# POWER TRANSMISSION, SWITCHING

#### How Much Power Do We Need?

Homes: ~108 in USA using ~ 1kw⇒100 GW average (Power plants are ~ 1GW)

Rest: Comparable; U.S. generating capacity ≈ 250 GW

Total: Daily and annual peaks (e.g. air conditioning) can triple requirements

#### What Limits Maximum Power Transmission?

Voltage: Corona, arcing,  $E_{max}$  is weather dependent,  $< \sim 3 \times 10^6 \text{ vm}^{-1}$ Current: Power loss ∞ I<sup>2</sup>R, heating, magnetic field forces, cost

## What are the Major Concerns When Switching?

Voltage: Transients on TEM lines can nearly double normal voltage

Transient V's when L's are open-circuited can  $\rightarrow \infty$ 

Transients on TEM lines can nearly double normal currents

Transient I's when C's are short-circuited can  $\rightarrow \infty$ 

#### What Lines Deliver the Most Short-Circuited Current?

Instantly: For fixed TEM Z<sub>o</sub>, the highest voltages (Thevenin)

~600V is worst; it overcomes arc and has  $Z_{\text{source}} \cong Z_{\text{Th}}N^2$  (N << 1)

\*Accidents worst @ ~600V because arc impedance overcome +  $N^2 \Rightarrow low Z_o$ , ~10<sup>5</sup> A!

## LIMITS TO TRANSMISSION VOLTAGES

#### Field Breakdown:

~mean free path

Breakdown voltage: ~4kV - 40kV/mm for ceramics

⇒ ~5 volt/200Å ⇒ ~1 volt/100Å

~10kV - 130kV/mm for plastics  $\sim$ 3kV/mm for air =  $E_{max}$ 

⇒ ~0.2 volt/700Å

#### Maximum E Field Around Wire:



 $V = \int_a^b \overline{E} \bullet \hat{r} dr$ Cable voltage:

 $=\int_a^b (\hat{r} E_o/r) \cdot \hat{r} dr = E_o \ln(b/a)$ 

Maximum field at r = a:  $E_{\text{max}} = E_0/a \Rightarrow E_0 = aE_{\text{max}}$ 

Maximum voltage V<sub>max</sub>:

 $\begin{array}{l} V_{\text{max}} \cong a E_{\text{max}} \text{ln(b/a)} \\ \cong 10^{\text{-}2} \ 3 \times 10^{\text{6}} \ \text{ln(10/10^{\text{-}2})} \end{array}$ 

≅ 210 kV in air

Bare 2-cm wires produce corona at 750 kv, and are noisy in rain Corona

(glow discharge): Corona radius has  $|\overline{E}| \cong E_{max}$ , varies with humidity

No, it eventually breaks down, concentrating fields and leakage Use insulation?



## LIMITS TO TRANSMISSION CURRENTS

# Maximum Current (DC case):

Thermal limit:  $F[W/m^2] = I^2R/2\pi a (R[ohms/m] = 1/\sigma\pi a^2)$ 

Let  $F_{max} = 10^4 \text{ W/m}^2 \text{ heat flux, a} = 1 \text{ cm}$ 

(wire sag)  $\Rightarrow I_{max} = (2\sigma\pi^2 a^3 F)^{0.5} \cong (2 \times 5 \cdot 10^7 \pi^2 10^{-6} \times 10^4)^{0.5}$ 

=  $1000\pi$  amperes

Voltage drop:  $\Delta V[Vm^{-1}] = IR = (1000\pi)(1/5 \cdot 10^7 \pi^2 10^{-2})$ 

=  $2 \times 10^{-3} \Rightarrow \sim 10,000$  km @ 10%drop

Force limit: Force  $f = \sum_{i} q_{i} (\overline{E} + \overline{v} \times \mu_{o} \overline{H}) = I \times \mu_{o} \overline{H} = \mu_{o} I^{2} / 2\pi r$ 

 $= 1.26 \cdot 10^{-6} (1000\pi)^2 / 2\pi \cdot 1$ 

≅ 2 Newtons/m at 1 meter

Attractive force for parallel currents Mandates spacers on long runs (unstable)



# **SKIN DEPTH**

## Maximum Current (AC case) is Skin Depth Limited:

Skin depth  $\delta$ : Waves in conductors decay

exponentially with depth, e<sup>-z/δ</sup>

Assuming uniform current flowing

in  $\delta$  yields correct power dissipation  $\text{P}_{\text{d}} \text{ Wm}^{\text{-}2}$ 

$$P_d [Wm^{-2}] = J_s^2 R = H_0^2 / \sigma \delta$$

$$J_{s}$$
 [Am-1], R[ $\Omega$ m-1], H $_{/\!/}$  [Am-1],  $\sigma$ [Sm-1],  $\delta$ [m]

