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6.014 Lecture 24: 
Acoustics (Review of 6.014 Wave Concepts) 

 
 

A. Overview 
 

 Many of the most interesting properties of electromagnetic waves arise purely 
from the wave character of electromagnetic waves and therefore are exhibited by other 
types of waves as well, such as acoustic waves.  Therefore acoustics provides a useful 
vehicle for reviewing many of these wave phenomena from a different perspective. 
 

Acoustics is also an important field in its own right, and impacts the design of 
microphones, loudspeakers, theaters, hearing aids, products that emit noise, offices and 
factories, and other products, and underlies natural phenomena such as speech production 
and hearing in humans and animals, sound propagation in the environment, certain 
materials failures (songs that shatter glass), atmospheric waves, and others. 

 
Here we begin with the basic equations of acoustics, which lead immediately to 

the wave equation, dispersion relation, acoustic Poynting theorem, and the velocity of 
sound cs.  Snell's law, evanescent waves, and the critical angle phenomenon follow.  
Acoustic antennas can focus energy using parabolic mirrors or arrays, and pipes can 
convey acoustic waves in multiple discrete modes with cutoff frequencies and waveguide 
wavelengths that depend on the mode quantum numbers and waveguide dimensions.  
Such guides can transform acoustic impedances along their lengths, and can be tuned to 
match various acoustic loads, just like electromagnetic TEM lines or waveguides.  
Similarly, resonators have discrete modes and resonant frequencies that depend on cavity 
dimensions and cs.   
 
 
 B. Basic Acoustic Variables and Equations 
 
 Acoustics is the science of compressive waves in solids, liquids, or gases, 
although usually the waves are propagating in air.  Shear waves are important primarily 
in solids and will not interest us here. 
 
 The choice of primary variables is somewhat arbitrary, as is the case for 
electromagnetics.  For example, we generally treatedE andH as the primary variables 
in Maxwell's equations, whileD andB were often considered secondary and were 
determined fromE andH using the constitutive relations.  Similarly in acoustics we 
shall somewhat arbitrarily treat velocity and pressure as primary, and density and 
temperature as secondary. 
 

Unlike electromagnetic variables that behave in an extremely linear way up to 
energy levels far beyond anything we encounter in daily life, acoustic waves behave non-
linearly at modest power levels and are therefore characterized most easily in terms of 
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perturbations in velocity and pressure.  That is, the total pressure P and average particle 
velocityU equal their mean values Po andUo plus acoustic perturbations p andu: 
 
      P = Po + p (1) 
 
   U =Uo + u (2) 
 
where we assumeUo = 0 (an important assumption that is not always true). 
 
 BothE andH are vectors orthogonal to the direction of wave propagation, whileu 
is generally a vector parallel to the direction of propagation and p is a scalar function of 
position.  The parallel between electromagnetics and acoustics is most evident if we 
ignore the electromagnetic source termsJ and ρ: 
 
   ∇ ×E = -jωµoH                   ∇ ×H = jωεoE (3)  
 
The corresponding acoustic differential equations follow from Newton's law (f = ma) and 
the conservation of mass combined with the gas law: 
 
  ∇p = -jωρou                          (4) 
 
  ∇ •u = -jω(γPo)-1p (5) 
 
where γ is the adiabatic constant (a number approximating unity) for the gas in question.  
Equation (4) simply states that the (negative) spatial gradient in pressure, which is a force 
density [Nm-2], equals the mass density ρo [kg m-3] times the acceleration jωu.  Equation 
(5) simply states that diverging mass (∇ •u) is proportional to the rate at which pressure 
p drops (-jωp).  Both pairs of equations lead directly to wave equations; (3) leads to (16), 
and (4-5) lead to (7).  These in turn yield the velocity of light c = (µoεo)-0.5, which 
corresponds to the velocity of sound cs = (γPo/ρo)0.5: 
 
  (∇2 + ω2µοεο)Ε = 0 (6) 
  (∇2 + ω2(ρo/γPo))p = 0 (7) 
 
 The solution to the wave equation (7) is, naturally enough, a wave: 
 

  p(r ) = po
rkje •−    (8) 

 
  k = 2π/λ = ω(ρo/γPo)0.5 = ω/cs. (9) 
 
