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6.014 Lecture 6: Multipath, Arrays, and Frequency Reuse 
 
 
A. Superposition of phasors 
 
 This lecture focuses on the superposition of duplicate waves at receivers, where 
the multiplicity of waves may have originated from multiple reflectors in the environment 
or from multiple transmitting antenna elements.  Superposition of waves is easiest to 
understand when only one narrow band is considered at a time; we approximate such 
bands here as pure monochromatic sinusoids.  The simplest case is illustrated in Figure 
L6-1, where the waves A and B are duplicates and superimpose in phase to yield A+B 
with double amplitude and quadruple power, and superimpose 180o out of phase to yield 
A+C with zero amplitude and zero power.  When these two equal-amplitude waves 
superimpose 90o out of phase, we obtain A+D with double power and amplitude 20.5A.  
Equation L6-1 shows how two equal-amplitude sinusoids with phase offset φ combine to 
yield a double-amplitude wave at the same ω, but phase-shifted by φ/2 and multiplied by 
the constant cos(φ/2), which can be >0, 0, or <0.  For our case A+B, φ = 0 and we 
produce a double-amplitude wave.  For A+C, φ = 180o and cos(φ/2) = 0; for A+D, φ = 
90o and cos(φ/2) = 2-0.5. 
 
 A convenient way to think about such superposition of waves is in terms of 
phasors E characterized by their real and imaginary parts, as suggested graphically in 
Figure L6-2, where phasors represent the waves A, B, C, D, and A+D.  The physical 
significance of the phasor E is defined by: E(t) = Re{E ejωt}.  The significance of the real 
and imaginary parts of E follow from 
 
  E(t) = Re{E ejωt} = Re{[Re{E} + j Im{E}][cos ωt + j sin ωt]} (1) 
 
The real part of E thus corresponds to the amplitude of the cos ωt term, and the imaginary 
part corresponds to -sin ωt.  This correspondence is consistent with the phasors plotted in 
the bottom figure. 
 
 We can also represent the phasor E by its equivalent: 
 
  E = |E|ejφ = |E|cos φ + j|E| sin φ = Re{E} + j Im{E} (2) 
 
where φ is the angle in the figure between the real axis and the phasor.  Thus the phasor 
Eejωt rotates counter-clockwise as time advances (see the direction of the arrow for φ in 
the figure).  A phasor E that has been delayed θ radians would be represented by |E|e-jθ. 
 
 
B. Antenna arrays 
 
 To achieve desired antenna directional characteristics, either arrays, lenses, or 
reflectors are commonly used.  Arrays usually consist of a set of duplicate small 
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antennas, each located differently but often with the same orientation.  The amplitudes 
and phases of the currents with which they are driven can be different.  For example, if a 
single reference transmitting element “i” of the antenna array driven by current ai 
produces the electric field aiEi exp{-jkri} at distance ri (note: boldface indicates vectors 
here), then the total electric field in that direction θ,φ and at that distance r is: 
 
  E(r, θ, φ) = Σi ai Ei exp{-jkri} (3) 
 
If all elements are identical and oriented the same, then Ei = E, where E characterizes the 
basic radiating element, and is called the “element factor”. 
 
    E(r, θ, φ) = E (Σi ai exp{-jkri}) = (element factor E)(array factor) (4) 
 
where the array factor characterizes the spatial distribution of radiating elements and the 
amplitudes and phases of the currents with which they are excited. 
 
 Consider the antenna pattern that results from two vertical (z-directed) dipole 
antennas arranged λ/2 apart along the y axis, as illustrated in Figure L6-2.  Clearly the 
radiation from these two dipoles arrives in phase at receivers anywhere in the x-z plane, 
and the two beams cancel anywhere along the y axis.  The pattern in the x-y plane is 
sketched in the same figure, and exhibits the expected maximum along the x axis and 
perfect null along the y axis.  At the angle φ = sin-10.5 (from the x axis) the two rays 
arrive λ/4 out of phase, which results in half the power available at the maximum (see 
Figure L1-1(bottom)).  This is the array factor.  The element factor in the x-y plane is 
simply a circle, as illustrated, because a vertical dipole is isotropic in its equatorial plane.  
The antenna pattern in the x-y plane that is produced when these two dipoles are excited 
180o out of phase is also illustrated, and it is again clear that the two rays will now cancel 
along the x axis and add perfectly along the ±y axis.  The half-power angle φ = sin-10.5 
remains the same, and the two lobes of the antenna pattern are now circles rather than 
resembling ellipses. 
 
