MICROWAVE COMMUNICATIONS AND RADAR

Generic Architecture:

Communications, bi-static radar—separately located systems Radar, lidar, data recording—co-located systems Passive sensing—uses receiver side only

Systems fail at the weakest link, therefore understand all parts

1141

RADAR, LIDAR, AND PASSIVE SYSTEMS

Radar (Lidar) Equation:

 $I_r = I_t \sigma_c / 4\pi r^2$ [W/m²] (received intensity)

 $P_r = A_r I_r = [A_r] [G_t P_t / 4\pi r^2] [\sigma_s / 4\pi r^2]$ Watts, where $A_r = G_t \lambda^2 / 4\pi$

Therefore:

 $P_r = P_t \sigma_s (G_t \lambda / 4\pi r^2)^2 / 4\pi$ Watts

Radar Equation

Atmospheric absorption by oxygen and water vapor is important mostly above 40 GHz, rain can dominate above ~3 GHz (neglected here)

Target Scattering Cross-Section σ_s :

Assumes isotropic scattering; referenced to the receiver Therefore retro-reflectors can have σ_s >> physical cross-section

Radar Measures:

Range r, σ_s , and Doppler shift Δf (Hz)

L14-2

RADAR, LIDAR, AND PASSIVE SYSTEMS

Radar Example: Radar Equation $P_r = P_t \sigma_s (G_t \lambda / 4\pi r^2)^2 / 4\pi [W]$

Killer asteroids > 300-m diameter; range = ?

Assume $P_t = 1$ Mw, $G_t = 10^8$, $\lambda = 0.1$ m, $\sigma_s \cong 10^4$ m²

 $P_r = kT_s B = 1.38 \times 10^{-23} \times 10 \times 1 \text{ watts}$

Then: $r = [P_t \sigma_s (G_t \lambda / 4\pi)^2 / 4\pi P_t]^{1/4}$ meters (for S=N)

 $\cong 10^6 \ 10^4 \ (10^8 \ 0.1/4\pi)^2/(4\pi \times 1.38 \times 10^{-22})]^{1/4}$ $\cong 4 \times 10^7 \ \text{km} \cong 0.3 \ \text{Astronomical Units}$

(~distance to Venus; ⇒ ~2-3 weeks warning)

Bear Island

Thermal Sensing:

Typhoon

Rex

Target \Rightarrow kT_BB watts into antenna, (T_B is brightness temperature)

System noise $\Rightarrow kT_SB$ watts

Sensitivity (K,rms) $= T_s / (\# Degrees of Freedom that are averaged)^{0.5}$

DoF = $2B\tau$ (time-bandwidth product), [1 sec, 1 MHz \Rightarrow DoF = 2×10^6]

Example: RMS Sensitivity(K) = $T_S/(\tau B)^{0.5}$ [e.g. 500/(1 × 108)0.5 = 0.05K] L143

GUIDED WAVES

Trapped Plane Waves:

TEM Mode

Bouncing Waves—parallel-plate waveguide Bouncing Waves—rectangular waveguide

Waves Guided by Dielectrics:

Bouncing Waves—dielectric slab waveguide Optical Fibers

Standing Waves ⇒ Waveguide Modes:

Null planes parallel to plates (see above) \Rightarrow TE $_{\rm m}$, TM $_{\rm m}$ modes Rectangular waveguides, null planes in two dimensions

 \Rightarrow TE_{m.n} and TM_{m.n} modes

Optical fibers—similar; fields characterized by Bessel functions

L144

IMPEDANCE, IMPEDANCE TRANSFORMATIONS

TEM Mode (at ω):

Impedance:

 $\underline{Z}(z) = \underline{V}(z)/\underline{I}(z)$

Where: $\underline{V}(z) = \underline{V}_+ e^{-jkz} + \underline{V}_- e^{+jkz}$ volts (recall plane waves at ω)

 $\underline{I(z)} = \underline{Y_0(V_+e^{-jkz} - V_-e^{+jkz})}$ amperes

Impedance Transformations:

Therefore: $Z_0 \frac{\underline{V}_+ e^{-jkz} + \underline{V}_- e^{+jkz}}{\underline{V}_+ e^{-jkz} - \underline{V}_- e^{+jkz}} = Z_0 \frac{1 + \underline{\Gamma}(z)}{1 - \underline{\Gamma}(z)}$

Where: $\underline{\Gamma}(z) = (\underline{V} / \underline{V}_+) e^{2jkz}$

Yields: $\overline{Z}(z) = \pm i \overline{X}$ (for any X, if line is losslessly terminated (e.g. shorted)

Enables: Microwave integrated circuits to emulate wired ones

Matching Impedances Losslessly:

Just position proper C or L in series or parallel at proper ℓ ,

Or, insert a section of line with different impedance \Rightarrow transformer (ALL incident power is then dissipated in load resistance)

L145

JUNCTIONS AND MODAL COUPLING

Junctions:

e.g. Antenna feeds

Cable-waveguide

Waveguide-waveguide

Optical and microwave integrated circuits

Parasitic Reactances (L or C):

Find average energy storage: $w_e \le w_m \Rightarrow L$; $w_e \ge w_m \Rightarrow C$

Modal Coupling:

Single-mode to one or more single-mode guides Multi-mode to multi-mode guides **S**_{ii} scattering matrix, **Z**_{ii} impedance matrix

L146

MICROWAVE COMMUNICATIONS AND RADAR

Outline of Section:

Applications and overview of issues Generalized TEM line, complex impedance $\underline{Z}(z)$ Impedance transformations, gamma plane Smith chart, tuning, quarter-wave transformers RLC and TEM resonators, ω_o , Q, coupling TE, TM parallel-plate waveguides Rectangular waveguides System examples

L148