LASERS

Applications:

Amplification: communications links (e.g. EFDA; avoids down-conversion)

Oscillator: frequency/distance reference, local oscillators, illuminators,

sources for fiber communications, CD/DVD players

Focused power: laser machining, weapons, laser fusion (pellet compression).

Peak > 1015W, average > 1kw

Note: 10^{15} W in 10-micron spot $\Rightarrow \bar{E} \cong 10^{14} \left[Vm^{-1} \right] \left(10^6 \text{ in H atom} \right)$

Basic Principles:

Atoms and molecules in gases, impurities in solids, and electrons and holes in semiconductors have quantum states

A transition to a lower state emits a photon coherent with triggering photon

⇒ Exponential spatial amplification or, with internal reflection, oscillation

Amplification/lasing requires upper state population to exceed lower state

L19-1

BASIC LASER AMPLIFIER PHYSICS

Basic Amplification Process:

[Each • is a separate atom or molecule; need $n_2 > n_1$ for amplification]

Basic Equations:

Amplification frequency: $E_2 - E_1 = hf[J]$ $h = 6.625 \times 10^{-34} [Js]$

Photon increase (no pump): $dn_2/dt = -[An_2 + B(n_2 - n_1)] \quad (n = \#/m^3)$

Wm⁻³ emitted: $P = hf d(n_2 - n_1)/dt [Jm^{-3}s^{-1}]$

A,B are the spontaneous and stimulated emission coefficients, respectively

L19-2

ENERGY STATES AND POPULATIONS

States:

electronic (visible, UV) vibrational (visible) bending (IR) rotational (microwave)

Water vapor H2O

Hydrogen atom (Galactic arms) (e.g. water vapor masers around stars) (electric dipole transitions)

Chromium atoms in lattice (e.g. ruby), erbium atoms in glass

Level Populations—Kinetic Temperature T_k:

Thermal equilibrium dominated by collisions

 \Rightarrow Boltzmann distribution:

 $\frac{n_i}{n_i} = e^{-\left(E_i - E_j\right)/kT_k}$

Thermal equilibrium dominated by radiation

 \Rightarrow Boltzmann distribution:

 $n_2 > n_1 \text{ if } T_{rad} < 0$

state energy E [J]

•••••• n₁

L19-3

EINSTEIN "A" AND "B" COEFFICIENTS

Rate Equation: $dn_2/dt = -[An_2 + B(n_2 - n_1)]$ (n = #/m³, collisionless)

Einstein A Coefficient:

Spontaneous emission: $dn_i/dt = -A_in_i$ transitions $m^{-3}s^{-1}$

 A_{ij} between states i and j: $A_{ij} = k^3 |D_{ij}|^2 2/3h\epsilon [s^{-1}]$

Dipole strength of transitions: D_{ii} [Cm] is a quantum mechanical dipole

moment (electric or magnetic)

Decay time $\tau_A = A^{-1}$ Note: $\tau_A \propto \omega^{-3}$, so "visible" τ 's are short,

microwave τ's are long

B Coefficient:

Stimulated emission and absorption: $B_{ij} = Ig_{ij}(f)|D_{ij}|^2N\pi^22/3h^2c\epsilon$ [s⁻¹] $g_{ij}(f)$

Proportional to radiation intensity I: $I = |E|^2/2\eta_o \text{ [Wm}^2]$

Lorentzian line shape $g_{ij}(f)$: $g_{ij}(f) = [2/\pi(\Delta f)]/[1 + 4(f - f_0)^2/(\Delta f)^2]$

 $g_{ij}(f)$ has unity integral: $\int_{-\infty}^{\infty} g_{ij}(f) df = 1;$

[N is refractive index] $g_{ij}(f)/g_o = 0.5 \text{ for } |f - f_o| = \Delta f/2$

박 **!**

PUMPING LASERS

Three-Level Lasers:

Pump lasing _lasing Pump levels 1,3 so $n_1 \cong n_3$ Large A_{32} populates 2 so $n_2 >> n_1 \cong n_3 \cong 0$

More levels sometimes used, e.g. to lower the pump frequency, or to utilize quantum states with larger A's -

Losses that Limit Short Wavelength Operation:

Key losses: $(n_3A_{31} + n_2A_{21}hf_{31} [Pump Wm^{-1}]$ Recall $A \propto \omega^3$; if $B >> A \propto \omega^3$, then

x-ray lasers need very high B (pump values)

L19-5

LASER GAIN

Fiber Amplifier Gain (if n atoms m⁻¹ in upper state; ~0 in lower):

dn/dt: $= R - n(A + B) = R - (n/\tau_A) - I_{\#} \circ n$ (1)

[where R = Repopulation rate s^{-1} of n; $l_{\#}$ = photons $m^{-2}s^{-1}$;

