OPTICAL COMMUNICATIONS

Free-Space Propagation:

- · Similar to radiowave propagation
- · Antenna gain, effective area, path loss expressions unchanged

Devices:

- · Detectors (review first recitation)
- · Sources-LED's, lasers (next lecture?), amplifiers
- · Modulators-amplitude and frequency, mixers, switches
- · Passive filters, spectral multiplexers and combiners

Guided Wave Propagation (including long lines and device interiors):

- · Optical fibers trap and guide waves, attenuate little
- Rayleigh scattering is a loss mechanism, ∞ f⁴, favors λ > 1-micron
- Rays inside fiber impact wall beyond critical angle ⇒total reflection, totally lossless (for smooth walls; unlike mirrors)
- Attenuation > ~1? DB/km (depends on fiber architecture, materials, f)

L18-1

UNDERSEA OPTICAL FIBER CABLES

Fiber Communications Around the Globe

- · Virtually all long-distance telecommunication is now by fiber optics
- In-line erbium-doped fiber amplifiers (EDFA's) make transoceanic transmission possible without repeaters – for many wavelengths at the same time in one fiber.
- Without fiber communications there would be no World Wide Web.

WDM MULTIPLEXED LINK

WAVELENGTH DIVISION MULTIPLEXING (WDM):

- · Multiple wavelengths combined onto one fiber
- All wavelengths amplified simultaneously and independently in each optical amplifier (OAMP)

18-3

WAVES IN FIBERS

Optical Fiber - Simple Picture:

- Light is trapped by total internal reflection in the higher ε glass core.
- The small difference in ε implies very shallow reflection angles.
- Only certain angles are allowed since the waves must interfere constructively with each reflection => modes.
- Velocity of a mode is determined by the ε's and the core size.
 (Different modes travel at different velocities.)

OPTICAL WAVEGUIDES

Dielectric slab wavequide example:

Waves reflect beyond critical angle θ_c

 θ_c = sin-1(n_a^-1) where n_a \cong 1.5 \Rightarrow θ_c \cong 41.8°

Standing waves inside guide, evanescent outside:

$$\overline{E} = \hat{y} E_0 \begin{cases} \sin k_X x \\ \cos k_X x \end{cases} e^{-jk_Z z} \quad |x| \le d$$

$$\text{ and } \quad \overline{E} = \hat{y}\underline{E}_1 e^{-\alpha x - jk_Z \boldsymbol{z}} \quad \text{for } x > d,$$

$$\overline{E} = \pm \hat{y}\underline{E}_1 e^{+\alpha x - jk_{\mathbb{Z}} z} \quad \text{for } x < -d$$

Evanescent region:

Decays more rapidly for lower modes and higher frequencies

Boundary conditions:

\overline{E}_{II} and $\partial E_{y}/\partial x$ continuous for TE_{n} $\nabla \times \overline{E} = \overline{z} \partial E_{y}/\partial x - \overline{x} \partial E_{y}/\partial z = -\partial \overline{H}/\partial t$

L18-6

ELECTROMAGNETIC FIELD DISTRIBUTION

Magnetic Field Distribution: $\vec{H} = -(\nabla \times \vec{E})/j\omega\mu_0$ (for TE₁, TE₃, etc.)

Inside the slab:

$$\overline{H} = \left(\text{E}_{\text{O}} / \omega \mu \right) \left(-\hat{x} k_{\text{Z}} \left\{ \begin{matrix} \sin k_{\chi} x \\ \cos k_{\chi} x \end{matrix} \right\} - \hat{z} j k_{\chi} \left\{ \begin{matrix} -\cos k_{\chi} x \\ \sin k_{\chi} x \end{matrix} \right\} \right) e^{-jk_{Z} z} \text{ for } |x| < d$$

Outside the slab:

$$\overline{H} = \left(E_1/\omega \mu_{\bm{o}} \right) \left(-\hat{x} k_{\bm{z}} - \hat{z} j \alpha \right) e^{-\alpha x - j k_{\bm{z}} z} \;\; \text{for} \; x > d$$

Matching Boundary Conditions:

Phase: $k_y^2 + k_z^2 = \omega^2 \mu \epsilon$

inside the slab,
$$|x| < d$$

 $-\alpha^2 + k^2 = \omega^2 u \in \text{ outside } x > d$

$$-\alpha^2 + \mathbf{k}_z^2 = \omega^2 \mu_0 \varepsilon_0$$
 outside, $x > d$

Continuity of \overline{E} at x = d: $E_0 \cos k_X de^{-jk_Z z} = E_1 e^{-\alpha d - jk_Z z}$ for $TE_{1,3,5,...}$

