# MICRO-ELECTROMECHANICAL SYSTEMS (MEMS)

#### Micro-, Meso-, and Mega-Electromechanical Systems:

Micro: Micro-fabrication in IC fabs; micro-molds possible (<1 micron)

Possible integration with circuits on same chip

Mass production and low cost even for complex options

Meso: Meso-molds, laser cutting, meso-machine fabrication, miniature parts

# **Examples of MEMS:**



Microphones

Accelerometers

Video projectors

Microfluidics

Motors (electrostatic)

Chemical, thermal, pressure sensors

Mechanical "computers" (hot environments)

Mechanical memories (hot environments; static)



Rotary electrostatic motor

L20-1

### LORENTZ FORCES

#### Lorentz Force Law:



 $\underline{\mathbf{q}}$  = electric charge (Coulombs)

 $\overline{v}$  = velocity vector (m s<sup>-1</sup>)

# Example: electric forces on an electron beam:

Longitudinal forces:



$$\bar{f}=m\bar{a}$$
 ,  $\bar{v}=\bar{a}t$  ,  $z=vt=at^2/2$ 

Kinetic energy =  $mv^2/2$  = eV Joules

So an electron moving through 1 volt gains 1 electron volt

= "e" = 
$$1.6 \times 10^{-19}$$
 Joules Anode, phosphors

Lateral forces:

Same results as longitudinal forces, but laterally; e.g. cathode ray tubes



### **ELECTRIC FORCES ON CAPACITOR PLATES**

Electric forces calculated from Lorentz equation:

Capacitor equations: Q = CV

 $C = \varepsilon A/d$  $E = V/d [V m^{-1}]$ 

 $W_e = CV^2/2 [J]^2$ 

Forces attraction capacitor plates: Average |E| acting on q is E/2

 $E = \sigma_s I \epsilon_0 = Q I A \epsilon_0$ 



+Q

 $f = QE/2 = QV/2d = CV^2/2d = \varepsilon A(V/d)^2/2 = f = A\varepsilon E^2/2$  Newtons

Force density =  $\epsilon E^2/2$  [N m<sup>-2</sup>][J] Maximize by maximizing E, limited by breakdown For d  $\cong$  atomic mean-free-path between collisions < ~1 micron; V/d  $\rightarrow$ E<sub>max</sub>  $\cong$  10<sup>9</sup> Maximum MEMS electric force density [N m<sup>-2</sup>]  $\cong$   $\epsilon_o$ E<sub>max</sub><sup>2</sup>/2  $\cong$  4.4  $\times$  10<sup>6</sup> [J m<sup>-3</sup>]

Alternatively,  $f = QE/2 = Q^2/2A\epsilon_0$  Newtons  $\Rightarrow$  Force density  $= Q^2/2\epsilon_0A^2$  [N m<sup>2</sup>] Repulsive forces between parallel metal plates:  $f = Q^2/2\epsilon_0 = \epsilon_0E^2/2$  [J]

 $\overline{E}$  inside = 0

Forces arise from charges at infinity



120-3

#### COMPUTING FORCES FROM ENERGY DERIVATIVES

Force, work, and energy:

Work is: f dz Box increases in kinetic energy

Force on box [Newtons]  $\times$  Distance [m] = Increase in box energy dw [J]

 $dw = f_{on box}dz$  (dw is negative if the velocity and force are opposite)

Therefore:  $f_{on box} = dw/dz$ 

# Work required to separate charged capacitor plates:

Example: Two plates with ±Q, open-circuit. Therefore

 $W_o = CV^2/2 = Q^2/2C [J]$ 

(We want expresssion in terms of Q, which is contant)

 $C = \epsilon_s A/d$ , so

 $w_e = Q^2 d/2\epsilon_0 A \quad (\rightarrow \infty \text{ as } d \rightarrow \infty), \text{ therefore}$ 

 $f = \partial w_e / \partial z = Q^2 / 2\epsilon_0 A$  [Newtons]

(same answer as on L20-3; z = d here)

Note that the operand  $[Q^2d/2\epsilon_0A]$  for  $\partial/\partial z$  has not elements (like V,E) that vary with d. If we connect C to a circuit, we must compute  $\partial/\partial z$  for the total system energy, not just for C.

L204

## **ELECTROSTATIC ENERGY GENERATORS**

#### Mechanical work separating charged plates increases electric energy:

Reversibility: Mechanical energy Electrical energy

## **Battery charger:**



Since Q = CV =  $\varepsilon$ AV/d,

Separating plates (increasing d) reduces Q on plates and puts i into battery

Generated energy stored in rechargeable battery =

$$V \Delta Q_{into battery} = \varepsilon AV^2 (d_1^{-1} - d_2^{-1})$$

Mechanical work on capacitor plates using battery =

 $V \Delta Q_{\text{from battery}} = \varepsilon A V^2 (d_1^{-1} - d_2^{-1})$ 

#### Lateral mechanical forces:

Electrical energy:  $W_a = Q^2d/2\varepsilon_0A = Q^2d/2\varepsilon_0WL$  [J]

Lateral force:  $f = \partial w_a/\partial z = (-\partial/\partial L)(Q^2/2\epsilon_aWL)$  [Newtons]

(on plate) =  $Q^2/2\epsilon_0WL^2$  ( $\rightarrow \infty$  as L  $\rightarrow 0$ )

(We assumed Q = constant; d << W,L)

