
6.003: Signals and Systems

Feedback and Control

September 24, 2009



Last Time

Understanding the structure of a control problem

automatic control → feedback

Analyzing feedback systems

feedback → cyclic paths → persistent outputs

Designing control systems

constructing well-behaved response properties



Example: Steering a Car

Algorithm: steer left when car is right of center and vice versa.

steer left
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Example: Steering a Car

Algorithm: steer left when car is right of center and vice versa.
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steer right

straight ahead?

Bad algorithm → poor performance.

Here we get persistent oscillations!



Last Time

We investigated a VERY simple model for the car.

The car could move laterally in a lane without rotating!

see previous (−1) → command 1
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Last Time

We investigated a VERY simple model for the car.

The car could move laterally in a lane without rotating!

see previous (−1) → command 1

see previous (0) → command 0

see previous (+1) → command −1

see previous (+1) → command −1

see previous (0) → command 0

Even that simple system could go unstable.

Last time, we learned how to stablize it.



Today

We will investigate more realistic models of steering.

We will analyze more realistic (and more complex) feedback systems.



Steering Controller

Design a system to automatically steer a car.

p

moving car, velocity V

Assume a sensor reports position p within the lane:

p = 0: in center

p > 0: right of center

p < 0: left of center



Steering Controller

Model the system.

Let X represent the desired position in the lane (normally 0).

Turn the steering wheel (φ) in proportion to the difference between

the desired and current positions.

+ α steering system

−1

X
Φ

P

The relation between the angle of the steering wheel and the position

of the car in the lane is complicated:

• turning the steering wheel causes the car to rotate.

• forward motion of the car then alters its position in the lane.



Check Yourself

What is the (CT) relation between φ (angle of steering

wheel) and θ (angle of car)?

θ

1. θ ∝ φ
2. θ ∝ sinφ
3. θ̇ ∝ φ
4. θ ∝ φ̇
5. none of the above



Check Yourself

What is the (CT) relation between φ (angle of steering wheel) and

θ (angle of car)?

φ = constant → circles

θ

circles → θ increases at a constant rate

The rate is proportional to φ.

θ̇ ∝ φ



Check Yourself

What is the (CT) relation between φ (angle of steering

wheel) and θ (angle of car)? 3

θ

1. θ ∝ φ
2. θ ∝ sinφ
3. θ̇ ∝ φ
4. θ ∝ φ̇
5. none of the above



Steering Controller

Make a DT model.

θ

θ̇ ∝ φ

θ[n+ 1]− θ[n]
∆

∝ φ[n]

θ[n+ 1] = θ[n] + βφ[n] ; β = ∆× proportionality constant

Θ = RΘ + βRΦ
βR

1−RΦ Θ



Check Yourself

What is the (CT) relation between θ (angle of car) and p

(position of car in lane)?

θ

p

1. ṗ ∝ θ
2. ṗ ∝ sin θ
3. p ∝ θ̇
4. p ∝ d sin θ

dt

5. none of the above



Check Yourself

What is the (CT) relation between θ (angle of car) and p (position

of car in lane)?

θ

p

θ = constant → linear increase in p

Change in p proportional to product of V and sin θ

ṗ = V sin θ

where V is forward velocity of the car.



Check Yourself

What is the (CT) relation between θ (angle of car) and p

(position of car in lane)? 2

θ

p

1. ṗ ∝ θ
2. ṗ ∝ sin θ
3. p ∝ θ̇
4. p ∝ d sin θ

dt

5. none of the above



Steering Controller

Make a DT model.

θ

p

ṗ = V sin θ

p[n+ 1]− p[n]
∆

∝ V θ[n] (small angle approximation)

p[n+ 1] = p[n] + γθ[n] ; γ = V∆× proportionality constant

P ≈ RP + γRΘ
γR

1−RΘ P



Steering Controller

Combining the relations for Φ, Θ, and P provides the following model.

+ α
βR

1−R
γR

1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

Determine the system functional.