 σ = stimulated-emission cross-section [m²] atom ⁻¹]

Steady State: dn/dt = 0, \Rightarrow n = R τ_A /(1 + τ_A I $_{\#}$ \circlearrowleft) = R τ_A /(1 + I $_{\#}$ /I $_{\#}$ sat) [I $_{\#}$ sat = 1/ τ_A \circlearrowleft] (2)

 $dl_{\#}/dz \cong l_{\#} \circ n$, so that: $l_{\#out} = l_{\#in} e^{\sigma nz} = l_{\#in} e^{gz}$ [gain g (nepers m⁻¹)] When B>>A: (3)

Gain $g \cong Gn = GR_{\tau_A}/(1 + I_\#I_{\#sat}) \rightarrow 0$ for $I_\# >> I_{\#sat}$ [from (2,1)]

 $g \cong Gn < Gn_{max}$ [n_{max} is the number of amplifying atoms m⁻¹]

G(nepers m⁻¹): $g = n\sigma = nB/I_{\#} = P_{pump}g_{jj}(f)|D|^2N\pi^22/3h^2c_8A$ for $I_{\#} << I_{\#sat}$ (4)

[from 4,1,2,5, L-19-4]

Where: $P_{pump} [Wm^{-1}] > hf_p R \text{ and } n \cong R/[A(1 + I_{\#}/I_{\#sat})] \cong P_{pump}/[hf_p A(1 + I_{\#}/I_{\#sat})]$ (5)

 $G = I_{out}/I_{in} = e^{\int g(z)dz}$ where Laser Gain:

 $g(z) \cong \sigma P_{pump}/[hf_pA(1 + I_\#/I_{\#sat})]$

(Actually, net gain = $g - \alpha$;

α represents losses)

L19-6

LINE SHAPE

Lorentzian Line Shape and Broadening Mechanisms:

Lorentzian line

 $g_{ii}(f) = [2/\pi(\Delta f)]/[1 + 4(f - f_0)^2/(\Delta f)^2]$

shape:

 $g_{ij}(f)$ has unity $\int_{-\infty}^{\infty} g_{ij}(f) df = 1$

integral:

 $g_{ii}(f)/g_0 = 0.5 \text{ for } |f - f_0| = \Delta f/2$

Broadening

 $\Delta f_0 > 1/\tau_A = A \cong 10 \text{ MHz (minimum)}$

mechanisms:

linewidth); collisions, lattice interactions,

fields $(\overline{E}, \overline{B})$, Doppler

Homogeneous broadening:

Each atom has $\Delta f \cong 4$ THz; a single frequency can drain G; e.g. EDFA's, most

solid-state and semiconductor lasers

innomogene broadening:

Inhomogeneous Each narrow-band atom shifted differently, e.g. HeNe

L19-7

 $\Delta \mathbf{f}$

LASER OSCILLATORS

Laser Oscillation:

Amplifier: Assume length L, perfect mirrors at both ends;

Closed lossless amplifier must oscillate and saturate Gain m⁻¹ must exceed loss (threshold condition)

Modes: Resonances when $\{m\lambda_m/2 = L\}$ (mirrors approx. short circuits)

 $\Rightarrow \lambda_m = 2L/m$, $f_m = cm/2LN$ (N = index of refraction)

 $f_{i+1} - f_i = c/2LN \cong 10^8 Hz;$

 \cong 50 GHz for 0.5 mm semiconductor diodes

If linewidth Δf > line spacing, dominant line wins if saturation If linewidth Δf < line spacing, must tune cavity length to f_{\circ}

Source: Assume one mirror has power transmission coefficient T > 0

Gain \cong Loss: $P_{+}(1-T)e^{2(g-\alpha)L} \ge P_{+}$

 \Rightarrow two-pass gain $e^{2(g-\alpha)L} \cong 1/(1-T)$

Output Limit: Usually $T \cong losses = 1 - e^{-2(\alpha - g)L}$,

and I ≅ I_{sat}

EXAMPLES OF LASERS

Astrophysical Masers:

Stellar pumped: Water vapor, OH, CO, etc.

Interstellar collisions: OH, etc.

Gas Lasers:

Ammonia (23 GHz): "Pumped" by diverting molecules in ground state

CO₂, HeNe: Pumped by electrical discharges that form energetic plasmas

Chemical: Chemical combustion yields upper-state excess

Externally Pumped Solid-State Lasers

Ruby: Pumped by flash lamps, etc. EDFA: Pumped by semiconductor lasers

L19-9

EXAMPLES OF LASERS (2)

Electronically Pumped Solid-State Lasers:

Forward biased GaAs p-n junction injects carriers into conduction band Compact (grain of sand), ~50 percent efficiency, >100 W/cm² for arrays, 1 mW/micron² for diodes (1-1000 mW typical)

L19-10