DC limit: DC axial H can coexist throughout conducting wire with

 $\sigma \rightarrow \infty, \neq \infty (\delta \rightarrow \infty)$ 

AC limit: Perfectly conducting wire has longitudinal surface currents J<sub>s</sub>

= H<sub>II</sub> [Am-1] that match boundary conditions H inside

= 0 ( $\delta$  = 0); finite  $\sigma$ , f  $\Rightarrow$  finite  $\delta$ 

L234

# SKIN DEPTH (2)

## Waves in Conducting Media:

 $\nabla \times \vec{\mathbf{H}} = \vec{\mathbf{J}} + j\omega s \vec{\mathbf{E}} = (\sigma + j\omega s)\vec{\mathbf{E}} = j\omega s_{eff}\vec{\mathbf{E}}$  where  $s_{eff} = s(1 - j\sigma/\omega s)$ 

 $\overline{E} = \overline{E}_0 e^{-jkZ} \text{ where } k = \omega \left(\mu \epsilon_{eff}\right)^{0.5} = \omega \left(\mu \epsilon\right)^{0.5} \left(1 - j\sigma/\omega\epsilon\right)^{0.5} \quad \text{If } \sigma >> \omega\epsilon, \text{ then}$ 

 $\mathbf{k}\cong\omega\big(\mu\mathbf{s}\big)^{0.5}\big(-j\sigma/\omega\mathbf{s}\big)^{0.5}=\big(\omega\mu\sigma\big)^{0.5}(-j)^{0.5}=\big(\omega\mu\sigma/2\big)^{0.5}\big(1-j\big)=\mathbf{k'}-j\mathbf{k''}$ 

 $e^{-jkZ} = e^{-jk'Z}e^{-k''Z}$  where  $e^{-k''Z} = e^{-Z/\delta}$  and:

# Skin depth $\delta = (2/\omega\mu\sigma)^{0.5}$ meters for $\sigma >> \omega\epsilon$

At 60 Hz: Copper  $\sigma \cong 5.80 \times 10^7 \text{ Sm}^{-1}$  $\Rightarrow \delta = 9 \text{ mm}$ Aluminum  $\sigma \cong 3.54 \times 10^7 \text{ Sm}^{-1} \implies \delta = 11 \text{ mm}$ Iron  $\sigma \cong 1 \times 10^7 \text{ Sm}^{-1}$  $\Rightarrow \delta = 21 \text{ mm}$ Sea water  $\sigma \cong 3-5 \text{ Sm}^{-1}$  $\Rightarrow$   $\delta$  = 37-29 m



## Screening Reduced by Multiple Conductors:

Must allow field penetration -Generally use braided cable with strand diameter d << 5-



L23-5

## LIMITS TO POWER TRANSMISSION

# Limits Posed by V<sub>max</sub> and I<sub>max</sub>:

Power: P = VI <  $\sim$ V<sub>max</sub>I<sub>max</sub> =  $\sim$ 300kV  $\times$  1000 $\pi$   $\cong$  1 GW per line pair

Assuming two 2-cm diameter braided copper wires, thermal limit

Least cost: "Dollars per pound" ⇒ minimize mass, weight (e.g. Al widely used

Maintainability, redundancy

#### Where Does Power Flow—Inside or Outside Wires?

Outside:  $\overline{E} \times \overline{H} \neq 0$  only outside; inside  $\sigma = \infty$  and  $\overline{E} = 0$ , therefore  $\overline{S}$  (power) = 0

Inside: Cut the wires and power stops; no electrons, etc. outside (only fields)

Debates: Edison Co. vs. academic; interstate commerce case at transformer

# Limits Posed by Switching:

Transients: Can stress specifications—overvoltage, overcurrent, model lines as TEM

Arcing: Arcs are sometimes unavoidable circuit elements

> When two capacitors at different voltages are connected When two inductors with different currents are connected

When currents are interrupted

1236

## TRANSIENTS ON POWER LINES

#### **TEM Model for Power Lines:**

Can have one or more wires over ground plane

TEM geometry results—uniform cross-section along z axis \_\_\_\_\_ 2a ~ 2 cm

## Characteristic Impedance Z<sub>o</sub> of Nominal Power Line:

Impedance:  $Z_0 = (L/C)^{0.5} = 1/cC$  where  $c = (LC)^{-0.5}$ 

Capacitance: Say TEM line is 2-cm cylinder above plane b = 20 m away ( $\sigma = \infty$ )

 $C[Fm^{-1}] = Q[Cm^{-1}]/V = 2\pi a \rho_s N; \rho_s = \epsilon_0 E_{max} [Cm^{-2}]$ 

Recall:  $V = \int_a^b \overline{E} \cdot \hat{r} dr \cong aE_{max} \ln(b/a)$  [see L23-2]

Therefore:  $C \cong 2\pi \epsilon_0 E_{max}/a E_{max} ln(b/a) = 2\pi \epsilon_0 / ln(b/a)$ 

