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6.014 Lecture 18: 
Optical Communications 

 
A. Overview 
 

 Optical communications is as old as smoke signals, modulated campfires, and 
mirrors reflecting sunlight.  Today it is even more important, particularly for long-haul 
communications.  Optical fibers now carry the great majority of all intercontinental 
communications, although microwave satellites still provide deployable backup because 
they can switch capacity from terminal to terminal to address transient shortfalls or 
failures, or geographically isolated users such as those on ships.  Fibers have also been 
widely installed for intrastate communications, and are beginning to migrate down into 
the local loop and eventually to homes.  Extreme data rates are now also being conveyed 
between and within computers and even chips, although wires still have advantages of 
cost and simplicity for most ultra-short applications. 
 

A significant niche market also exists for local through-the-air line-of-sight 
optical links that provide extreme bandwidths for dedicated point-to-point 
communications.  For example, companies can link between buildings using beams of 
light, or can quickly bypass inadequate or failed wire links connecting them to the global 
network, as happened after 911 in New York City.  Such links also have great potential 
for very broadband inter-satellite or space-probe-to-earth communications because small 
telescopes easily focus their antenna beams (beamwidths of 5-inch apertures are typically 
one arc second [1 arc second is 1/60 arc minutes, 1/602 degrees, 2π/360×602 radians, or 
1/60 of the largest apparent diameters of Venus or Jupiter in the night sky]. 
 
 The main issues in fiber communications are the fiber links themselves and the 
devices that manipulate the optical signals, such as sources, detectors (discussed in the 
first recitation), amplifiers (discussed in next lecture), modulators, mixers, switches 
(which can be MEMS-controlled mirrors, shutters, or gratings), filters, multiplexers, 
directional couplers, and others.  These are assembled to create useful communications or 
computing systems.  An example of a typical subsystem is pictured in L18-3 where 
different users transmit modulated signals at n optical wavelengths to a multiplexer 
(MUX) that losslessly combines them into a single broadband beam near 1.5-micron 
wavelength that can propagate long distances before requiring amplification in an optical 
amplifier (OAMP).  OAMPs are typically erbium-doped fiber amplifiers (EFDA's) 
spaced about 50 miles apart.  At the far end the wavelengths can be separated using a de-
multiplexer (DEMUX) into the original user bands for local distribution.  Without 
EFDA's the optical signals would have to be detected and then regenerated by a new 
transmitter for each of the N optical channels that could otherwise be amplified by a 
single EFDA. 
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B. Optical Fibers and Slab Waveguides 
 

 In its simplest form a typical glass optical fiber transmission line is perhaps 125 
microns in diameter with a core having diameter ~10 microns.  The core permittivity ε is 
typically ~2 percent greater than that of the cladding so as to trap most of the energy.  If 
the light beams in the core impact the cladding beyond the critical angle 
 

θc = sin-1(ε/(ε+∆ε)) (1) 
 
then they are perfectly reflected and thereby trapped within the core.  Only evanescent 
waves exist inside the cladding, and they decay approximately exponentially away from 
the core to negligible values at the outer cladding boundary, which is often encased in 
plastic about 0.1 mm thick.  Some fibers propagate more than one mode; these multiple 
modes generally travel at different velocities and can confuse or limit information 
extraction (data rate).  Multiple fibers are usually bundled inside a single cable. 
 
 A more rigorous, but approximate, way to analyze fiber-optic modes is suggested 
in Slide L18-5 where a dielectric slab waveguide in vacuum is analyzed.  A similar 
analysis is presented in Section 7.2 of the text.  If we start by assuming that the +z-
propagating TE waves inside the slab, which is assumed to be infinite in the lateral (y) 
direction, are standing waves in the x direction, thenE is some linear combination of 
even (cosine) or odd (sine) modes proportional to cos kxx or sin kxx, and to e-jkz.  We also 
know that for plane waves incident at a dielectric interface beyond θc, the fields decay 

exponentially away from the boundary outside.  That is, outsideE = zzjkxeEy −−α
1ˆ for x 

> d, where d marks the upper boundary of the slab. 
 