Y = α βR
1−R

γR
1−R

(X − Y )

Solving:

Y

X
= αβγR2

1− 2R+ (1 + αβγ)R2 = KR2

1− 2R+ (1 +K)R2

where K ≡ αβγ.



Steering Controller

To find the poles, replace R in the system functional by 1
z and solve

for the roots of the denominator.

Y

X
= KR2

1− 2R+ (1 +K)R2 = K

z2 − 2z + (1 +K)

Poles are at

z = 1± j
√
K .



Steering Controller

If K = 0, there is a double pole at z = 1.

z = 1± j
√
K

Re z

Im z
z-planeK = 0

( )2

−1 0 1 2 3 4
n

mode 0

−1 0 1 2 3 4
n

mode 1

The output diverges: the system is “unstable.”



Steering Controller

If K = 1, there are complex poles at z = 1± j.

z = 1± j
√
K

1 Re z

Im z
z-planeK = 1

−1 0 1 2 3 4
n

Re {mode 1}

−1 0 1 2 3 4
n

Im {mode 1}

The output oscillates: poles off the real axis.

The output diverges: magnitude of poles greater than 1.
Bigger K → even less stable.



Steering Controller

No value of K = αβγ gives acceptable performance.

+ α
βR

1−R
γR

1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

Re z

Im z

( )2

Need a better controller.



Steering Controller

Try a controller based on first differences.

+ α(1−R) βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

Y =
αβγ(1−R)R2

(1−R)(1−R)
(X − Y )

This controller leads to a very simple form: the (1−R) terms cancel !



Steering Controller

Try a controller based on first differences.

+ α(1−R) βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

Y =
αβγ(1−R)R2

(1−R)(1−R)
(X − Y ) = KR

2

1−R
(X − Y ) where K = αβγ.

Solving,

Y

X
= KR2

1−R+KR2



Steering Controller

The functional has the form of the “simple car” (last lecture).

Y

X
= KR2

1−R+KR2

The poles are at z = 1±
√

1− 4K
2

.

Re z

Im z
z-plane

The system are stable for 0 < K < 1.



Steering Controller

Can we really cancel the (1−R) terms in numerator and denominator?

+ α(1−R) βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

Y =
αβγ(1−R)R2

(1−R)(1−R)
(X − Y ) = αβγR

2

1−R
(X − Y )

How could you test whether this is a valid operation?



Steering Controller

Simulate the behavior of the system.

Start by making a model with just adders, gains, and delays.

+ α(1−R) βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

+ α β γ+ + R + R

R
− −

X Y
Θ P



Steering Controller

Use step-by-step analysis.

+ α β γ+ + R + R

R
− −

X Y
Θ P

α = 0.5 β = γ = 1

n
θ[0] = 0.1

p[0] = 0.5

With time, the value of θ goes to zero, but the value of p does not.



Steering Controller

The fact that the position does not decay to zero suggests that the

closed-loop response has a pole at z = 1.

p

Pole at z = 1→ fundamental mode of 1n, n ≥ 0.



Steering Controller

But this is not consistent with our analysis after cancelling terms.

+ α(1−R) βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

Y = α(1−R) βR
1−R

γR
1−R

E = αβγR
2

1−R
(X − Y )

Solving:

Y

X
= KR2

1−R+KR2 where K = αβγ



Steering Controller

If K = 1
2 , the poles are at z = 1±

√
1−4K
2 = 1

2 ± j
1
2 .

Re z

Im z
z-plane

These poles correspond to decaying fundamental modes.



Steering Controller

Now remove the parts that correspond to cancelled terms (red).

+ α(1−R) βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

+ α β γ+ + R + R

R
− −

X Y
Θ P



Steering Controller

Simulate again, after removing cancelled parts (simulate blue part).

+ α β γ+ + R + R

R
− −

X Y
Θ P

α = 0.5 β = γ = 1

n
θ[0] = 0.1

p[0] = 0.5

Now the value of p also goes to zero with time.



Cancelling Factors in the Numerator and Denominator

Analysis of the block diagrams before and after cancelling factors in

the numerator and denominator gave different results.

Why?

Consider some simpler systems.



