 2019—Project 1 4

Problem 4: Better approximation of π

Rewrite your procedure from Problem 2 to use trapezoidal integration.

(define (better-pi num-steps)

'your-code-here)

Optional problems

There are many more sophisticated ways to do numerical integration. You could replace the
trapezoids with quadratic functions; this is known as Simpson’s rule. Or you could discard the
idea of evenly-spaced intervals, and instead subdivide intervals whose estimated error is too high.
If you like, implement one of these ideas, or another fancy integration method. Tell us what you
did, and how much it improves accuracy.

Racket includes a sophisticated graphing system, which you can read about at http://docs.

racket-lang.org/plot. Use this to illustrate some properties of your numeric integrators. For
example, you could plot a function along with rectangular and trapezoidal area approximations,
shading each one differently.

http://docs.racket-lang.org/plot
http://docs.racket-lang.org/plot


6.037, IAP 2019—Project 1 5

Part 2: Symbolic differentiation

Alyssa P. Hacker isn’t too impressed with Ben’s numerical integrals. “What good is an approximate
answer? I’ll get an exact answer, by manipulating algebraic expressions containing variables.”
Alyssa does some reading and discovers that symbolic integration is very hard, so she decides to
tackle symbolic differentiation.

Alyssa needs a way to represent algebraic expressions as Scheme data. She decides to represent
numerical constants as Scheme numbers, and variables as Scheme symbols.

She starts with a procedure to find the derivative of a constant with respect to (“wrt”) some
variable:

(define (deriv-constant wrt constant)

0)

And she tests it:

> (deriv-constant 'x 3)

0

“That was easy.”

Problem 5: Derivative of a variable

Write a procedure to find the derivative of a variable with respect to some variable.

(define (deriv-variable wrt var)

'your-code-here)

Test cases:

(deriv-variable 'x 'x) ; -> 1

(deriv-variable 'x 'y) ; -> 0

Problem 6: Calling the right function

So far, an expression could be either a constant or a variable. Write a procedure which finds
the derivative in either case, by calling deriv-constant or deriv-variable as appropriate.

(define (derivative wrt expr)

(cond

; your code here

(else (error "Don't know how to differentiate" expr))))

Test cases:

(derivative 'x 3) ; -> 0

(derivative 'x 'x) ; -> 1



6.037, IAP 2019—Project 1 6

Problem 7: Derivative of a sum

Alyssa decides to represent the sum of two expressions as a 3-element list: the symbol + followed
by the two expressions.

Recall that the derivative of a sum is just the sum of the derivatives:

d

dx
(A+B) =

d

dx
A+

d

dx
B

And write a procedure which finds the derivative of such an expression.

(define (deriv-sum wrt expr)

'your-code-here)

Then modify your code for Problem 6 to call deriv-sum when appropriate. You can add
it to your solution for Problem 6, as long as you make a note here. Test case:

(derivative 'x '(+ x 2)) ; -> (+ 1 0)

Problem 8: Derivative of a product

Alyssa represents products similarly, using * instead of +. Recall the product rule for derivatives:

d

dx
(A ·B) = A · d

dx
B +

d

dx
A ·B

And then write a procedure which finds the derivative of a product, and extend derivative

as before.

(define (deriv-product wrt expr)

'your-code-here)

Test case:

(derivative 'x '(* x 3)) ; -> (+ (* x 0) (* 1 3))

Returning any algebraically equivalent expression is also fine.

Problem 9: Additional testing

Write some additional test cases to test all the functionality of derivative.

Optional problems

• Improve your code to handle sums and products of more than two expressions.

• Add support for more kinds of algebraic expressions.


