KIRCHOFF'S VOLTAGE LAW

Kirchoff's Voltage Law: (KVL)

Around any loop: $\sum_{i} V_{i} = 0$

Faraday's Law:

 $\nabla \times \overline{E} = -\partial \overline{B}/\partial t \quad \text{[differential form]}$ Integral form is: $\int_{C} \overline{E} \cdot d\overline{s} = -\int_{A} \left(\partial \overline{B}/\partial t \right) \cdot d\overline{a}$

[Recall Stoke's Theorem: ∫_A (∇×G) • n̂da = ∫_c G • d̄s]

If $\partial \overline{B}/\partial t = 0$ in A, then Kirchoff's voltage law must be satisfied

More generally:

KVL assumes all magnetic energy is stored inside circuit elements

L10-1

KIRCHOFF'S VOLTAGE LAW (2)

Undefined Circuit:

Defined Circuit:

We assume voltage drops occur only across elements, and ignore H fields generated by currents through them.

We use small loops, thick wires, and high-impedance lumped elements

KIRCHOFF'S CURRENT LAW (KCL)

Kirchoff's Current Law: $\sum_{i} I_{i} = 0 = \text{Total current into any node}$

(KCL)

Ampere's Law: $\nabla \times \overline{H} = \overline{J} + \partial \overline{D}/\partial t$ [differential form]

$$\begin{split} \nabla \bullet (\nabla \times \overline{H}) &= \nabla \bullet (\overline{J} + \partial \overline{D} / \partial t) = 0 \\ &= \nabla \bullet \overline{J} + \partial (\nabla \bullet \overline{D}) / \partial t \\ &= \nabla \bullet \overline{J} + \partial p / \partial t \end{split}$$

Conservation of Charge: $\nabla \cdot \bar{J} = -\partial \rho / \partial t = 0$ at each node

[Recall Gauss's Divergence Theorem: ∫_V(∇ • Ḡ)dv = ∫_sḠ • d̄ā]

Current Law follows from: $\int_{S} \bar{J} \cdot d\bar{a} = \sum_{i} I_{i} = 0$ da

More generally:

KCL assumes nodes store no charge, or that all electric energy is stored inside circuit elements

L10-3

SOLVING CIRCUITS

Generic Circuit Topology:

Assume b branches, n nodes, and p unique loops

b=12, p=6, n=7

We can show b = n + p - 1.

n = p = 1

n = p = 2

Every time we add a branch, the number of nodes or loops (meshes) increases by one.

Voltage sources are branches characterized by $v = V_o$ Current sources are branches characterized by $i = I_o$

SOLVING CIRCUITS (2)

Number of Unknowns: Number of unknowns is 2b (v,i for each

branch)

Number of Equations: We have one device equation for each

branch relating or specifying v and i

We also have n-1 independent node equations (KCL) and p loop equations

(KVL), for a total of:

b + (n-1) + p = 2b equations = number of unknowns

Given initial conditions and all sources we can solve the equations analytically for simple circuits, or by simulation for any circuit.

(Non-unique exceptions: indeterminate flip-flop or chaotic circuits)

L10-5

SIMPLE CIRCUIT ELEMENTS, R AND C

Electrostatics:

In general: Everywhere ∇ :

 $\nabla \times \overline{\mathbf{E}} = \mathbf{0}, \quad \nabla \bullet \overline{\mathbf{E}} = \mathbf{\rho}/\epsilon$

At conductor

 $\hat{\mathbf{n}} \bullet \overline{\mathbf{E}} = \sigma_{\mathbf{S}}/\epsilon, \quad \overline{\mathbf{E}}_{\mathbf{I}\mathbf{I}} = \mathbf{0}$

Between conductors, $\nabla \bullet \overline{E} = \rho/\epsilon = 0$

Parallel-Plate Devices:

Field Solution:

 $\overline{E} = \hat{y}E_0$ for rectangular geometry here

$$\sigma_s = \epsilon E_0$$

SIMPLE CAPACITOR

Relating Fields to Potentials:

Since: $\nabla \times \overline{E} = 0$

We define $\overline{E} = -\nabla \Phi$ $\Phi = \int_1^2 \overline{E} \cdot d\overline{s}$

Where Φ is the electrostatic potential relative to [2]

Therefore here: $E_o d = V$, $E_o = V/d$

In general, absolute potential $\Phi = 0$ at infinity, by definition

L10-7

SIMPLE CAPACITOR (2)

Capacitor Charge Q:

We define: $Q = \int_{A} \sigma_{\text{S}} da = A \epsilon E_{\text{O}} = A \epsilon V/d$

We also define: Q =CV

Capacitance C:

Therefore: $C = A\epsilon/d$

We know: $q(t) = \int_{-\infty}^t i(t) dt = Cv(t)$

Therefore: $v(t) = (1/C) \int_{-\infty}^{t} i(t) dt$ Also, $i = C \frac{dv}{dt}$

CHARGE RELAXATION

RC Circuits:

$$q(t) = Cv(t) = \int i(t)dt + q_0$$

$$v(t) \hspace{1cm} = -i(t)R = -RC\,dv(t)/dt$$

Try:

$$v(t) = v_0 e^{-t/R}$$

 $= v_0 e^{-t/RC} \qquad \left[v_0 \text{ is initial condition} \right]$

It works:

$$v_o e^{-t/RC} = (-RC)(-1/RC)v_o e^{-t/RC}$$

Dielectric Relaxation:

$$R=d/A\sigma,\,C=\in A/d$$

 τ = RC = ε/ σ seconds "Relaxation time constant"

independent of geometry