The phase velocity for an acoustic wave is: 
 
  vp = ω/k = (γPo/ρo)0.5 = cs (10) 
 
and the group velocity is: 
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  vg = (dk/dω)-1 = (γPo/ρo)0.5 = cs (11) 
  
which is the same.  For example air at standard surface pressure and 0oC has γ = 1.4, ρo = 
1.29 kg m-3, and cs = 330 ms-1.  Equation (11) is modified slightly in solids and liquids, 
for which the "springiness" of air (γPo) is replaced by the bulk modulus K, so that in 
solids and liquids the velocity of sound is: 
 
  cs = (K/ρo)0.5  (12) 
 
The velocity of sound is approximately 1500 ms-1 in water and ~1500 – 13,000 ms-1 in 
solids.  The velocities are greater in the harder materials such as metals and ceramics. 
 
 The general solution (8) to the acoustic wave equation (7) reduces to (13) for 
monochromatic uniform plane waves confined to z-axis propagation: 
 
     p(z) = P+ e-jkz + P- e+jkz    [Nm-2] (13) 
 
  uz(z) = ηs

-1(P+ e-jkz – P- e+jkz)   [ms-1] (14) 
 
The similarity to electromagnetic plane waves is obvious—P± has replaced V±, and the 
variables V(z) and I(z) have been replaced by their counterparts p(z) andu(z).  The 
characteristic acoustic impedance of the medium can be found by substituting (13) into 
(4) for the positive wave: 
 
  dp+(z)/dz = -jωρou+ = -jkzp+  (15) 
 
  ηs = p+(z)/u+(z) = ωρo/k = ρocs = (ρογPo)0.5    [Nsm-3] (16) 
 
which is analogous to the definition of the characteristic electromagnetic impedance of 
free space: 
 
  ηo = E+/H+ = ωµo/k = µoc = (µo/εo)0.5 [ohms] (17) 
 
The characteristic electromagnetic impedance ηo for air is ~377 ohms, while the acoustic 
impedance for air at 20oC is ~425 [Nsm-3], so the dimensions of acoustic impedance are 
different. 
 
 Acoustic power and energy also have analogs to electromagnetics.  For a uniform 
plane wave in the time domain, acoustic power density, or intensity, is: 
 
  Is(t) =  pu = p2/ηs = ηsu2 [Wm-2] = [Nm-2][ms-1] = [Nms-1•m-2] (18) 
 
For a uniform electromagnetic plane wave in the time domain, 
 
  I(t) = E(t)H(t) = E2/ηo = ηoH2 [Wm-2] = [Vm-1][Am-1] (19) 
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In terms of sinusoidal steady state variables the time average acoustic intensity of a z-
directed uniform plane wave is: 
 
   <Is(t)> = Re{pu*}= ẑ |p|2/2ηs = ηs|u|2/2   [Wm-2] (20) 
 
For example, using (20) we can easily see that a one-watt per square meter acoustic 
signal at sea level corresponds to a peak pressure  |p| = (1•2ηs)0.5 ≅ (850)0.5 ≅ 30 Nm-2, 
and a peak velocity |u| = |p|/ηs ≅ 0.07 ms-1.  The distance δz the air molecules move 
during one cycle is ~u/ω ≅ 1 micron at 10 kHz.  This is loud compared to the threshold of 
human hearing, which corresponds to molecular movement of ~1 nm, or a few atomic 
diameters.  The ear achieves this sensitivity by clever impedance transformations that 
maximize δz, and by averaging the movements of an enormous number of molecules. 
 
 An acoustic Poynting Theorem can be derived from the acoustic differential 
equations (4-5) in much the same way the electromagnetic theorem was derived from the 
corresponding electromagnetic differential equations, yielding: 
 
   ∇ • (pu*)/2 = -2jω(ρo|u|2/4 - |p|2/4γPo)   [Wm-3] (21) 
 
where the left-hand side of (21) is the divergence of acoustic radiated power, and the 
right-hand side corresponds to (-2jω) times the difference between kinetic energy density 
Wk [Jm-3], which is proportional to u2, and potential energy density Wp, which is 
proportional to p2.  In (21) the dissipative term on the right-hand side has been omitted 
for simplicity. 
 
