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6.014 Lecture 10: Introduction to Circuits 
 
 
A. Kirchoff’s Laws 
 
 As suggested in Figure L10-1A, circuits are usually analyzed in terms of lumped 
elements (or branches) that are connected together at nodes to form a two- or three-
dimensional circuits, these can be characterized by the voltages at each node or by 
currents in a set of loops.  Although circuit analysis is often based in part on Kirchoff’s 
laws, these laws are imperfect due to electromagnetic effects.  For example, Kirchoff’s 
voltage law (KVL) says that the voltage drops Vi associated with each lumped element 
around any loop must sum to zero, i.e.: 
 
  Σi Vi = 0 (1) 
 
This follows from Faraday’s law, which in differential and integral form is: 
 
  ∇×E = -∂B/∂t (2) 
 
  ∫cE • ds  =  -∫A (∂B/∂t) • da (3)  
 
where the variables are defined in Figure L10-1B.  If ∂B/∂t = 0 within the loop, then the 
integral around the loop (around the contour c) is zero and KVL applies.  But we know 
that in any physical circuit the current flowing around a loop is typically non-zero and 
time-varying, so ∂B/∂t ≠ 0 and KVL does not apply!  We resolve this problem by 
distinguishing physical from mathematical circuits, and by lumping into separate 
elements the magnetic energy storage and voltage drops associated with these magnetic 
fields through the loop.  One small inductor might be added in series per branch to form 
an equivalent lumped element circuit for which KVL applies more precisely, as 
suggested in Figure L10-2.  Normally these parasitic inductances are small and can be 
neglected. 
 
 In a similar fashion Kirchoff’s current law (KCL) follows from Ampere’s law, 
which in differential and integral form is: 
 
  ∇×H = J + ∂D/∂t (4) 
 
  ∫S(J + ∂D/∂t) • da  = Σi Ii (5) 
 
where the surface S over which the current densityJ is integrated encloses the node of 
interest and Ii is the current entering that node along branch i.  Only if ∫S∂D/∂t = 0 for a 
given node will the sum of currents into that node be zero so that KCL applies for that 
node: 
 
  Σi Ii = 0 (6) 
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  However, if the voltage at a node varies (the only interesting case), then it will produce 
radial electric fields ∂D/∂t ≠ 0  so that, in general, Σi Ii ≠ 0.  Again, the solution is to 
augment any mathematical circuit with lumped-element capacitors in parallel with each 
branch to account for this stored electrical energy.  Normally these parasitic capacitances 
are so small and can also be neglected.  If both parasitic capacitances and inductances are 
required for a branch, then the question arises whether they are connected in series or 
parallel.  At this point, or when radiation occurs, distributed circuit models typically must 
replace simple lumped-element circuits.  Later some simple distributed circuits will be 
analyzed. 
 
 
B. Solving circuit problems 
 
 Figure L10-4A illustrates a simple circuit with b = 12 branches, p = 6 loops, and n 
= 7 nodes.  A set of loops is unique if each loop circles only one “hole” in the topology 
and if no additional loops are added once every branch in the circuit is incorporated in at 
least one loop.  It is easy to show that the number b of branches in a circuit is: 
 
  b = n + p – 1 (7) 
 
by considering the simplest possible circuit, which has one node and one branch, as 
illustrated in Figure L10-4B.  As we add either nodes or branches to this circuit, Equation 
(7) is still obeyed.  If we add voltage or current sources to the circuit, they too become 
branches.  
 
 We can see that the total number of unknowns in a circuit is 2b because each 
branch has both a voltage and a current which we may wish to learn.  The number of 
equations is also b + n + p –1 = 2b, where b in this expression corresponds to the number 
of voltage/current relations for the branches, n-1 is the number of independent KCL 
equations, and p is the number of loops and KVL equations.  Therefore, since the 
numbers of unknowns and linear equations match, we may solve them.  The equations are 
linear because Maxwell’s equations are linear for R, L, C circuits. 
 
