6.014 Final Exam Solutions 5-00

Problem 1 (25 points)

a) The integral of H around the toroid equals the current flowing through it, or 3 x 5 amperes. But this integral =~HD + H_gd = DB/ μ + dB_g/ μ_o , where μ >>D μ_o /d so that the first term is negligible and the integral =~ dB_g/ μ_o .= dH_g, and $H_g = 15/d$ (a m⁻¹). Note that B is continuous across the gap.

b) $L = \Lambda/I$ where $\Lambda = \mu_0 H_g A3$ since B is continuous across the gap boundaries and is conserved within the toroid as it threads the 3I amperes. Therefore $L = \mu_0 H_g A/5 = L = 9 \mu_0 A/d$ (henries).

c) The Thevenin equivalent source at the end of the TEM line is twice the forward wave, or a 0.4 volt step function, delayed by D/c seconds. This charges the capacitor with $\tau = RC = 4Z_o x$ D/8cZ_o = D/2c (seconds). The voltage V(z=D) across the load rises instantly to ³/₄ of 0.4 volts, since the C voltage is initially 0. Then it rises further exponentially ($\tau = D/c$) to the open circuit value of 0.4 volts, which is:

The reflected wave, $v_{-}(t)$ is given by: $v_{-}(t) = 0.4 - v_{+}(t)$.

Problem 3.

a)
$$w_e = CV^2/2 = \varepsilon_o AV^2/2d [J]$$

b)
$$f = \partial w_e / \partial d = \partial \{CV^2/2\} / \partial d$$
. But $V = f(d)$, so try $f = \partial (Q^2/2C) / \partial d$
= $\partial (dQ^2/2\epsilon_o A) / \partial d = Q^2/2\epsilon_o A = C^2 V^2/2\epsilon_o A = \left[\epsilon_o A V^2/2d^2 [N]\right]$

Problem 4.

- a) $\underline{Z}_{Ln} = -j2, \ Z_{An} = 1/\underline{Z}_{Ln}$ (use Smith chart or eqn), $\underline{Z}_A = \underline{Z}_0/\underline{Z}_{Ln} = \underline{Z}_0/\underline{Z}_{Ln} = \underline{Z}_0/\underline{Z}_{Ln}$
- b) $\underline{Z}_{B} = Z_{o} = \underline{Z}_{A} + 1/j\omega C. \text{ So } \underline{Z}_{An} = 1 + j \text{ since } C = 1/\omega Z_{o}$ $Z_{Ln}' = 1/Z_{An}, Z_{L}' = Z_{o}(1/(1+j)) = \underline{Z}_{o}(1-j)/2$

Problem 5. (40 points)

a)
$$I = G \ 100/4\pi R^2$$
 where $G = A4\pi/\lambda^2$, so $I = 100(D/\lambda R)^2 (W/m^2)$

b)
$$A = G \lambda^2 / 4\pi$$
, $G = 3/2$, and $P_r = AI = 37.5 (D/R)^2 / \pi (W)$

c)
$$\theta_n = \lambda/D$$
 radians

d) $P_r/hf = \#photons/sec @ momentum = hf/c.$ Force = momentum/sec = $P_r/c = 100/c$ F = 33 x 10⁻⁸ Newtons in the -z direction.

Problem 6. (20 points)

$$\nabla \times (\nabla \times Q) = a(\partial^2 / \partial t^2) \nabla \times R = -ab(\partial^2 / \partial t^2) = -\nabla^2 Q$$

$$\left[(\nabla^2 - ab\partial^2 / \partial t^2) Q = 0 \right]$$

b)
$$c_Q = (ab)^2$$

Problem 7. (10 points)