Boundary conditions for TE waves say thatE// must be continuous across the 
boundary, and also ∂Ey/∂x.  The derivative ∂Ey/∂x must be continuous because we know 
that ∇ ×E = -∂H/∂t (Faraday's law), where bothH and ∂H/∂t must be continuous 
across the same boundary because H⊥and H// are continuous; thus ∇ ×E is continuous 
too.  But ∇ ×E = ẑ ∂Ey/∂x - x̂ ∂Ey/∂z, which must therefore also be continuous across 
the boundary.  The field distributions for various modes pictured in L18-5 are consistent 
with both Ey and its derivative being continuous across the boundaries at x = ±d.   
 
 Once the form of the electric field inside and outside the slab is known,H can be 
immediately found using Faradays law, i.e., by computingH = -(∇ ×E)/jωµ.  The 
resulting magnetic and electric field distributions are suggested in the figure on L18-6, or 
in Figure 4.12 in the text.  At the boundary x = d the electric and magnetic files inside 
and outside the slab for TE1,3,5,… are: 
 

  Eocos kxd zzjke− = E1
zzjkde −−α

   (2)  

  (-jkxEo/ωµ) sin kxd zzjke−  = -(jαE1/ωµo) zzjkde −−α
   (3) 
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where Eo is the amplitude associated with the trapped fields, and E1 is associated with the 
evanescent fields. 
 

The ratio of these two equations that require continuity in parallelE (Eqn. 2) 
andH (Eqn. 3) at the boundaries can be computed to yield kxd tan kxd = µαd/µo.  We 
also know from the dispersion relations: 
 kz

2 + kx
2 = ω2µε inside, kz

2 - α2 = ω2µoεo outside, (4) 
that: 

kx
2 + α2 = ω2(µε - µoεo) (5)  

 
Substituting the expression for kx that comes from the dispersion relation (5) into 

the first equation we obtain a transcendental equation: 
 

tan kxd = (µ/µo)([ω2(µε - µoεo)d2/kx
2d2] – 1)0.5 (4) 

 
This can be solved graphically, as shown in L18-7.  The left-hand side is a tangent 
function in kxd, and the right-hand side is a curve that depends on kxd and ω; the 
solutions are where the two curves cross. 
 

For ω → 0 there is only one solution, but it is valid for all ω; this is the TE1 mode.  
At low frequencies this slab can propagate waves with small values of α that decay very 
slowly away from the slab (α→0 as ω→0; see (5) as both kxd and ω →0).  In this low-
frequency limit most of the wave energy is actually propagating outside the slab but 
parallel to it.  At sufficiently high frequencies both the TE1 (0<kxd<π/2) and TE3 
(π<kxd<3π/2) modes can propagate, as illustrated.  As ω→∞, the figure suggests that the 
number of propagating odd TE modes also approaches infinity.  Not shown here are the 
TM modes and the even TE modes. 

 
These solutions for dielectric-slab wavequides are similar to the solutions for 

optical fibers, which instead take the form of Bessel functions because of the cylindrical 
geometry of fibers.  In both cases we have lateral standing waves propagating inside and 
evanescent waves propagating outside. 

 
Slide L18-7 shows three forms of optical fiber.  One has a thicker core that can 

propagate multiple modes, while the other has a core so small that only one mode can 
propagate.  In this case, however, both vertically and horizontally polarized modes can 
propagate independently and therefore interfere with each other.  By making the fiber 
elliptical, it is possible to eliminate one of these two polarizations so the signal becomes 
even more pure.  That is, one polarization decays more slowly away from the core so that 
it sees more of the absorbing material that surrounds the cladding.  Many fiber types have 
been invented, but these are some of the most widely used. 

