ELECTRODYNAMICS

Handouts:

Administration sheet Subject outline, lecture notes Homework set 1, text errata

6.014 Content:

Wireless communications (4.8 weeks) Circuits (1 week) Limits to computation speed (1.2 weeks) Microwave communications and radar (2 weeks) Optical communications (1 week) MEMS (1 week) Power generation and transmission (1 week)

WIRELESS COMMUNICATIONS UBIQUITOUS

Main points of L1: Principal elements of communications links

- · Wireless communications are ubiquitous: point-to-point, broadcast, passive sensors
- Receivers need E_b [J/bit] > ~4×10⁻²⁰; received power $P_{rec} \ge M_{bps}E_b$ [W]
- Absent attenuation, total power radiated $P_R = \int_{4\pi} P_r(\theta, \phi, r) r^2 \sin\theta \, d\theta \, d\phi$ [W]
- Antenna gain over isotropic $G(\theta,\phi) = P_r(\theta,\phi,r)[Wm^{-2}]/(P_R/4\pi r^2)$, r is range
- Received power P_{rec} = antenna effective area $A_e(\theta,\phi)[m^2] \times intensity P_r(\theta,\phi,r)[Wm^{-2}]$
- In general, $A_e(\theta,\phi) = G(\theta,\phi)\lambda^2/4\pi$ [for reciprocal media, not magnetized ferrites]
- With these equations we can design wireless links (choosing G_t , A, P_R for given r, M)
- Antennas have Thevenin equivalents with radiation resistance $R_r = P_R/\langle i^2 \rangle$
- Maximum received power = $\langle V_{Th}(t)/2 \rangle^2 > /R_r$ when $R_{load} = R_r$

Prerequisites:

6.002, 8.02, 18.02

L1-1

L1-3

WIRELESS COMMUNICATIONS IS UBIQUITOUS

Other Forms of Wireless Communications:

Broadcast radio, television Satellite TV (~40,000 km - ~0.3 seconds roundtrip) Wireless links: computers and peripherals, headend and base stations, hearing aids Data: remote control (optical and radio); wired home, office, factory Pills with sensors, radio, and TV (what signals go through body, which don't?) Passive sensors—IR, microwave

COMMUNICATION REQUIRES ENERGY AND POWER

Power Requirements

Typical receivers need $E_b > \sim 4 \times 10^{-20}$ Joules/bit Power received P = $M_{bps}E_b$ (M_{bps} is data rate, bits/sec) e.g. 10^{-9} Watts permits $M_{bps} = \sim 10^{-9}/4 \times 10^{-20} = 2.5 \times 10^{12}$ bps This can send $2.5 \times 10^{12}/(8 \times 7 \times 10^{8}$ bits/CD) = 446 CD's/second!)

Transmitted Intensity is $P_r(\theta,\phi,r)$ [W/m²]

ANTENNA GAIN G(θ,φ)

Gain over Isotropic G(θ , ϕ):

(By definition, P_{R} is at antenna input; we assume lossless antennas here)

Example – Cellular Phone:

If $P_R = 1$ Watt, P_r at 10 km = $1/4\pi r^2$ = 8×10^{-14} [W/m²] for isotropic antenna

How to Increase Gain?

Focus the energy: lenses, mirrors, phasing

L1-5

ANTENNA EFFECTIVE AREA $A_{\rho}(\theta,\phi)[m^2]$ Power Received P_{rec} from a particular direction (by definition of A_{e}) $|\mathbf{P}_r| W/m^2$ m² Antenna Tower Say $G_0 = 10$ Antenna Effective Area and Gain G, 🄞 $A_{\phi}(\theta,\phi) = G(\theta,\phi) \lambda^2 / 4\pi$ (to be proven later) cellular phone base station Cellular Phone Example – Received Power $P_{R} = 1$ Watt, $P_{r} = 1/4\pi r^{2}$ [W/m²] for an isotropic antenna (is it isotropic?) $P_r = 8 \times 10^{-14} [W/m^2]$ at r = 1000 km (or 40-dB margin for r = 10 km) $P_{rec} = A_e P_r (A_e \text{ depends on the base station G and } \lambda)$ $\lambda = c/f = 3 \times 10^8$ [m/s]/900 MHz = 33.3 cm A_{e} (base station) = $G\lambda^{2}/4\pi$ = 10 × 0.33²/(4 × 3.14) = 0.088 m² $P_{rec}^{(1)} = A_e P_r = 0.088 \times 8 \times 10^{-14} = 7.1 \times 10^{-15} [W]$ Data Rate [bps] = $P_{rec}[J/s]/E_b[J/b] = 7.1 \times 10^{-15}/(4 \times 10^{-20}) = 176 \text{ kbps}$

Wishful thinking! Data rate per line limited by bandwidth and frequency reuse

L1-6

L1-8

WHAT DO WE NOT YET KNOW?

- What is an electromagnetic wave?
- How does it propagate through air and space, around buildings, around the earth?
- How do we launch and receive them?
- How do we engineer wireless communications systems using waves? Examples.