6.014 Final Exam Solutions 5-00

Problem 1 (25 points)

a) The integral of H around the toroid equals the current flowing through it, or 3×5 amperes. But this integral $=\sim H D+H_{g} d=D B / \mu+d B_{g} / \mu_{0}$, where $\mu \gg D \mu_{0} / d$ so that the first term is negligible and the integral $=\sim \mathrm{dB}_{\mathrm{g}} / \mu_{0}=\mathrm{dH}_{g}$, and $\mathrm{H}_{\mathrm{g}}=15 / \mathrm{d}_{\left(\mathrm{a} \mathrm{m}^{-1}\right)}$. Note that B is continuous across the gap.
b) $L=\Lambda / I$ where $\Lambda=\mu_{0} H_{g} A 3$ since B is continuous across the gap boundaries and is conserved within the toroid as it threads the 3I amperes. Therefore $L=\mu_{0} \mathrm{H}_{\mathrm{g}} \mathrm{A} / 5=$ $L=9 \mu_{0} \mathrm{~A} / \mathrm{d}$ (henries).

Problem 2 (35 points)
a)

b)

$$
\Gamma=\left(Z_{n}-1\right) /\left(Z_{n}+1\right)=(3-1) /(3+1)=0.5
$$

c) The Thevenin equivalent source at the end of the TEM line is twice the forward wave, or a 0.4 volt step function, delayed by D / c seconds. This charges the capacitor with $\tau=R C=4 Z_{o} x$ $\mathrm{D} / 8 \mathrm{cZ}_{\mathrm{o}}=\mathrm{D} / 2 \mathrm{c}$ (seconds). The voltage $\mathrm{V}(\mathrm{z}=\mathrm{D})$ across the load rises instantly to $3 / 4$ of 0.4 volts, since the C voltage is initially 0 . Then it rises further exponentially ($\tau=\mathrm{D} / \mathrm{c}$) to the open circuit value of 0.4 volts, which is:
The reflected wave, $v .(t)$ is given by: $\mathrm{v} .(\mathrm{t})=0.4-\mathrm{v}_{+}(\mathrm{t})$.

Problem 3.

a) $\quad \mathrm{w}_{\mathrm{e}}=\mathrm{CV}^{2} / 2=\varepsilon_{0} \mathrm{AV}^{2} / 2 \mathrm{~d}[\mathrm{~J}]$
b) $\quad \mathrm{f}=\partial \mathrm{w}_{\mathrm{e}} / \partial \mathrm{d}=\partial\left\{\mathrm{CV}^{2} / 2\right\} / \partial \mathrm{d}$. But $\mathrm{V}=\mathrm{f}(\mathrm{d})$, so try $\mathrm{f}=\partial\left(\mathrm{Q}^{2} / 2 \mathrm{C}\right\} / \partial \mathrm{d}$

$$
=\partial\left(\mathrm{dQ}^{2} / 2 \varepsilon_{0} \mathrm{~A}\right\} / \partial \mathrm{d}=\mathrm{Q}^{2} / 2 \varepsilon_{0} \mathrm{~A}=\mathrm{C}^{2} \mathrm{~V}^{2} / 2 \varepsilon_{0} \mathrm{~A}=\varepsilon_{0} \mathrm{AV}^{2} / 2 \mathrm{~d}^{2}[\mathrm{~N}]
$$

Problem 4.

a) $\quad \underline{Z}_{\text {Ln }}=-\mathrm{j} 2, \mathrm{Z}_{\mathrm{An}}=1 / \underline{\mathrm{Z}}_{\mathrm{In}}$ (use Smith chart or eqn), $\underline{\mathrm{Z}}_{\mathrm{A}}=\underline{\mathrm{Z}}_{d} \underline{Z}_{\mathrm{Z}_{\mathrm{n}}}=$ $\underline{Z}_{A}=\mathrm{jZo} / 2$
b) $\quad \begin{aligned} & \mathrm{Z}_{\mathrm{B}}=\mathrm{Z}_{\mathrm{o}}=\mathrm{Z}_{\mathrm{A}}+1 / \mathrm{j} \omega \mathrm{C} . \mathrm{So}_{\mathrm{Z}_{\mathrm{An}}}=1+\mathrm{j} \text { since } \mathrm{C}=1 / \omega \mathrm{Z}_{\mathrm{o}} . \\ & \mathrm{Z}_{\mathrm{In}}=1 / \mathrm{Z}_{\mathrm{A}_{\mathrm{n}}}, \mathrm{Z}_{\mathrm{L}^{\prime}}=\mathrm{Z}_{\mathrm{o}}(1 /(1+\mathrm{j}))=\mathrm{Z}_{\mathrm{o}}(1-\mathrm{j}) / 2\end{aligned}$

Problem 5. (40 points)
a) $\quad \mathrm{I}=\mathrm{G} 100 / 4 \pi \mathrm{R}^{2}$ where $\mathrm{G}=\mathrm{A} 4 \pi / \lambda^{2}$, so $\mathrm{I}=100(\mathrm{D} / \lambda \mathrm{R})^{2}\left(\mathrm{~W} / \mathrm{m}^{2}\right)$
b) $\quad \mathrm{A}=\mathrm{G} \lambda^{2} / 4 \pi, \mathrm{G}=3 / 2$, and $\mathrm{P}_{\mathrm{r}}=\mathrm{AI}=37.5(\mathrm{D} / \mathrm{R})^{2} / \pi(\mathrm{W})$
c) $\theta_{\mathrm{n}}=\lambda / \mathrm{D}$ radians
d) $\quad P_{P} / \mathrm{hf}=\# \mathrm{photons} / \mathrm{sec} @$ momentum $=\mathrm{hf} / \mathrm{c}$. Force $=$ momentum $/ \mathrm{sec}=\mathrm{P}_{\mathrm{r}} / \mathrm{c}=100 / \mathrm{c}$ $\mathrm{F}=33 \times 10^{-8}$ Newtons in the -z direction.

Problem 6. (20 points)

a)

$$
\nabla \times(\nabla \times Q)=a\left(\partial^{2} / \partial t^{2}\right) \nabla \times R=-a b\left(\partial^{2} / \partial t^{2}\right)=-\nabla^{2} Q
$$

$$
\left(\nabla^{2}-a b \partial^{2} / \partial t^{2}\right) Q=0
$$

b) $\mathrm{c}_{\mathrm{Q}}=(\mathrm{ab})^{-0.5}$

Problem 7. (10 points)

