## **INDUCTORS**

### Inductance is ubiquitous:

Ampere's Law:  $\nabla \times \vec{H} = \vec{I} + \partial \vec{D}/\partial t$ 

Ampere's Law:  $\nabla \times \overline{H} = \overline{J} + \partial \overline{D} / \partial t$ 

Let  $\partial/\partial t \cong 0$ 

Example—printed circuit:

$$\int_{\mathbf{C}} \overline{H} \bullet d\overline{s} = \int_{\mathbf{A}} \overline{J} \bullet d\overline{a}$$

- = 0 around both wires
- = i(t) around the top wire



i(t)

### Magnetic Field H:

Outside:  $\overline{H} \cong 0$ Inside:  $\overline{H} \cong -\hat{y}i/W$ 

(since d << W we ignore fringing fields)

L11-1

### **INDUCTANCE**

### Quasistatic Behavior ( $\partial I \partial t \cong 0$ ):

Side view: V(t) V(t

Maxwell's Equations:

Faraday's Law:  $\nabla \times \overline{E} = -\partial \overline{B} / \partial t$ 

$$\Rightarrow \int_{\boldsymbol{c}} \overline{E} \bullet d\overline{s} = - \! \int_{\boldsymbol{A}} \mu \! \left( \partial \overline{H} / \! \partial \! t \right) \bullet d\overline{a}$$

 $\text{E}_{y}(t,z)\text{d} = -\big(\mu z\text{d/W}\big)\partial i(t)/\partial t \quad \text{[recall $H$ = i/W]}$ 

Therefore when z = D:  $v(t) = \int_1^2 \overline{E} \cdot d\overline{s} = -E_y d = (\mu D d/W)(\partial i(t)/\partial t)$ 

Note: Dd = cross-sectional area A

 $v(t) = L \partial i(t)/\partial t$  where  $L = \mu A/W$  Henries

Note: Kirchoff's voltage law not obeyed here;  $E_y = f(z)$ 

### **SOLENOIDAL INDUCTORS**

#### N-Turn Solenoidal Inductor:

$$v(t) = \int_{1}^{2} \overline{E} \cdot d\overline{s} = -E_{V}d = (\mu Dd/W)(\partial i(t)/\partial t)$$

$$v_{j}\left(t\right)=\left(\mu Dd/W_{j}\right)\!\left(\partial i(t)/\partial t\right) \text{ for } j^{th} \text{ turn}$$

But:  $W = NW_i$ 

$$v(t) = Nv_i(t)$$

Therefore:  $v(t) = (N^2 \mu D d/W)(\partial i(t)/\partial t)$ ; D d = A



#### Inductance of N-Turn Solenoid:

 $L = N^2 \mu A/W$  Henries

## Magnetic Energy Storage:

$$W_{m} = \mu |\overline{H}(t)|^{2} / 2 \left[ J m^{-3} \right]$$

$$w_m = \mu DdW |\overline{H}(t)|^2 / 2 = \mu AW (Ni/W)^2 / 2 [J] [recall H = Ni/W]$$

Therefore:

$$w_{m} = Li^{2}(t)/2 \quad [J]$$

L11-3

### RESISTIVE INDUCTORS

#### Single-Turn Inductor:

Conductance of slab of cross-sectional area S:  $\sigma S = [Siemens m]$ 

Resistance of slab of length D: D/oS [ohms]

Resistance of a single-turn inductor:  $2(D + d)/\sigma S$  [ohms]

Resistance of an N-turn inductor:  $2N(D + d)/\sigma(S/N) = 2N^2(D + d)/\sigma S$ 

#### L/R Time Constant of Solenoidal Inductor:

$$\tau = L/R$$
 seconds

$$\left( e.g. \ i(t) = i_{o}e^{-\tau/\tau} \right)$$



For finite size and mass,  $\tau$  is limited Want  $d \to D$ ,  $\delta \stackrel{\sim}{\to} d/3$ ,  $N \to 1$ ,  $d \to W$ 

where D >> d,  $S = \delta(W/N)$ , A = Dd





L114

### **TRANSFORMERS**

#### Air-Wound Solenoidal Transformers:

$$\int_{\mathbf{G}} \overline{E} \bullet d\overline{s} = - \int_{\mathbf{A}} \mu (\partial \overline{H} / \partial t) \bullet d\overline{a}$$

Say  $A_1 = A_2$ ,  $W_1 = W_2$  here  $N_i =$  number of turns in coil i





The voltage induced in one turn of coil 2 is the same as induced in one turn of coil 1.

And the total voltage induced in coil 2 is  $N_2/N_1$  times the total voltage induced in coil 1, regardless of whether it is generated by  $i_1$  or  $i_2$ .