LATERAL FORCES—CONSTANT VOLTAGE

#### Parallel plates plus battery: V volts\_\(\subseteq \overline{\pmathbb{T}}\)



 $f = -\partial w_p / \partial L = -\epsilon_0 WV^2 / 2d + V \partial Q / \partial L$  where

Q = CV =  $\varepsilon_0$ WLV/d, so  $\partial$ Q/ $\partial$ L =  $\varepsilon_0$ WV/d, therefore f =  $-\varepsilon_0$ WV<sup>2</sup>/2d +  $\varepsilon_0$ WV<sup>2</sup>/d =  $\varepsilon_0$ WV<sup>2</sup>/2d [Newtons]

 $\varepsilon_0$ vvv-/2d +  $\varepsilon_0$ vvv-/d =  $\varepsilon_0$ vvv-/2d [Newtons] (Note: f is independent of L, as is  $\partial w_a/\partial L$ ) f is force exerted on plates by environment

## Example:

Let: W = 10 cm, d = 10  $\mu$ m, V = 10 volts (10 kV/cm)

Then:  $f = \epsilon_0 WV^2/2d = 8.854 \times 10^{-12} \times 0.1 \times 10^2/2 \times 10^{-5} =$ 

4.4×10-6 Newtons (~1μpound)

Try:  $d = 1\mu m$ ,  $V = 100 \text{ volts } (1\text{MV/cm}) \Rightarrow 4.4 \times 10^{-3} \text{ Newtons } (\sim 1 \text{ millipound})$ 

# Multi-segment actuator:

N teeth in length L:



Force is proportional to W, so N edges boost force  $\times$  N (N is limited by d << L/N)

L20-6

## **ELECTROSTATIC ROTARY MOTOR**

#### Example, ideal 4-segment motor:

Radius R, plate separation d,  $\varepsilon_0$ ,  $E_{max} = 10^{10}$  [V m<sup>-1</sup>] Plate overlap = A = R $\theta$  [m<sup>2</sup>]

∆stored electrical energy (from L20-6)

 $dw_e = dCV^2/2 - VdQ [J] = dA \epsilon_o V^2/2d - V^2dC$  $= 2Rd\theta \epsilon_o V^2/2d - V^22Rd\theta \epsilon_o/d = -Rd\theta \epsilon_o V^2/d [J]$ 

# Lateral torque T [Newton meters] on rotor:

 $T = -dw_e/d\theta = R \epsilon_o V^2/d [N m]$  Cadillac Engine ~vear 2040

300 hp  $\times$  746W/160W = 1400 motors  $\Rightarrow$  ~0.22 cm<sup>3</sup>! P = VI, I = 746A. Heat

roto

#### Motor power P [Watts] at $\omega$ radians/sec: $P = T\omega$ [W]

#### Example for R = 1 mm, d = 1 micron, V = 300 volts, $v_{max} = -200 \text{ ms}^{-1}$ :

 $\infty$ = v/R = 200/10<sup>-6</sup> = 2 × 10<sup>8</sup> radians/sec (~530,000 rpm)

 $P = \omega T = \omega R \, \epsilon_n V^2 / 2 \cong 2 \times 10^8 \times 10^{-6} \times 8.854 \times 10^{-12} \times 10^5 / 10^{-6} \cong 160 \; Watts!$ 

(could lift 70-kg person [f = ma =  $70 \times 9.8 = 686$  N] at ~23 cm/sec [P = Fv])

Back-off mode: 10 volts ⇒ 180 mW. At 4 mm<sup>2</sup>, 10-micron thick ⇒ 6250 motors/cm<sup>3</sup>

L20-7

 $dV \ \ \ _\tau \cong RC$ 

## MEMS SENSORS

#### Measuring displacement:

Microphone, accelerometer, to sensor barometer, strain gauge, etc.

Cantilevered capacitor C, stressed at V volts

# Circuit response to displacement $\delta$ :

Assume  $R_s >> R$ ; impulse increase in separation d is  $\delta << d$  Mechanical energy  $f\delta$  first increases  $w_a$  in C as  $V \rightarrow V + dV$ 

Then voltage relaxes back to  $V = R/(R + R_s)$  as current flows mostly through R releasing dw[J]

Recall C = sA/d

 $\begin{array}{l} \text{dw}\cong (C-C')V^2/2 = V^2\epsilon_0A(d^{-1}-[d+\delta]^{-1})/2 = (V^2\epsilon_0A/2d)(1-[1+\delta/d]^{-1})\cong \\ V^2\epsilon_0A\delta/2d^2\left[J\right] \end{array}$ 

#### Example:

Let:  $dw = 4 \times 10^{-20}$  Joules (~energy needed to convey one bit of information to sensor)

Plate separation d = 1 micron, A = 1-mm square (10-6), V = 300; solve for minimum  $\delta$ 

Then:  $\delta = dw \ 2d^2/V^2 \epsilon_o A = 4 \cdot 10^{-20} \times 2 \times 10^{-12} / (300^2 \times 8.8 \cdot 10^{-12} \times 10^{-6} = 10^{-19} \text{ meters} = 10^{-9} \text{ Å}$ 

 $d = 4 \cdot 10^{-16} \times 2 \times 10^{-12} / (10^2 \times 8.8 \cdot 10^{-12} \times 10^{-8}) \cong 10^{-10} \text{ meters} = 1 \text{ Å}$ 

L20-8