 
C. Acoustic Waves at Planar Boundaries 
 
 The acoustic boundary conditions are simple and obvious.  The perpendicular 
velocity must be continuous across the boundary, by mass conservation, and the pressure 
p inside and outside the wall surface must balance for that surface to remain stationary.  
Therefore at a rigid wall the acoustic pressure p and the parallel velocity u// can be 
anything, and the perpendicular acoustic velocity u⊥ must be zero, because the wall is 
motionless. 
 

 Consider a uniform plane wave, po
rkje ⋅−

, incident upon a planar surface at angle 
θi, as illustrated in Figure L24-5a.  In air we have impedance ηsi and wave number ki, and 
below the surface in the transmitting medium t we have ηst and kt.  As in the 
electromagnetic case, we assume there is a reflected wave and a transmitted wave in 
order to match all boundary conditions.  If we match phases at the boundary we see that 
all three waves must have the same value for kz, where kz = kjsinθj = (ω/csj)sinθj, so that 
θr = θi, and: 
 
   sinθi/sinθt = csi/cst (22) 
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which is Snell's law for acoustics. 
 
 As in the case of electromagnetic waves, if θi is greater than some critical angle θc, 
then no real value of θt can satisfy (22), and the transmitted wave is evanescent and 
conveys no time-average power away from the boundary.  The critical angle can be found 
from (22) for the case where sinθt = 1: 
 
   θc = sin-1(csi/cst) (23) 
 
 Such evanescent acoustic waves and perfect reflection commonly occur over lakes 
and ocean when cold water cools the lower air below the temperature of the upper air so 
that the velocity of sound increases with altitude (see Figure L24-5).  In this case acoustic 
signals emitted close to the horizon are incident upon this cold-warm boundary beyond 
the critical angle and are perfectly reflected.  Moreover, if there is a slight concave form 
to this acoustic mirror, it can even concentrate and thereby amplify the sound 
enormously.  This is why fishermen at sea and beachcombers can sometimes hear each 
other talking even though they are too far apart to be heard normally. 
 
 
D. Acoustic Antennas 
 
  Most acoustic antennas are vibrating surfaces that radiate from one or both sides of 
that surface.  They create an oscillatory p andu with the desired waveform.  If both sides 
of the surface are free to radiate, then these two waves are perfectly out of phase and tend 
to cancel at the listener unless one wave travels farther or is attenuated.  Generally an 
attempt is made to trap one of the two waves in a box. 
 
 Once a spherical wave front is generated it can be reflected from a parabolic mirror 
(see Figure L24-6a) to produce a planar phase front that can be directed in specific 
directions.  Thus the power radiated in any particular direction can generally be greater 
than it would have been if the radiator were isotropic.  Thus the definition of acoustic 
antenna gain (gain over isotropic) is the same as that for other antennas: 
 
   Gs(θ,φ) = Is(θ,φ,r)/(Pt/4πr2) (24) 
 
where Pt is the total acoustic power transmitted, and r is the distance to the observer.   
 
 A horn is an alternate form of acoustic antenna.  In this case the radiated waves 
propagate inside an acoustic waveguide (tube) that gradually expands to better match the 
acoustic impedance of free space.  Almost all orchestral horns, such as the French horn, 
have exponentially expanding bells that flare out most dramatically at their ends.  An 
exponential taper results from cascading quarter-wave acoustic transformers, just as 
happens to Zo when cascading quarter-wave TEM transformers (recall the transformer 
impedance should be the geometric mean of the impedances at each end of the quarter-
wave section, i,e, Zo = (ZAZB)0.5. 
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 At the small end of an acoustic horn a small pressure surface typically moves a 
large distance per cycle because the acoustic resistance of air is so little.  The acoustic 
power P is conserved as the wave propagates along the horn: 
 
   P = IA = A|p|2/2ηs = Aηs|u|2/2   [W] (25) 
 
where I is intensity {Wm-2] and A is the varying cross-sectional area.  Thus the 
perturbational wave velocity u and pressure p in the horn are inversely proportional to the 
radius of the pipe.  Such horns were often used to direct sounds and acoustic power 
toward listeners (e.g., megaphones) before microphones and loudspeakers were available, 
and they were used before hearing aids to amplify sounds.  Even the outer human ear 
helps funnel sounds to the eardrum, and the ears of some mammals (e.g. bats, rabbits, and 
deer) are even more effective. 
 