 $\approx 2\pi \ 8.85 \cdot 10^{-12}/\text{ln}(20/0.01) = 7.3 \cdot 10^{-12} \text{ [Fm}^{-1]}$ 

Therefore:  $Z_0 = 1/(3 \cdot 10^8 \times 7.3 \cdot 10^{-12}) \cong 457 \text{ ohms}$ 

## Relation Between Z<sub>o</sub> and Maximum Power Possible:

Note:  $V_{max}/I_{max} \cong 750 kv/1000\pi \cong 320$  ohms, so matching is feasible (useful)

Wavelength:  $\lambda$  = c/f = 3·108/60 = 5000 km  $\Rightarrow$  ~DC behavior for lines < ~500 km

Lines > ~500 km often use DC, not 3 phases

L23-7

# SWITCHING TRANSIENTS ON POWER LINES

## Making contact to dead load:



Initial Conditions: I = 0,  $V = V_{max}$ , assume  $Z_{\perp} = Z_{0}$ 

Initial V<sub>+</sub> and V<sub>-</sub>:  $V_{+}(t-z/c) + V_{-}(t+z/c) = V_{Th}$  at t = 0;  $I \propto [V_{+}(t-z/c) - V_{-}(t+z/c)] = 0$ 

Therefore:  $V_{+}(t-z/c) = V_{-}(t+z/c) = V_{-}/2$  at t = 0 for all z

For  $t \ge 0$ :  $V_{+}(t-z/c)$  unchanged,  $V_{-}(t+z/c) = 0$  for z > -ct when B is closed

Problem (unreal): Line voltage too high at rest Solution: Use switch A instead of B V<sub>Th</sub>  $V = V_{Th}$   $V = V_{Th}$ 

#### Breaking contact with load:

Initial Conditions: Assume  $V/I = Z_0$ , so  $V_1 = 0$ 

When B opens:  $\Gamma \rightarrow +1$ ,  $V_1 = V_+$ 

Total voltage:  $V_{+} + V_{+} = V_{Th}$ , line voltage doubles

When A opens:  $V_{+}$  slowly disappears,  $V \rightarrow 0$ 



## R<sub>source</sub> is mechanical, inside generator:

If load open circuits, generator steam is released up stack; generator spins unloaded

L23-8

#### LIGHTNING TRANSIENTS Initial Conditions: Assume mismatch: Customer draws 2000 A at 500 kv ( $Z_1 = 250\Omega$ ), but $Z_0 = 200\Omega$ $V_{+} + V_{-} = 500 \text{ kv}, I = 2000 = (V_{+} - V_{-})/200, \text{ therefore,}$ Initial V<sub>+</sub>: $V_{+} - V_{.} = 400 \text{ kv, and}$ $V_{+} = 900 \text{kv/2} = 450 \text{ kv}$ $V_1 = V - V_2 = 500 \text{ kv} - 450 \text{ kv} = 50 \text{ kv}$ V =1500kv V\_=450kv **Lightning Strikes, Short-Circuiting Line:** New $V_{.} = -V_{+}$ so total V = 0 near the short To left of short: To right of short: New $V_{+} = 0$ , $V_{-}$ is unchanged V = 0 within ct of short, until it ceases Result: Currents: $I = (V_{+} - V_{-})/200$ amperes = $I_{+} + I_{-}$ Peak Current: Can exceed rating . V<sub>+</sub>=450kv (Equipment problem) I,=450kv I = 2000 A L23-9

## ARCS IN SWITCHES

### Connecting Two Capacitors at Different Voltages:

Initial conditions: C's at  $V_1$  and  $V_2$ ,  $V_1 \neq V_2$ , Close switch at t = 0

 $CV_1^2/2 + CV_2^2/2 = W_{eq}$ Initial energy: Initial charges:  $Q_1 = CV_1, Q_2 = CV_2$ 

Final charges:  $Q' = (Q_1 + Q_2)/2 = C(V_1 + V_2)/2 = CV'$  (on each C) Final energy:  $2CV^2/2 = (CV)^2/C = C(V_1 + V_2)^2/4 = W_{eq}/2 + CV_1V_2/2$ 

## Mystery of Vanishing Energy; e.g. let $V_2 = 0$ :

Initial energy:  $W_{en}$ 

Final energy:  $W_{eo}/2$  (Note: initial = final total energy if  $V_1 = V_2$ 

Unmodeled R: Arc forms and introduces R which dissipates energy in great spark

Unmodeled L: Currents  $\rightarrow \infty$  ideally,  $\Rightarrow$  huge currents,  $\overline{H}$  and  $w_m$  (L limits I)

#### Disconnecting an Inductor:

 $w_{mo} = LI^2/2$ Initial energy:

Final energy:  $W_{mfinal} = 0$ 

Beware switching inductance or capacitance without storage (L or C) or R for excess energy



L23-10