N<sub>2</sub>/N<sub>1</sub> is called the transformer turns ratio

## Step-up and Step-down Transformers:

Step-up or step-down the output voltage, correspondingly. The flux coupling between the two coils may be imperfect and the output voltage is correspondingly reduced

[flux  $\Lambda = \mu HA$ , and linked flux = N $\mu HA$ ].

L11-5

# **IRON-CORE TRANSFORMERS (1)**

## **Boundary Conditions:**

 $H_{\slash\hspace{-0.4em}H}$  and  $\overline{B}_{\perp}$  are continuous across the boundary

$$\left(\nabla{\times}\overline{H}=\overline{J}+\partial\overline{D}/\partial t;\;\nabla\bullet\overline{B}=0\right)$$

 $\overline{H} /\!\!/ \overline{B}$  and  $\overline{B} = \mu \overline{H}$ 

 $\mu/\mu_0$  can be as large as  $10^6$ .

Since  $\mu >> \mu_0$ ,  $\overline{B}_1$  is essentially parallel to the interface, and trapped within the high permeability medium.

The magnetic flux  $\overline{B}$  is "trapped" inside.



## **IRON-CORE TRANSFORMERS (2)**

#### Flux trapping inside high permeability materials:

The magnetic flux density  $\overline{B}$  is trapped inside high-permeability materials, e.g.:



Flux  $\Lambda = \int_{A} \overline{B} \bullet d\overline{a} \cong \text{constant}$ 

## **Transformer Output:**

 $v_2(t) = (N_2/N_1)v_1(t)$ The flux is highly linked with little leakage  $v_1(t)$ 



L11-7

## **INDUCTANCE OF IRON TOROID (1)**

## Inductance L of N turns around toroid $(N_2 = 0)$ :

Recall: 
$$w_m = Li^2(t)/2 = \int_V W_m dv [J] = \int_V (\mu |H|^2/2) dv$$

where 
$$W_m = \mu |\overline{H}(t)|^2 / 2 \left[ Jm^{-3} \right]$$



**Example: Constant Area Toroid** 

Since:  $L = \left(\mu J_V \left| \overline{H}(t) \right|^2 dv \right) / i^2(t)$ 

$$\nabla \times \overrightarrow{H} = \overrightarrow{J} + \partial \overleftarrow{\mathbb{Q}} / \partial t \Rightarrow \int_{\mathbf{C}} \overrightarrow{H} \cdot d\overrightarrow{s} \cong Ni(t)$$

Therefore:

$$2\pi R |\overline{H}| \cong Ni (R \text{ varies slightly over A})$$

$$L = \mu J_V \left( N/2\pi R \right)^2 dv \ \cong \mu \left( N/2\pi R \right)^2 V = \mu N^2 A \big/ \! 2\pi R \ \ [Henries] \label{eq:local_local}$$

where 
$$V \cong 2\pi RA \big[m^3\big]$$

# **INDUCTANCE OF IRON TOROID (2)**

## Inductance L of a toroid with a gap:

Recall: 
$$w_m = Li^2(t)/2 = \int_V W_m dv [J]$$

 $W_{m} = \mu \left| \overline{H}(t) \right|^{2} / 2 \qquad \left[ J m^{-3} \right]$ where

2R

2R

Therefore: L =  $\left(\mu \int_{V} \left|\overline{H}(t)\right|^{2} dv\right) / i^{2}(t)$ , as before

## Finding $\overline{H}(t)$ :

 $\int_{\mathbf{c}} \overline{H} \bullet d\overline{s} \cong Ni(t)$ Since:

Therefore:  $\left|\overline{H}_{\mu}\right|(2\pi R-d)+\left|\overline{H}_{\mu_{O}}\right|d\cong Ni(t)$ 

 $\nabla \bullet \overline{B} = 0$ , so  $\mu_0 H_0 = \mu H$  where we assume  $\mu >> \mu_0$ 

Therefore: Magnetic energy density in gap is  $(\mu \mu_n)^2$  greater than

inside the torus, and dominates unless  $(\mu I \mu_0)^2 << 2\pi R/d$ 

(we require  $d \lesssim 2\pi R (\mu_0/\mu)^2$ )

gap

d[m]

gap d[m]

# **INDUCTANCE OF IRON TOROID (3)**

## Inductance L of a toroid with a gap:

Recall:  $L = \left(\mu(t) \int_V |\overline{H}|^2 dv\right)/i^2$ 

 $\left|\overline{H}_{\mu}\right|(2\pi R-d)+\left|\overline{H}_{\mu_{O}}\right|d\cong Ni(t)$ 

Where:  $|\overline{H}_{\mu_0}|d \cong Ni(t)$  for a small gap with

little fringing (d << A<sup>0.5</sup>) and we neglect the energy storage inside the torus

Therefore:  $L \cong \mu Ad(N/d)^2$  or, for a small-gap torus:

 $L \cong \mu_o AN^2/d$  Henries

provided that  $d \approx 2\pi R (\mu_0/\mu)^2$