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6.014 Lecture 11:  Inductors and Transformers 
 

 
A. Inductors 
 
 All circuits carry currents that necessarily produce magnetic fields and store 
magnetic energy. Thus every wire and circuit element generally has some inductance that 
may influence circuit behavior, particularly at higher frequencies.  When two circuit 
branches share magnetic fields, each will typically induce voltage in the other, thus 
coupling the branches.  If this coupling is substantial, the two branches act as a 
transformer. 
 
 Figure L11-1 illustrates two circuit elements connected by parallel conducting 
plates, which approximate a printed circuit wire passing over a conducting ground plane 
in an integrated or printed circuit.  The currents i(t) are equal and opposite.  The plates 
have width W and separation d<<W.  Ampere’s law enables us to find the magnetic 
fields and the inductance of this structure per unit length, after which we can discover the 
nature of inductance.  Ampere’s law in differential and integral form is: 
 
 ∇ ×H =J + ∂D/∂t,                  ∫cH • ds  =  ∫A(J + ∂D/∂t) • da  (1) 
 
In the quasistatic limit ∂/∂t can be ignored and (1) relates the magnetic fieldH to the 
current densityJ.  The integral ofH around the contour C is thus related to the total 
current I flowing through that contour. 
 
 Referring to Figure L11-1, if the contour circles both plates, the total current i(t) is 
zero because the currents in the two plates are assumed to be equal and opposite.  If the 
contour circles only one plate, then the integral ofH(t) equals i(t).  To proceed, we 
assume W>>d so that the contributions to the integral of the fringing fields at the plate 
edges can be neglected.  We then see thatH outside the two plates is generally zero 
because otherwiseH above and below the plates must point in the same direction, 
whereas the symmetry of the problem suggests no preferred direction.  Furthermore, 
ifHoutside ≠ 0 there would be no unique solution toH between the plates; consider two 
contours, one circling the upper plate and one circling the lower plate, but sharing the 
same path between the plates.1 
 
 Since outsideH 0≅ , the contour integral (1) yields betweenH W yiˆ= − , or 
 
  betweenH yi Wˆ= −  (2) 
 
 The inductance of such a parallel-plate structure can be understood by short-
circuiting one end at z = 0, as illustrated in sideview in Figure L11-2, and then computing 
                                                
1 The neglected fringing fields are antisymmetric and therefore do not contribute to these integrals 
around symmetric contours.  



  3/11 

 - 2 - 

the electric fieldE(t,z) that must result fromH(t).  Assume the device has plate 
separation d (now in the y direction), width W, and length D (in the z direction), and has 
a voltage v(t) across its terminals.  The current i(t) in the top plate flows to the right, and 
the resultingH(t) points into the paper. 
 
 The electric fieldE(t,z) follows from Faraday’s Law, which in differential and 
integral form is: 
 
  ∇ ×E =  -∂B/∂t      ⇒      ∫cE • ds =  - ∫A µ(∂H/∂t)• da (3) 
 
where we use the contour C and cross-sectional area A illustrated in the y-z plane in 
Figure L11-2.  These integrals are trivial to evaluate sinceE inside the perfect 
conductors is zero, and H(t) = i(t)/W is uniform over the area A = zd [m2].  Thus the 
integral form of Faraday’s law yields: 
 
 Ey(z,t)d  =  -(µzd/W)∂i(t)/∂t, and           Ey(z,t) =  -(µz/W)∂i(t)/∂t (4) 
 
 The voltage v(t) across the inductor (where z = D) follows from simple 
integration ofE (using (4)) from plate 1 to plate 2 (the upper plate): 
 
  v(t) = ∫12 E • ds = -Eyd =(µDd/W)(∂i(t)/∂t) (5) 
 
  v(t) = L di(t)/dt     (6) 
 
where the inductance here is: 
 
  L = µDd/W  [Henries] (7) 
 
Note that the voltage between these two parallel plates varies with z, as seen from (4) and 
(5).  Thus we have two perfect conductors that have different voltages between them, 
depending on z.  This violates Kirchoff’s Voltage Law because of the time-varying 
magnetic fieldH that threads the loop integral around which we test KVL. 
 
 In practice we often want more inductance than is readily supplied using (7), so 
we modify the structure as suggested in Figure L11-3; we convert the single-turn loop 
into an N-turn coil by slicing it into wires of width Wi = W/N.  Equations (6) and (7) then 
yield the voltage v(t) across one of these turns, which is now N times greater for given 
i(t) because W is N times smaller.  The total voltage across N turns in series is another 
factor of N times greater.  Thus the total voltage across the N-turn coil is: 
 
  v(t) = L di(t)/dt, where     L = N2µDd/W = N2µA/W (8) 
 
where area A = Dd; thus L is N2 times its previous value. 
 
 The magnetic energy density within this inductor L is: 
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  Wm = µ|H(t)|2/2    [J m-3] (9) 
 
Which corresponds to total stored magnetic energy of 
 

 wm  = µAW|H(t)|2/2 = µA(Ni)2/2W [J] (10) 
 
where H = Ni/W.  Combining (8) and (10) yields the useful result: 
 
  wm = Li2(t)/2  [J] (11) 
 
 Inductors generally have some resistance R, which can be readily determined.  If 
we construct our inductors from slabs with conductance σ [Sm-1]2, length D, thickness δ, 
and cross-sectional area A = δW, then the resistance along the full length of the slab is 
D/σA [ohms].  Since the length of a single turn is 2(D+d), the total resistance of an N-
turn inductor is 2N(D+d)/σA [ohms].  It is, of course, much more important to 
understand how such values are derived than to memorize any answers. 
 
