Corrections to

Electromagnetic Waves

by David H. Staelin, Ann W. Morgenthaler, Jin Au Kong
J anuary 27, 2000

Spelling or word changes are indicated by the page and line number, followed by the correct spelling of the word or words. If the change is ambiguous the phrase in which it is embedded will also be presented (preceded and followed by ...).

Page \#	Line	Correction
ix	2	practical
X	5	ranging
	6	differential
	9	appropriate
	10	phenomena...equivalent
	11	...models, and...
3	22	$\ldots\left(\bar{E}+\bar{v} \times \mu_{\mathrm{o}} \bar{H}\right)$. The permeability of free space, μ_{o}, is introduced on page 4.
	27	$\bar{F}=\rho \bar{E}+\bar{J} \times \mu_{\mathrm{o}} \bar{H}$
20		Figure 1.5. The ellipses in this figure exhibit excessive artistic license - their eccentricities and tilt angles are not precisely drawn.
25	9	...average of the product of two...
	26	(1.4.4) - (1.4.7)
42	13	$\underline{\underline{E}}_{l}=\ldots$
	14	$\underline{E}_{\mathrm{r}}=\ldots$
	34	Omit "^" in exponent.
47		Insert after (2.1.6): This becomes Laplace's equation when $\rho=0$.
62	1of a lossless matched radiating...
73	5	$\bar{H}=\hat{r} \times \bar{E} / \eta_{\mathrm{o}}$
75	23	30 m
	24	60 m
	30	...heard by a receiver with $10^{-4} \mathrm{vm}^{-1}$ sensitivity
95	15	...flows in the slab between $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{L}$?
111	11	...and $\mu \bar{H}$ cannot...
113	22	$\overline{\bar{E}}=\hat{y} e^{-j z-z / 100}$
116	8	$\ldots=10^{5} \mu_{\text {o }}$ at $\omega=0$.

224	14	...recover quasistatic behavior.
233	16	...for Section III is found...
234	1	Section I simply...
264		Figure 6.25, topmost subfigure: $\Gamma_{L}=+\frac{1}{2}$.
270		Figure 6.27: $\mathrm{V}_{T h}=2 \mathrm{~V}_{-}(t, z=0)$
275	13	The input voltage $\mathrm{v}_{\mathrm{s}}(\mathrm{t})$
280		Problem 6.3.3 (d): ...of part (a) alone; i.e. if Z_{L} then is set to Z_{o} and C is unchanged?
283	7	...triggers a 50Ω flip-flop...
285	4	...zero-mean 100-MHz square wave...
297	4	...) $e^{-j k} z^{z}$
300	1	...angles of bounce less than...
318	23	$\overline{\mathrm{J}}_{\mathrm{s}} \sigma$ should be $\overline{\mathrm{J}} /{ }_{\mathrm{s}} \sigma$
332		
340	22	$E_{z}=\ldots$
348	Fig. 8.5	axis labels should be mc/2a, $\mathrm{nc} / 2 \mathrm{~b}, \mathrm{pc} / 2 \mathrm{~d}$
358		$\text { Equation (8.4.5): ... } \frac{1}{L C}-\left(\frac{R}{2 L}\right)^{2}$
364, 5	(8.4.22-3)	Third eqn: Q_{I} should be Q_{L}
367	6	...Figure 8.12 is...
403	21	...on the $2 \times 3 \mathrm{~cm}$...
407	6	...of antenna arrays...
426	25	...Figure 9.10(a).
	27	...Figure 9.10(b).
	28	...Figure 9.10(c).
	31	...Figure 9.10(d).
433		Reverse \hat{x} and \hat{y} in Fig. 9.17(b).
435	Fig.9.17(b)	Interchange $\hat{\mathrm{x}}$, $\hat{\mathrm{y}}$ axis labels
	16-17	Interchange $\hat{\mathrm{x}}$ and $\hat{\mathrm{y}}$
	23	Figure. 9.17(b) should be Figure 9.17(c)8
447	(9.5.10)	Denominator is $8.20\left(\mathrm{kd}_{2}{ }^{\text {eff }}\right)^{2}$
448	(9.5.11)	Should have $\mathrm{A}_{\text {eff }}(\theta, \phi) \overline{\mathrm{S}}_{1}(\mathrm{r})$ (no squaring)
449	(9.5.17)	Right parenthesis missing

Page \#	Line \#	Correction
461	11	Figure 9.31(c) should have a longer arm on the right-hand side and $\mathrm{I}(\mathrm{z})$ should be redrawn accordingly. $\ldots d=2 \lambda$. For the most common case where $d=\lambda / 2$, the factor in brackets in (9.7.3) reduces to $\cos \left(\frac{\frac{\pi}{2} \cos \theta}{\sin \theta}\right)$
470	14	$\mathrm{E}_{\mathrm{o}}=-\eta_{\mathrm{o}} \mathrm{J}_{\mathrm{s}} / 2$
474	8	\hat{x}-polarized uniform...
486		Problem 9.4.2: ...above a flat...separated by 1 m along a line perpendicular to the two dipoles and passing through their centers, and are...parallel to it. (Delete the rest of the sentence.)
486		Problem 9.4.2: ...positioned above a flat metal...straight line could bisect both dipoles perpendicular to them. (End of problem.)
488	33	Problem 9.5.3 (a): ...at distance r if 30W...
494	18	...constant pressure to... constant volume in the gas (i.e. $\gamma=$ $\left.C_{p} / C_{v}\right)$.
489		Problem 9.8.3: ... $\times 1 \mathrm{~m}$ in the x and y directions. ...for $\left\|\alpha_{x, y}\right\| \ll 1$, where α_{x} and $\alpha_{y} \ldots$
499	8	...plane wave. Such a wave is deafening.
523		Label equation (10.8.8).
529		Problem 10.2.1: ...is radiating 1 mW of acoustic power...
530		Problem 10.3.2: ...traveling at zero velocity relative to a wind...
536	10	Problem 10.5.3: ...from the 4-cm diameter open end... $\ldots+j\left(\left(A_{i} B_{r}-A_{r} B_{i}\right) /\left(B_{r}^{2}+B_{i}^{2}\right)\right)$
551		Insert: conductivity values, 547
		orrections to Section 4.2R
1	27	unit normal vector symbol is \hat{n}
2	6-8	n $\operatorname{not} \overline{\mathrm{n}}$