 
C. Parallel-plate capacitors 
 
 Static electric fields between parallel metal plates such as those in Figure L10-6 
are constrained by Maxwell’s equations: 
 
  ∇ ×E = 0,            ∇•E = ρ/ε (8) 
 
If there is no free charge density ρ between the plates, then ∇•E = 0.  Boundary 
conditions at a perfect conductor are: 
 
  n •E = ρs/ε,    Ε// = 0 (9) 
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SinceΕ// = 0, anyE must be perpendicular to the conducting sheets, and since the fields 
must also be both curl-free and divergence-free, the fields must be uniform.  ThereforeE 
= yEo has the correct form, whereE points away from the positively charged surface, 
which has charge density ρs = εEo [Cm-2].  Therefore, if the plates have area A, the total 
charge on the capacitor Q = ρsA = εEoA Coulombs. 
 
 The voltage V across the plates can be found by integrating the electric field from 
the positive to the negative terminal, so V = Eod. 
 
 We define the capacitance C of such an open structure, independent of shape, to 
be: 
 
  C = Q/V  [Farads] (10) 
 
Here, C = εEoA/Eod = εA/d. 
 
 Although Q = CV characterizes capacitors in a simple way, it is usually more 
relevant to relate i(t) to v(t).  Since q(t) = ∫-∞t i(t) dt = C v(t), it follows that: 
 
  v(t) = (1/C) ∫-∞t i(t) dt (11) 
 
which is a familiar and useful relation. 
 
 Figure L10-9A shows how two capacitors in parallel (C1 and C2) are equivalent to 
a single capacitor Ceq having the equivalent charge Qeq = Q1 + Q2.  Therefore two 
capacitors in parallel have a greater total capacitance of: 
 
  Ceq = Qeq/V = (Q1 + Q2)/V = C1 + C2  (12) 
 
 Figure L10-9B shows how two capacitors in series have the same charge Q on 
each and have a total voltage V across the pair, where V is the sum of the voltages V1 = 
Q/C1 and V2 = Q/V2.  Therefore, 1/Ceq = V/Q = (V1 + V2)/Q = 1/C1 + 1/C2, and two 
capacitors in series have a smaller total capacitance of: 
 
  Ceq = 1/(C1

-1 + C2
-1) (13) 

 
 
D. Parallel-plate resistors 
 
 The same parallel-plate geometry can be used to form resistors R using a medium 
of conductivity σ [Siemens m-1] bounded by plates of area A and separation d, as 
suggested in Figure L10-10.  SinceJ = σE [a m-2] and I = AJ = AσEo = AσV/d = V/R 
amperes, it follows that: 
 
  R = d/σA [ohms] (14) 
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 The same logic as for capacitors applies when two resistors are placed in series or 
parallel.  When they are in series, the two currents are the same and the two voltages add, 
whereas if they are in parallel, the two voltages are the same and the currents add.  This 
leads to the expressions: 
 
  Req = R1 + R2  ohms  [resistors in series] (15) 
 
  Req = 1(R1

-1 + R2
-1)  ohms  [resistors in parallel] (16) 

 
 
E. Charge relaxation and RC circuits 
 
 When a resistor and capacitor are connected as shown in Figure L10-11, any 
charge of the capacitor will tend to discharge through the resistor, resulting in a decaying 
voltage as a function of time.  We can solve for this voltage v(t) using: 
 
  q(t) = Cv(t) = ∫ I(t) dt,   and (17) 
 
  v(t) = -i(t)R = -RC dv(t)/dt (18) 
 
where the direction of i(t) in (18) flows into the positive terminal of the capacitor.  The 
differential equation (18) states that v(t) equals its own first derivative times a constant.  
Only exponentials have that property, so we guess the solution is: 
 
  v(t) = voe-t/τ (19) 
 
  where vo is an initial condition.  Substitution of (19) into (18) yields  
 
  voe-t/τ = (-RC)(-1/τ) voe-t/τ (20) 
 
which is satisfied if τ = RC seconds. 
 
 If we consider the parallel-plate resistor of Figure L10-10, RC = (d/Aσ)(εA/d) = 
ε/σ seconds, which is the “relaxation time constant” of the medium ε, σ.  It is easy to 
show that this time constant is not a function of the geometry of the plates or initial 
charge distribution within the uniform medium; the charges, electric fields, and voltages 
retain their initial distribution, but all decay exponentially from that distribution with time 
constant τ = RC seconds. 
 
 These two basic elements (R,C) plus inductance and inductors to be considered 
next suffice to build most passive linear lumped-element and distributed circuits. 
 
 
 
 


