MAGNETIC FORCES ON CHARGES

Lorentz Force Law:

$$\overline{f} = q \Big(\overline{E} + \overline{v} \times \mu_{\boldsymbol{o}} \overline{H} \Big) \quad \text{Newtons}$$

q = electric charge (Coulombs) v = velocity vector (m s⁻¹)

Example: magnetic forces on an electron beam:

 $\mbox{Lateral forces:} \quad \overline{f} = q \overline{v} \times \mu_{\mbox{\scriptsize 0}} \, \overline{H}$

Electrostatic deflection best for small V, magnetic deflection best for large V,v.

Anode, phosphors -V Cathode ray tube (CRT)

Cyclotron motion:

$$\begin{split} |f| &= ev\mu_0 H = ma = m_e \, \omega_e^{\,2} R = m_e v \omega_e, \text{ where } v = \omega_e R \\ \omega_e &= e\mu_0 H/m_e \quad \text{"Electron cyclotron frequency" } \left[rs^{-1} \right] \\ e.g. \; \omega = 1.6 \bullet 10^{-19} \times 0.1/9.1 \times 10^{-31} \Rightarrow 2.8 \; \text{GHz} \; \; (\sim\!MRI) \end{split}$$

L21-1

MAGNETIC FORCES ON CURRENTS IN WIRES

Force equation:

$$\bar{f} = q(\bar{E} + \bar{v} \times \mu_0 \bar{H})$$
 Newtons

Force on wire [Nm-1]:

$$\begin{split} \overline{f} &= nq\overline{v} \times \mu_0 \overline{H} = I \times \mu_0 \overline{H}, \text{ where} \\ & n \text{ is the number of conduction electrons m}^{-1} \\ & at \ \overline{v} \text{ and } I \text{ is the current vector} = nq\overline{v} \end{split}$$

Force attracting parallel wires:

$$\begin{array}{l} |f| = I \mu_{\boldsymbol{o}} H = \mu_{\boldsymbol{o}} I^2 / 2 \pi r = 2 I^2 \times 10^{-7} / r ~ \left[Nm^{-1} \right] ~ \left(\mu_{\boldsymbol{o}} = 4 \pi 10^{-7} \right) \\ \int_{\boldsymbol{C}} \overline{H} \bullet d \overline{s} = I = 2 \pi r H \Rightarrow H = 1 / 2 \pi r \end{array}$$

Example:
$$|f| = 2 \times 100^2 \times 10^{-7} / 10^{-2} = 0.2[N]$$
, attract or repulse

Pinch effect:

This experiment defines μ_o and predicts "pinch effect" The four quadrants of a wire squeeze together ∞ l²/r and can crush wire, limiting the maximum achievable current density

L21-2

VOLTAGES PRODUCED BY MOTION ACROSS FI

Consider electron inside moving wire:

Force on that electron: $\bar{f}_e = -e(\bar{E}_e + \bar{v} \times \mu_o \bar{H})$

across wire:

Electric fields inside conductors:

Total force on free conduction electrons is produced by $\bar{v}\times\bar{H}$ plus an opposing $\bar{E}_{\rm e}$

 \overline{E}_{e} is produced by charge distributions that build inside wire until all electrons see $\overline{f} = 0$

L21-3

MAGNETIC MOTORS ARE ALSO GENERATORS

Current I, force f, and power P produced:

$$\begin{split} I &= (V - \Phi) / \! R \\ \bar{f} &= \bar{I} \times \mu_{\text{o}} \bar{H} W = \hat{x} \mu_{\text{o}} H W (V - \Phi) / \! R \end{split}$$

Mechanical power delivered by wire from V:

$$P_{m} = \bar{f} \bullet \bar{v} = v\mu_{0}HW(V - \Phi)/R = \Phi(V - \Phi)/R[W]$$

Electrical power delivered to wire by V,R:

$$\begin{split} P_{e} &= VI - I^{2}R = V(V - \Phi)/R - (V - \Phi)^{2}/R \\ &= \left[(V - \Phi)/R \right] \left[V - (V - \Phi) \right] = \frac{\Phi(V - \Phi)/R[W]}{\Phi(V - \Phi)/R[W]} \end{split}$$

Therefore: Electrical power \Leftrightarrow Mechanical power

It is motor if mechanical power out > 0: i.e. if $V > \Phi = v\mu_nHW$

It is generator if electrical power out > 0: i.e. if $V < \Phi$, or $v > V/\mu_0HW$

i.e. when the motor "back voltage" Φ > V. In unloaded motors V = Φ and I = 0.