 
Designing fibers has been a major activity for the past twenty years.  The first 

initial issue was propagation loss.  Reducing to negligible levels the losses due to rough 
fiber walls was relatively easy because drawn glass fibers are so smooth.  More serious 
was the absorption due to very small levels of impurities in the glass.  Purification was a 
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significant step forward.  Water was a particularly difficult problem because one of its 
harmonics fell in the region where attenuation in glass was otherwise minimum, as 
suggested in Slide L18-8.  At wavelengths shorter than ~1.5 microns the losses are 
dominated by Rayleigh scattering of the waves from the random fluctuations in glass 
density on atomic scales.  These scattered waves exit the fiber at angles less than θc.  
Rayleigh scattering is proportional to f4 and occurs when the inhomogeneities are small 
compared to λ/2π; here the inhomogeneities have atomic scales, say 1 nm, whereas the 
wavelength is more than 1000 times larger. 

 
At wavelengths longer than ~1.5 microns the wings of absorption lines at lower 

frequencies begin to dominate.  This absorption is associated principally with vibration 
spectra of inter-atomic bonds, and is unavoidable.  The low-attenuation band centered 
near 1.5-microns is about 1.5 THz wide, enough on one fiber to let each person in the 
U.S.A. have a private simultaneous bandwidth of  1.5×1012/2.5×108 = 6 kHz, or a private 
telephone channel!  Most fibers used for local distribution do not operate anywhere close 
to this limit for lack of demand, although undersea cables are pushing in that direction.  

 
The fibers are usually manufactured first as a preform, which is a glass rod that 

subsequently can be heated at one end and drawn into a fiber of the desired thickness.  
Preforms are either solid or hollow.  The solid ones are usually made by vapor deposition 
of SiO2 and GeO2 on the outer surface of the initial core rod, which might be a millimeter 
thick.  By varying the mixture of gases, usually Si(Ge)Cl4 + O2 ⇒ Si(Ge)O2 + 2Cl2, the 
permittivity of the deposited glass cladding can be reduced about 2 percent below that of 
the core.  The boundary between core and cladding can be sharp or graded in a controlled 
way.  Alternatively, the preform cladding is large and hollow, and the core is deposited 
by hot gases from the inside in the same way; upon completion there is still a hole 
through the middle of the fiber.  Since the core is small compared to the cladding, the 
preforms can be made more rapidly this way.  When the preform is drawn into a fiber, 
any hollow core vanishes. 

 
Another major issue in the design of fibers is dispersion.  We want the same 

group velocity over the entire frequency band so that pulses or other waveforms do not 
distort as they propagate.  The group velocity vg is the slope of the ω vs k relation (vg = 
(∂k/∂ω)-1) For example, a square pulse can be fourier-transformed to an equivalent series 
of frequencies, the higher frequencies being associated with the sharper edges of the 
waveform, as suggested in Slide L18-9.  This set of lower frequencies associated with the 
modulation envelope of the optical carrier wave is then convolved with the carrier 
spectrum to produce a narrow optical band that slowly spreads and distorts as it 
propagates.  A dispersive line eventually transforms such a pulse into something that 
looks more like a sine wave of varying frequency.  This problem can be minimized by 
carefully choosing the dispersion n(f) of the glass, the permittivity contour ε(r) in the 
fiber, and the center frequency ωo; the glass dispersion generally dominates.  Otherwise 
we must reduce either the bandwidth of the signal or the length of the fiber.  
Alternatively, the signal must be detected and regenerated after propagating only very 
short distances. 
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This natural fiber dispersion can, however, help solve the problem of fiber 
nonlinearity.  Since attenuation is always present, the amplifiers operate at high powers, 
limited partly by their own nonlinearities and by any fiber nonlinearities.  This problem is 
more severe when the signals are in the form of isolated pulses.  By deliberately 
dispersing and spreading the pulsed signals before introducing them to the fiber, the peak 
signal amplitudes and resulting nonlinear effects are reduced.  This pre-dispersion is 
made opposite to that of the fiber.  That is, if the fiber propagates high frequencies faster, 
then the pre-dispersion is chosen to delay them correspondingly.  Thus the residual fiber 
dispersion gradually compensates for the pre-dispersion over the full length of the fiber.  
At the end of the fiber the pulses reappear in their original form, but with peak 
amplitudes so weak from natural attenuation that the amplifier nonlinearities are not 
triggered. 