Continuity of H_z at x = d: $(-jk_xE_0/\omega\mu)\sin k_xde^{-jk_zz} = -(j\alpha E_1/\omega\mu_0)e^{-\alpha d-jk_zz}$

Therefore: $\mathbf{k}_{\mathbf{x}} \mathbf{d} \tan \mathbf{k}_{\mathbf{x}} \mathbf{d} = \mu \alpha \mathbf{d} / \mu_{\mathbf{0}}$ (ratio of continuity equations $\mathbf{k}_{\mathbf{x}}^2 + \alpha^2 = \omega^2 (\mu \mathbf{\epsilon} - \mu_{\mathbf{0}} \mathbf{\epsilon}_{\mathbf{0}})$ (from dispersion equations) $\mathbf{k}_{x}\mathbf{d} \tan \mathbf{k}_{x}\mathbf{d} = \mu \alpha \mathbf{d}/\mu_{n}$ (ratio of continuity equations)

SOLUTIONS FOR TEodd n DIELECTRIC SLAB WAVEGUIDES Field Continuity Equations: $\mathbf{k}_{\mathbf{x}}\mathbf{d} \tan \mathbf{k}_{\mathbf{x}}\mathbf{d} = \mu \alpha \mathbf{d}/\mu_{\mathbf{n}}$ (ratio of continuity equations) $\mathbf{k}_{\mathbf{x}}^{2} + \alpha^{2} = \omega^{2}(\mu \varepsilon - \mu_{\mathbf{n}} \varepsilon_{\mathbf{n}})$ (from dispersion equations) Transendental Equation: $\tan k_v d = (\mu/\mu_0)([\omega^2(\mu \epsilon - \mu_0 \epsilon_0) d^2/k_v^2 d^2] - 1)^{0.5}$ Graphical solution: Optical Fibers: Increasing ω Bessel functions Similar modes No trapped, Solutions $\alpha > 0$ Multimode $k_x d$ $3\pi/2$ $5\pi/2$ $\pi/2$ No trapped.* Clad Solutions $\alpha \not = 0$ TE_3 TE₅ TE₁ Single-mode modes modes modes Single polarization L18-7

FIBER WAVEGUIDE DESIGN

Loss Mechanisms:

Rayleigh scattering from random density fluctuations Loss ∞ f⁴ (scattering makes sky blue)

Infrared absorption dominates for $\lambda > \sim 1.6$ microns Minimum total attenuation $\cong 0.2$ dB km⁻¹

Attenuation (dB km⁻¹)

Construction:

Typical: 10-micron core in 125-micron diameter glass, with 100-micron-

thick plastic protective cladding (bundled in cables)

Manufacturing: Solid or hollow preform grown by vapor deposition of SiO₂ and

 GeO_2 (using e.g. $Si(Ge)CI_4 + O_2 = Si(Ge)O_2 + 2CI_2$)

Pulses Spread Due to Dispersion:

Group Velocity: Want $v_n(f) \cong constant$, so

Want flat $k(\infty)$ [n = $k/\infty + n_0$]

Dispersion: Determined mostly by $\varepsilon(f)$,

modified by $\epsilon(r)$ of fiber

EFFECTS OF DISPERSION

Pulse Spreading:

Distortion: Square pulse envelope is sum of harmonics-- -

Want all f_i to have same group velocity; $\Delta \omega \ll \omega_0$

Equation: $k = \beta_0 \omega_0 + \beta_1 (\omega - \omega_0) + \beta_2 (\omega - \omega_0) + \dots$ where

 $\beta_o = k/\omega_o = v_p^{-1} = n/c$

 $\beta_1 = dk/d\omega_0 = v_g^{-1} = (1 + [\omega/n]dn/d\omega)n/c$

 $\beta_2 = d^2k/d\omega^2 = dv_0^{-1}/d\omega = (2dn/d\omega + \omega d^2n/d\omega^2)/c$ {set to 0 at ω_0 }

Non-linearities:

Avoid spikes: Large amplitudes generate harmonics at nonlinearities

Large amplitudes: Desired to lengthen distance between amplifiers

Nonlinearities: Occur in amplifiers and during propagation

One remedy: Disperse signals initially (e.g. with grating) so fiber

dispersion cancel this initialization over its entire length;

Spikes reappear at end when signal is weak