L214

ROTARY WIRE MOTOR

Single wire loop spinning in uniform H:

Total force (torque) is sum of forces on wire segments

Axial forces from wires at ends cancel

Tangential forces add ⇒ torque = 2ffm⁻¹]Wr

 $f = I\mu_0H$ (= $NI\mu_0H$ for N-turn coil)

 $T = 2I\mu_nHWr = I\mu_nHA$ [Nm], A is loop area

Torque is a vector $\overline{T} = r \times \overline{f}$

Torque varies with θ : T[Nm]

Commutators:

Switch currents to maximize torque Can have N coils, 2N commutator segments carbon brushes

spring-loaded

TWO-POLE (N-S) COMMUTATED MOTOR

Design assumptions:

 $\mu_n H \cong constant = 1 Tesla (10⁴ gauss)$ One 100-turn loop (N = 100) of area A = 10^{-3} [m²] V = 24 volts, perfectly commutated

ω is angular frequency Back-voltage $\Phi = V = 24 [V]$ in equilibrium Φ = 2NE_oW = 2Nv μ _oHW = NA μ _oH ω = 24 ω = 24/NA μ_0 H = 24/(100 × 10⁻³) = 240 \Rightarrow 2292 rpm (More typical values for \overline{B} are $0.5 \Rightarrow \sim 4,600 \text{ rpm max}$)

Assume power supply is limited to I = 10 [A]T = NI μ_0 HA = 100 × 10 × 1 × 10⁻³ = 1 [Nm] (\rightarrow 100N at r = 1 cm)

MOTOR TORQUE/POWER/SPEED RELATIONS

Mechanical power output = $\omega T[Nms^{-1} = W] = f(\omega)$:

P = ωT = ωNI
$$\mu_0$$
HA
I = (V - Φ)/R

$$\Phi = NA\mu_0H\omega$$

$$P = \omega T = \omega N(V - NA\mu_0H\omega)\mu_0HA/R$$

Maximum mechanical power out P_n:

$$\partial P/\partial \omega = 0 \implies V = 2\omega_{_{D}}NA\mu_{_{O}}H$$
 [so at $\omega_{_{D}}$ we have $\Phi = V/2$] \Rightarrow

$$\omega_p = V/2NA\mu_oH = \omega_{max}/2$$
 [V = $NA\mu_oH\omega_{max}$]

$$P_n = \omega_n T = (V/2NA\mu_n H)N(V - [NA\mu_n H V/2NA\mu_n H])\mu_n HA /R = V^2/4R$$

At maximum power, motor is matched load of impedance R!

 $(\Phi = V/2 \text{ is across motor}, V/2 \text{ is across R})$

Assume I_{max} = V/R = 192A and V = 24 volts. Then R = 0.125 ohms, and P_n = 24²/4×0.125 = 1.152 Kw

Motor design strategy:

To minimize motor weight (cost), boost ωNIH

L21-7

GENERATOR POWER/FREQUENCY RELATIONS

Electrical power out $P = \omega T = \Phi I$:

$$Φ$$
= NA $μ$ ₀H $ω$

$$P = \Phi I = \Phi^2/R = \omega^2(NA\mu_0H)^2/R$$

To maximize power out $\Rightarrow P_p$:

 ω is limited by vibration, lubricant, rotor fragmentation, and air viscosity (drag); smooth balanced rotors with $\omega r < c_s$ (~300 ms⁻¹) are best. Φ < breakdown voltage. I limited by magnet survival (~200 C), insulation melting, and cooling; heat capacity allows transient peaks.

Hall effect sensors:

$$\overline{E}_{\boldsymbol{e}} = -\overline{v} \times \mu_{\boldsymbol{o}} \overline{H} \Rightarrow V_{\boldsymbol{Hall}} = v \mu_{\boldsymbol{o}} H W$$

 $V_{Hall} \Rightarrow H$ if v is known, $\Rightarrow v = I/nq$ if H is known (study carriers)

L21-8