Corrections to <u>Electromagnetic Waves</u> by David H. Staelin, Ann W. Morgenthaler, Jin Au Kong January 27, 2000

Spelling or word changes are indicated by the page and line number, followed by the correct spelling of the word or words. If the change is ambiguous the phrase in which it is embedded will also be presented (preceded and followed by ...).

Page #	Line	Correction
ix	2	practical
Х	5	ranging
	6	differential
	9	appropriate
	10	phenomenaequivalent
	11	models, and
3	22	$(\overline{E} + \overline{v} \times \mathbf{m}_0 \overline{H})$. The permeability of free space, \mathbf{m}_0 , is
	27	introduced on page 4. $\overline{F} = r\overline{E} + \overline{J} \times m_0 \overline{H}$
20		Figure 1.5. The ellipses in this figure exhibit excessive artistic
		license - their eccentricities and tilt angles are not precisely
		drawn.
25	9	average of the product of two
	26	$(\underline{1}.4.4)$ - $(1.4.7)$
42	13	$\underline{\underline{E}}_{l} = \dots$
	14	$\underline{E}_{r} = \dots$
	34	Omit "^ " in exponent.
47		Insert after (2.1.6): This becomes Laplace's equation when
		$\mathbf{r}=0$.
62	1	of a lossless matched radiating
73	5	$\overline{H} = \hat{r} \times \overline{E} / h_{o}$
75	23	30m
	24	60m
	30	heard by a receiver with 10^{-4} vm ⁻¹ sensitivity
95	15	flows in the slab between $x = 0$ and $x = L$?
111	11	and $\mu \overline{H}$ cannot
113	22	$\overline{\overline{E}} = \hat{y} \ e^{-jz - z / 100}$
116	8	$ = 10^5 \mu_0$ at $\omega = 0$.

Page #	Line #	Correction
117	last	Figure 4.1.
118	15	in Figure 4.1, along
121	5	4.2(b).
126	last	$= \hat{z} \left(\left E_i \right ^2 / 2 \right) \operatorname{Re} \left\{ \ldots e^{-2 j k_i z} \right) h_{i}^* $
127	1	if h_i is real, then because
	7	$\ldots E_i ^2 / 2 h_i$ for real h_i . ¹
	7	After line 7 insert (move) lines 15 and 16 (Ifinterface.)
	12	equations (4.2.11) and
	13	hence for h_i real
135		Fig. 4.7(b) is misleading; waves decay faster; i.e.
		$\delta = \lambda/2\pi.$
137	25	$\dots \nabla \times H$. For the case $H_x = 0$, we therefore
	28	$=-\left(\frac{1}{2}\right)\boldsymbol{m}_{\mathrm{o}}$ Re
138	11	Example 4.2.5 should probably be moved and
		renumbered as 4.1.2.
139	1	Example 4.2.6 should probably be moved and
		renumbered 4.1.3.
141	3	$f = \frac{\P w}{\P d_1} \bigg _{\mathbf{I}} = \frac{\P}{\P d_1} \dots \frac{\P L}{\P d_1} \dots$
	7	$t = \frac{\P_W}{\P_a} \bigg _{T} = \dots \frac{\P_L}{\P_a} \dots$
101		
164		Figure 4.18. Replace J_{os} with J_{sA} .
176	12	\dots (V/m) at a depth
	13	antenna, if $ \overline{E} $ above the surface is 1 V/m?
	14	100-Hz messages?
211		Figure 5.12, there should be an arrow associating the
		topmost horizontal dashed line with the expression
		$\mathbf{w}_{\mathrm{o}} = 2 / \sqrt{L_{\mathrm{o}} \mathrm{C}_{\mathrm{o}}} .$
213	9	less than a
	29	$\dots j\omega L_{o} + 1 / j\omega C_{o}$
217	28	surface charge density
218	19	breakdown field strength 50,000
219		Problem 5.5.2 might better be moved to become 6.5.11.
Page #	Line #	Correction
220	8	frequency-domain analyses are presented,

¹ For complex h_i , $|\Gamma|^2$ can exceed unity without power amplification because the medium is reactive.

