MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Department of Electrical Engineering and Computer Science

6.014 Electrodynamics

QUIZ 1
Closed Book, no calculators
March 19, 2002
Note the formulas presented on the reverse side. Please present numerical answers to the extent practical without a calculator or tedious computation, and circle your answers.

Problem 1. (15/100 points)
Show that the electric field $\underline{\overline{\mathrm{E}}}=5 \hat{z} \hat{\mathrm{e}}^{-\mathrm{jkz}}$ does not satisfy $\nabla \bullet \underline{\overline{\mathrm{D}}}=0$, which means that this field cannot exist in a charge-free vacuum.

Problem 2. ($15 / 100$ points)
A certain matched antenna radiates one watt isotropically (i.e. in all directions) when its terminals are excited with $\underline{\mathrm{V}}=10$ volts. What is the radiation resistance R_{r} of this antenna?

Problem 3. (30/100 points)

A certain transmitting array antenna has two z -oriented dipoles excited in phase and spaced λ apart along the x axis.

a) Give the direction θ from the x axis of any one null in the $\mathrm{x}-\mathrm{y}$ plane.
(Recalling radiation-pattern formulas is an awkward way to solve this problem)
b) Does this antenna array have a null along the x, y, or z axes? Explain briefly.

Problem 4. (30/100 points)

How much power P_{r} can be received across a $10-\mathrm{km}$ link in free space at $\lambda=4$ meters using a 1-Watt transmitter and two matched antennas, each with gain $\mathrm{G}=\pi$?

Problem 5. (10/100 points)
An evanescent wave in vacuum varies as $\mathrm{e}^{-\mathrm{j} 5 \mathrm{z}+3 \mathrm{x}}$. What is its frequency $\omega\left[\mathrm{rs}^{-1}\right]$?

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.014 Electrodynamics

QUIZ 1 SOLUTIONS
March 19, 2002

Problem 1.

$\nabla \bullet \overline{\mathrm{D}}=(\hat{x} \partial / \partial \mathrm{x}+\hat{y} \partial / \partial \mathrm{y}+\hat{z} \partial / \partial \mathrm{z}) \bullet 5 \hat{z} \mathrm{e}^{-\mathrm{jkz}}=\partial / \partial \mathrm{z}\left(5 \mathrm{e}^{-\mathrm{jkz}}\right)=-\mathrm{jk} 5 \mathrm{e}^{-\mathrm{jkz}} \neq 0$, QED

Problem 2.

$$
\mathrm{P}_{\mathrm{rad}}=|\mathrm{V}|^{2} / 2 \mathrm{R}_{\mathrm{r}} \Rightarrow \mathrm{R}_{\mathrm{r}}=|\mathrm{V}|^{2} / 2 \mathrm{P}_{\mathrm{rad}}=10^{2} / 2=50 \mathrm{ohms}
$$

Problem 3.

a) Nulls occur here when two phasors cancel; see figure. This happens for $\theta=\cos ^{-1} 0.5=60^{\circ}$.
b) There are additional nulls along the dipole axes, i.e. the z axis.

Problem 4.

For maximum power the two antennas face each other. $\mathrm{P}_{\text {rec }}=\left(\mathrm{P}_{\text {trans }} \mathrm{G}_{\mathrm{t}} / 4 \pi \mathrm{r}^{2}\right) \mathrm{A}_{\mathrm{e}}$, where the effective area A_{e} of the receiver is $A_{e}=G_{\text {rec }} \lambda^{2} / 4 \pi$. So we have $P_{\text {rec }}=P_{\text {trans }} G_{t} G_{\text {rec }}(\lambda / 4 \pi r)^{2}=1 \times \pi^{2} \times\left(4 / 4 \pi 10^{4}\right)^{2}=10^{-8}$ watts.

Problem 5.

$$
\mathrm{k}_{\mathrm{o}}^{2}=\mathrm{k}_{\mathrm{x}}^{2}+\mathrm{k}_{\mathrm{z}}^{2}=(\omega / \mathrm{c})^{2}=5^{2}-3^{2}=4^{2}, \text { so } \omega=4 \mathrm{c}=1.2 \times 10^{9} \mathrm{rs}^{-1}
$$