Cancelling Factors in the Numerator and Denominator

Accumulate then take difference.

+

R R −1

+X Y
W

Y

X
= 1−R

1−R
= 1 ?



Cancelling Factors in the Numerator and Denominator

Accumulate then take difference.

+

R R −1

+X Y
W

Y

X
= 1−R

1−R
= 1 ?

Think through the steps carefully:

W = X +RW

(1−R)W = X

Y = (1−R)W

Y = X

Outputs before and after cancelling (1−R) are the same.



Cancelling Factors in the Numerator and Denominator

Take difference then accumulate.

R −1

+ +

R

X Y
W

Y

X
= 1−R

1−R
= 1 ?



Cancelling Factors in the Numerator and Denominator

Take difference then accumulate.

R −1

+ +

R

X Y
W

Y

X
= 1−R

1−R
= 1 ?

Again, think through the steps:

W = (1−R)X

Y =W +RY

(1−R)Y =W

(1−R)Y = (1−R)X

Not quite the same as Y = X.



Cancelling Factors in the Numerator and Denominator

If system is initially at rest, then Y = X.

R −1

+ +

R

X Y
W

(1−R)X = (1−R)Y

y[0] = x[0] = 0

y[1]− y[0] = x[1]− x[0]→ y[1] = x[1]

y[2]− y[1] = x[2]− x[1]→ y[2] = x[2]

. . .



Cancelling Factors in the Numerator and Denominator

If system is not initially at rest, then Y and X are not always equal.

R −1

+ +

R

X Y
W

(1−R)X = (1−R)Y

y[0] = 5 x[0] = 0

y[1]− y[0] = x[1]− x[0]→ y[1] = x[1] + (y[0]− x[0]) = x[1] + 5

y[2]− y[1] = x[2]− x[1]→ y[2] = x[2] + (y[1]− x[1]) = x[2] + 5

. . .



Steering Controller

Our steering controller was not turned on at rest.

+ α(1−R) βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

There were non-zero initial values of P and Θ.

α = 0.5 β = γ = 1

n
θ[0] = 0.1

p[0] = 0.5



Check Yourself

Why didn’t feedback make p→ 0?

+ α(1−R) βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor
α = 0.5 β = γ = 1

n
θ[0] = 0.1

p[0] = 0.5



Check Yourself

Why didn’t feedback make p→ 0?

+ α(1−R) βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

x[n] = 0 → e[n] = −p[n] → φ[n] ∝ (p[n]− p[n− 1])

If p→ constant, then φ→ 0.



Check Yourself

Will feedback make θ → 0?

+ α(1−R) βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor
α = 0.5 β = γ = 1

n
θ[0] = 0.1

p[0] = 0.5



Check Yourself

Will feedback make θ → 0?

+ α(1−R) βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

φ = 0 does not imply that θ = 0 (e.g., nonzero initial condition).

θ 6= 0 → p increases → φ 6= 0.



Steering Controller

The “difference” controller is insensitive to constant inputs.

Such controllers are not good for feedback systems that are intended

to control position.

+ α(1−R) βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

Need an even better controller.



Steering Controller

Use combination of proportional and difference control to eliminate

unwanted persistent behavior.

+ βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

α0+
α1(1−R)

Y = (α0 + α1 − α1R)βγR2

(1−R)(1−R)
(X − Y )

Solving:

Y

X
= (α0 + α1 − α1R)βγR2

1− 2R+ (1 + (α0 + α1)βγ)R2 − α1βγR3



Steering Controller

Try step-by-step analysis.

+ βR
1−R

γR
1−R

1

−
X Y

E

S

PΦ Θ

controller steerng system

sensor

α0+
α1(1−R)

α0 = 0.1 α1 = 0.5 β = γ = 1

n
θ[0] = 0.1

p[0] = 0.5



Feedback and Control: Summary

Now you know about two kinds of controllers:

• proportional

• proportional plus difference

Adding delays in a loop tends to destabilize the loop.

Adding accumulators in a loop tends to destabilize the loop.

Difference feedback can help to stabilize such loops.

Analyzing the poles of a system is key to controller design !