 Should we have an RL circuit as illustrated in Figure L11-4 which has an initial 
current i(t=0) = Io, then it is easy to show that i(t) = Ioe-t/τ, where the time constant τ = 
L/R seconds.  For our N-turn inductor we can substitute our values for L and R to yield: 
 
  τ = L/R =  (N2µDd/W)/(2N2(D+d)/σA) ≅ µdδσ/2  [s] (12) 
 
where D>>d and A = (W/N)δ.  Thus long time constants τ are achieved by maximizing µ, 
d2, and σ, since δ < ~d; this can lead to large massive structures. 
 
 
B. Transformers 
 
 Figure L11-5 illustrates a solenoidal (cylindrical) transformer comprising two 
coils wound about the same air-filled cylinder of cross-sectional area A and length W (we 
assume A and W are the same for both coils).  To determine the behavior of the 
transformer we use the integral form of Faraday’s law: 
 
  ∫cE • ds = -∫A µo(∂H/∂t)•da (13) 
 
If we compute the contour integral (13) around one turn of either coil we obtain the same 
answer, which is µHA, the magnetic flux linked by one turn.  Therefore the total voltage 
induced in either coil by the same changing magnetic flux is proportional to its number of 
turns.  This total voltage induced across coil 2 is therefore N2/N1 times the voltage across 
coil 1, where N2/N1 is called the transformer turns ratio and can be greater or less than 
unity.  If the flux coupling between the two coils is imperfect, then the output voltage is 
correspondingly reduced.  If the wires have resistance, that can alter these voltages in 
proportion to the currents. 

                                                
2 The units of conductance are Siemens m-1, where Siemens are the reciprocal of ohms. 
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 Many transformers have coils wound on iron cores rather than around air, partly 
in order to reduce flux leakage.  Consider the boundary between air and a high-
permeability material, as illustrated in Figure L11-6.  The boundary conditions are 
thatH// andB⊥ are continuous across any interface.  SinceB = µH in the permeable 
core andB = µoH in air, where µ/µο >> 1, and sinceH// are equal on both sides of the 
boundary, thereforeB// differs by the large factor µ/µο.  In contrast,B⊥ is the same on 
both sides.  Therefore, as shown in Figure L11-6, we see thatB2 in air is nearly 
perpendicular to the boundary, whileB1 inside is nearly parallel and therefore largely 
trapped there, even if that boundary curves.  Figure L11-7 shows howB can be trapped 
inside a toroid so that coils can be placed anywhere around its perimeter and still be well 
coupled since the magnetic flux Λ is approximately constant around the loop, where 
 
  Λ = ∫AB •  da (14) 
 
Note the polarity of the output voltage v2(t) relative to v1(t) for the given directions in 
which the coils in Figure L11-6 are wound.  The polarity of v2(t) relative to ∂B/∂t  is 
governed by (13) and that ofB relative to i1(t) is governed by (1). 
 
 
C. Toroidal Inductors 
 
 A toroidal inductor such as that illustrated in Figure L11-8 has inductance L, 
which is related to the stored magnetic energy by (9) and (11): 
 
  wm = Li2(t)/2 = ∫V (µ|H(t)|2/2) dv  [J] (15) 
 
FindingH(t) is easier if the toroid has constant cross-section A, as illustrated in Figure 
L11-8.  From Ampere’s law we learn that the integral ofH around the 2πR 
circumference of the toroid is: 
 
  ∫cH • ds ≅ 2πRH ≅ Ni (16) 
  
where the only linked current is i(t) flowing through the N turns of wire threading the 
toroid.  Equation (16) yields H ≅ Ni/2πR and (15) relatesH to wm and L.  Therefore the 
inductance L of such a toroid is: 
 
 L = µi-2∫V(Ni/2πR)2dv ≅ µ(N/2πR)22πRA = µNA/2πR   [Henries] (17) 
 
The inductance is proportional to µ, N, and A, but declines as R increases.  The most 
compact toroids are therefore fat with almost no hole in the middle; the hole size is 
determined by N and wire diameter. 
 
 The inductance of a toroid is strongly affected if even a small gap of width d 
exists in the magnetic path, as shown in Figure L11-9.  To compute the total magnetic 
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energy wm using (15), the integral ∫V must include all space; the magnetic energy stored 
in the small gap can then easily dominate.  Since B  is continuous across the gap, 

ooH Hµ µµ = µ  and 
o

H Hµ µ>> .  Equation (16), when integrated around a contour C that 

includes the gap, yields: 
 
  |Hµ|(2πR – d)  +  |Hµo|d  ≅  N i(t)  ≅  |Hµo|d   (18) 
 
which occurs for sufficiently large values of (µ/µο) and modest values for R/d.  Thus 
most non-zero gaps dominate the inductance because |H| and wm are relatively so large 
there.  The approximate inductance L then follows from equations (15) and (18): 
 
  L ≅ µοAd(Ni/d)2/i2(t) = µοAN2/d  [Henries] (19) 
 
 Comparing (17) and (19) we see that the gap reduces L by a factor of µ/µο, but 
gains a factor of N2πR/d, which can be made very large.  Equation (19) explains how 
small air gaps in magnetic motors control motor inductance, as discussed further later.   
 