 Acoustic array antennas can provide more complex directionality, as suggested in 
Figure 24-6b, where two in-phase acoustic monopoles radiate isotropically so as to 
produce nulls in directions where the two waves arrive perfectly out of phase.  Perhaps 
animal ears are the most sophisticated, for their deliberate and specific structure with 
multiple ridges focuses sounds differently depending on frequency.  That is, the ear 
exhibits nulls in a direction that is a function of frequency.  As a result, if white noise is 
heard (e.g. the rustling of leaves due to a predator) the brain can determine the direction 
of the noise in both the horizontal and vertical planes by noting the frequency of the null.  
The frequency-dependent shadowing of sounds by the head, and the use of two ears 
further enable people to guess the distance to a white-sound sources within a few feet. 
 
 
E. Acoustic Waveguides and Resonators 
 
 As discussed above in Section C, acoustic waves must be reflected at rigid planar 
surfaces in order to match phases along the boundary, much as are electromagnetic 
waves, as suggested in Figure L24-7a.  The figure shows the phase fronts for two waves 
crossing each other, where one is the incident wave, and the other is the reflected wave.  
The solid lines mark phase fronts of maximum positive velocity, and the dashed lines 
mark phase fronts of maximum negative velocity, where the velocityu of a wave is 
perpendicular to the wave phase front.  At any of the horizontal lines in the figure the 
vertical components ofu for the two waves cancel, although the horizontal components 
add.  At any of these loci a hard boundary can be located that reflects the waves.  Two 
such boundaries can trap waves between them. 
 
 The acoustic waveguide wavelength λg varies with wavelength for two reasons:  the 
free-space wavelength λo is varying, and the angle of incidence must vary in order to 
match the boundary conditions at both the top and bottom of the guide.  A parallel-plate 
acoustic waveguide has one quantum number, the number of half-wavelengths between 
the top and bottom plate.  For example, the symbol Am represents an acoustic parallel-
plate mode with m half-wavelengths λx across the width of the guide, where λx = 2π/kx 
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and kx = kocosθi; that is, λx = λo/cosθi.  Similar boundary conditions must be satisfied in a 
rectangular acoustic waveguide, where the modes are characterized by Am,n. 
 
 Rectangular resonant cavities must match similar boundary conditions in all three 
dimensions Dx, Dy, and Dz, so resonator modes are characterized as Am,n,q, where the 
quantum numbers are related to the dimensions as: 
 
   Dx = mλx/2, Dy = nλy/2, and Dz = qλz/2, and: (26) 
 
  ki = 2π/λi   (i = x, y, or z) (27) 
 
  Σi ki

2 = ko
2 = 4π2Σi λi

-2  (28) 
 
This is similar to the modal structure of rectangular electromagnetic resonators.  Equation 
(27) can be expressed in terms of the mode quantum numbers and cavity dimensions by 
using (26): 
 
 (ω/cs)2 = ko

2 = Σi ki
2 = Σi (2π/λi)2 = (2π)2[(m/Dx)2 + (n/Dy)2 + (q/Dz)2] (29) 

 
 Equation (29) can now be solved for the acoustic resonant frequencies of a 
rectangular resonator: 
 
 fm,n,p = ωm,n,p/2π = cs[(m/Dx)2

  + (n/Dy)2 + (q/Dz)2]    [Hz] (30) 
 
Equation (30) can be interpreted geometrically, as shown in Figure L24-7b where the 
length of the radius vector is frequency fmnp for the mode characterized by those quantum 
numbers that mark the axes.  The lengths of the three axes follow from (30) and are: 
mcs/Dx, ncs/Dy, and qcs/Dz.  From this simple picture it is easy to see that the number of 
resonant modes in a rectangular cavity increases as f3 and with the volume V of the 
cavity.  The density of modes in a cavity [modes Hz-1] increases with the volume of a thin 
shell of thickness df [Hz], as illustrated; thus this density increases as f2.  The number N 
of acoustic modes in df Hz thus equals the volume of the shell divided by the volume of a 
unit cell corresponding to a single mode: 
 
  N = df (πf2/2)/(cs

3/V) (31) 
 
and the number of cavity modes per Hz is therefore πf2V/2cs

2.  Thus, although the human 
ear can resolve room resonances in small rooms at low frequencies, these resonant 
frequencies become too numerous and dense to distinguish in larger rooms and higher 
frequencies. 
 