 Figure L6-3A shows the 8-lobe pattern that results in the x-y plane when these 
two z-directed dipoles are arranged along the x axis 2λ apart.  Clearly the two rays add in 
phase along both the x and y axes, and reach a maximum at another angle φ = cos-10.5.  
There are perfect nulls between the maxima because the two rays have equal magnitude.  
One such null angle is illustrated: θ = cos-1(1.5λ/2λ).  A more interesting pattern results 
when the two dipoles are λ/4 apart and excited 90o out of phase, as illustrated in Figure 
L6-3B.  The two rays add coherently along the +x axis, and the rays cancel along the –x 
axis because the two 90o phase shifts add in that direction.  The half-power direction is 
along the ±y axis because there the relative phase difference between the two rays is 90o. 
 
 When the two identically oriented dipoles are excited unequally, they can never 
produce a null, no matter what the relative phase, because two unequal phasors can not 
cancel perfectly.  Figure L6-3C illustrates this case where two out-of-phase dipoles λ/2 
apart add coherently along the x axis, but can not perfectly cancel along the ±y axis.  
Figure L6-3D shows the pattern from a linear array D meters long that is uniformly 
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excited—all elements are in phase with equal amplitude currents.  Clearly all phasors add 
coherently to produce a maximum along the ±x axes in the x-y plane.  The first null is 
readily found if there is an even number of elements, because we can group them in pairs 
that, in the direction θnull of the first null, are λ/2 out of phase and therefore cancel.  All 
such offset pairs cancel in this same direction, and therefore the entire antenna produces a 
null in that direction.  In the figure the first and fourth elements cancel in the direction 
θfirstnull = sin-1[(λ/2)/(3D/5)] ⇒ ~sin-1[(λ/2)/(D/2)] = sin-1(λ/D) ≅ λ/D radians for large 
values of D/λ.  Similarly the second and fifth, and the third and sixth elements cancel in 
that same direction. 
 
 One way to produce the equivalent of a second radiating element is to introduce a 
mirror that produces an image of the source, as illustrated in Figure L6-4E; the image is 
180o out-of-phase.  Mirror images will be discussed further later. 
 
 
C. Multipath 
 
 Multipath originates when a transmitter radiating in all directions produces 
reflections from objects like buildings and trees which arrive at the receiver with 
independent amplitudes and phases so as to interfere constructively or destructively.  
Because the rays may reflect from objects that alter the polarization, the powers received 
on two orthogonal polarizations typically vary somewhat independently.  Monochromatic 
signals exhibit fading, the statistics of which depend on the time variations along the 
various paths.  If the line-of-sight path is clear, then the reflections typically cause only 
minor fluctuations in strength.  Urban cellular phones often have no line of sight, so only 
reflections and diffraction provide signal, and multipath can then produce deep fading. 
 
 The time constant characterizing such fading depends on the rate of change of the 
various paths relative to λ/2.  The longer the paths relative to a wavelength, the smaller 
the fractional change in length required to accomplish this λ/2 drift, and the faster the 
fades.  Besides the obvious fading experienced as cellar phones enter tunnels or elevators, 
there is also the fading of FM radio signals as automobiles move through marginal 
reception areas.  For example, the sharp threshold of FM signals between good reception 
and static makes such radios an excellent detector of signal nulls.  It is not unusual in a 
city to have only multipath FM reception dominated by only two or three rays of 
comparable magnitude.  In this case, as the automobile inches forward, perhaps at a 
traffic light, the wavelength is evident in the distance ~λ that the automobile moves 
between transitions to static.  At higher automobile speeds this effect is manifest as quasi-
periodic clicks in the FM signal.  Simple geometric considerations reveal this distance as 
a function of the directions of arrival of the interfering beams. 
 
 If the transmitter, receiver, or mid-path reflector is moving, then there can also be 
a small Doppler shift in frequency fD: 
 
  fD Hz = (dL/dt)/λ cycles per second = v/λ = fov/c Hz, so (5) 
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  fD = fo(1 – v/c) Hz (6) 
 
When the doppler shift is upward we sometimes say the signal is “blue-shifted”, and 
when the shift is downward, “red-shifted”; these terms have an astronomical origin and 
refer to apparent color shifts in celestial objects approaching or moving away from the 
earth. 
 
 Most signals of interest are not monochromatic, however, and occupy some 
bandwidth that may be affected differently by multipath at different frequencies.  
Consider two rays that interfere at the receiver and have pathlengths that differ by D [m].  
Then frequencies near fo separated by ∆f can both experience nulls if D/λ = fo/∆f. 
 