224	14	recover quasistatic behavior.
		-
233	16	for Section III is found
234	1	Section I simply
264		Figure 6.25, topmost subfigure: $\Gamma_L = +\frac{1}{2}$.
270		Figure 6.27: $V_{Th} = 2 V_{-}(t, z = 0)$
275	13	The input voltage $v_s(t)$
280		<i>Problem 6.3.3 (d):</i> of part (a) alone; i.e. if Z_L then is set to
		Z_{0} and C is unchanged?
283	7	triggers a 50 Ω flip-flop
285	4	zero-mean 100-MHz square wave
297	4	$)e^{-jk_z z}$
300	1	angles of bounce less than
318	23	$\overline{J}_{s}\sigma$ should be $\overline{J}/_{s}\sigma$
332		Problem 7.2.5(a):) $e^{-jk_z z}$ for 0
340	22	$E_z = \dots$
348	Fig. 8.5	axis labels should be mc/2a, nc/2b, pc/2d
358		Equation (8.4.5): $\frac{1}{LC} - \left(\frac{R}{2L}\right)^2$
364, 5	(8.4.22-3)	Third eqn: Q_I should be Q_L
367	6	Figure 8.12 is
403	21	on the 2×3 cm
407	6	of antenna arrays
426	25	Figure 9.10(a).
	27	Figure 9.10(b).
	28	Figure 9.10(c).
	31	Figure 9.10(d).
433		Reverse \hat{x} and \hat{y} in Fig. 9.17(b).
435	Fig.9.17(b)	Interchange \hat{x} , \hat{y} axis labels
	16-17	Interchange x and y
	23	Figure. 9.17(b) should be Figure 9.17(c)8
447	(9.5.10)	Denominator is 8.20 (kd $_2^{\text{eff}}$) ²
448	(9.5.11)	Should have $A_{eff}(\theta, \phi)\overline{S}_1(\mathbf{r})$ (no squaring)
449	(9.5.17)	Right parenthesis missing

Page #	Line #	Correction
461		Figure 9.31(c) should have a longer arm on the right-hand
		side and I(z) should be redrawn accordingly.
	11	$\dots d = 2 \mathbf{I}$. For the most common case where $d = \mathbf{I} / 2$, the
		factor in brackets in (9.7.3) reduces to $\cos\left(\frac{\frac{p}{2}\cos q}{\sin q}\right)$
470	14	$E_{o} = -\eta_{o} J_{s}/2$
474	8	\hat{x} -polarized uniform
486		Problem 9.4.2:above a flatseparated by 1 m along a line
		perpendicular to the two dipoles and passing through their
		centers, and areparallel to it. (Delete the rest of the
100		sentence.)
486		Problem 9.4.2:positioned above a flat metalstraight line
		could bisect both dipoles
100	2.2	perpendicular to them. (<i>End of problem.</i>) Problem 0.5.2 (a): at distance rif 20W
488 494	33 18	Problem 9.5.3 (a):at distance r if 30W
494	10	constant pressure to constant volume in the gas (i.e. $\gamma = C_p/C_v$).
489		<i>Problem 9.8.3:</i> × 1 m in the x and y directionsfor
400		$ \mathbf{a}_{x,y} \ll 1$, where \mathbf{a}_x and \mathbf{a}_y
499	8	plane wave. Such a wave is deafening.
523		Label equation (10.8.8).
529		Problem 10.2.1:is radiating 1 mW of acoustic power
530		Problem 10.3.2:traveling at zero velocity relative to a
		wind
		Problem 10.5.3:from the 4-cm diameter open end
536	10	$\dots + j \left(\left(A_i B_r - A_r B_i \right) / \left(B_r^2 + B_i^2 \right) \right).$
551		Insert: conductivity values, 547
		Corrections to Section 4.2R
1	27	unit normal vector symbol is n
2	6-8	n <i>not</i> n