 In general, we can represent a multipath environment as a linear system with 
multiple delayed impulse responses, as suggested in Figure L6-5.  For example, the 
system frequency response H(f) for to a system impulse response h(t) corresponding to 
two equal amplitude signals delayed by t1 and t2 is: 
 
  H(f) = ∫-∞

+∞ [δ(t – t1) + δ(t – t2)] e-jωt dt = e-jωt1 + e-jωt2 =  (7) 
          = e-jω (t1 + t2)/2 [ejω (t1 – t2)/2 + e-jω (t1 – t2)], and 
 
  |H(f)|2 = [2cos(ω[t1 – t2]/2)]2 (8) 
 

This yields nulls when ωn[t1 – t2]/2 = (2n + 1)π/2, and therefore nulls occur at 
frequencies  fn = ωn/2π = (n + ½)/( t1 – t2), and therefore for two paths corresponding to 
delays of t1 and t2 seconds, the ∆f between nulls is: 

 
∆f = 1/(t2 – t1) Hz (9) 

 
 
E. Frequency reuse 
 
 Many  communications systems are seriously limited by the available bandwidth 
for wireless communications.  The over-the-air spectrum must be shared and it has finite 
width.  The frequencies most favored are below 1 GHz because thye diffract around 
objects better, but this bandwidth could not begin to satisfy current demand without 
reusing this bandwidth many times.  The simplest form of reuse occurs when, for 
example, the same frequency is allocated by the Federal Communications Commission 
(FCC) only to radio or TV stations that are separated more than a hundred miles or so.  
More powerful transmitters with taller antennas must be spaced farther apart than weak 
stations.  Moreover, poor engineering practices currently mandate that channels adjacent 
to allocated TV channels be kept vacant because of out-of-band interference.  Hence 
Boston has VHF TV channels 2, 4, 5, and 7, but not 3, 6, or 8 (channels 4 and 5 are not 
adjacent in frequency).  Out-of-band interference is not severe, so adjacent cities will 
usually use the alternate channels. 
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 Cellular telephone base stations often utilize array antennas to achieve frequency 
reuse.  Figure L6-6A illustrates a typical face of a cellular base station, with 3 or 4 
elements and a combining circuit that forms the various desired  beams.  Three such faces 
arranged in a triangle, as seen from top view in Figure L6-6B, might produce for 
example, two sets of antenna lobes—the A set and the B set.  Since these two sets overlap 
in certain directions, they would typically operate within two different sub-bands within 
the allocated bandwidth.  Some users could then use both bands, and others could use 
only one.  Since the different faces of the antenna can be connected to different receivers 
and transmitters, the same frequency could then be used by three different users 
simultaneously.  Clearly the design of such antennas to maximize reuse requires some 
thought and could be tailored to the distribution of users within the local environment. 
 
 Another form of frequency re-use is employed for satellite communications 
systems where the antenna in space has multiple beams pointed at different places across 
the globe.  Densely populated areas are generally served by smaller antenna beams so 
fewer users have to share its frequency allocation.  The same frequencies can then be 
reused in another antenna beam that is not adjacent.  Figure L6-7A illustrates a few such 
beams in North America, and Figure L6-7B illustrates how three arrays of beams are 
sufficient to provide full coverage without adjacent beams overlapping.  That is, the 
degree of reuse can be ~one-third the number of antenna beams. 
 
 Satellite communications systems below ~1-2 GHz are bothered by variable 
polarization rotation in the ionosphere due to faraday rotation, motivating the use of 
circular polarization to minimize such effects.  Above ~6 GHz rain attenuation can 
prevent communications from time to time, motivating more powerful links with greater 
signal-to-noise ratio margins, or spatial diversity protected by redundant links using 
multiple ground stations. 
 
F. Wave interference for lithography 
 
 Figure L6-8A suggests how lithography of silicon wafers requires delicate masks 
through which light shines to alter photoresist in patterns that can be etched away to 
create integrated circuits.  Recently the requirements for such masks are so severe that 
interference patterns are sometimes used to create the desired result.  This is particularly 
simple if only periodic gratings are desired.  For example, an excimer laser operating at a 
standard wavelength of 148 nanometers (0.14 microns) can be made to interfer with itself 
at large angles of incidence, producing strong nulls spaced approximately λ/2, or ~74 nm.  
This patterned light can then expose the photoresist, leading to a pattern of periodic 
stripes.  Doing this in two dimensions can produce arrays of small pillars that can each 
code one bit of information magnetically, and therefore form a memory with ~2.3 
GB/cm2. 


