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6.014 COURSE HISTORY AND PHILOSOPHY

History

50 years ago EE(CS) taught quasistatics, motors, and waves (3 subjects)
~20 years ago motors merged into quasistatics (6.013)
Next fall waves (6.014) and quasistatics (6.013) will merge becoming:

+46.012 (New) <

Final 6.014 Lecture for all Time is Today

Philosophy

From Maxwell's Equations to applications, plus review of basics
Both physical and mathematical thinking
Exposure to key modern technologies
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ACOUSTICS (REVIEW OF 6.014 WAVE CONCEPTS)

Basic Variables:

E,H are both vectors E(:velocity ms1) P(PFESSUFE Nm'2:) are not.

Physics is linear Non-inear; u and p are perturbations

Vectorsare | topowerS  uis{/to power S, p is gas density (kg m'3)
Po = {pressure},po = {density},

Basic Equations v = adiabhatic constant

(vacuum):
VxE = —-pgdH/ot Vp = —potu/t [force =mass x accel.]
VxH = g5 0E/ot Veu=—(yP) " 6p/@t [mass conservation ]

VP = —jopel Acoustic differential

Veu= —jo(yPy }‘1 p equations

(\Tz + 2 (Po/1Po ))E =0 — Wave Equation
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ACOUSTIC WAVE EQUATION SOLUTION

Basic Solution:

satisfies the VWave Equation (Vz + w2 (Po/TPo ))[:_) =0if:

k = e{p,fvP,)"° Acoustic dispersion relation =
v, = olk =P /p,)"* = ¢, and v, = (dkidw)' = (yP fp )** =c,

Example: 0°C air, surface pressure, y=1.4, p, =1.29 kg m3 = ¢, =330 ms"’
Solids: ¢, = (K{)D)u-5 = 1500 ms' in H,O, 1500-13,000 ms™ in solids

“bulk modulus™ ~ spring constant (analogous to vP)
z-Directed Sinusoidal Acoustic Waves:
p)=P.e " 1P e INm2] Uy@)=ns (P, e - P_eti jms ]
Ns = p, @), @)= ©po /K = pots = (PoyPo ) INsm™2]= 425 for air at 20°C
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ACOUSTIC POWER AND ENERGY

Acoustic Power Density (Intensity):

2)_

Power density (:Wm O [Nmr2 ms-'] = [Nms™' mr2] in time domain

{is)[Wm=2]= 0.5R fpu*} = 2[pf? 2 = o luf* /2

Example: 1Wm? at sea level = p| = (12 )0'5 = (850)0° =30 Nm™2
ul= lp|/ms = 0.07 ms~! and

Distance moved = 6z = ufw = 1p at 10 kHz
(~1 nm at hearing threshold)

W, [Jm-3] kinetic energy density

Poynting Theorem (lossless): W, [Jm<] potential energy density

Ve (pu*)/2 = ~2i0|po [ /4 - pf? /1Py ) [Wim?]
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SNELL’'S LAW AND EVANESCENT WAVES

Boundary Conditions:  FaEUl R G ITITERE TGRSR TN EEE

Incident Wave:
—jicor

—jKk;singz+]k;cos 8%

() =p,e ™" =pe

Matching phases at boundary =

Critical Angle (when 6 <0):
6, = sin'(c_/c,), Snell's Law; for 6 > 6, = evanescent acoustic wave

T _ v fast (warm)

vpslow (cool, dense)

. = (4P Jo P* cool water

ACQUSTIC ANTENNAS

Boundary Conditions: FEll RIS IGTERE T EER I e ETES

Velocity u; must be zero at rigid body = mirrorimages work, reflectors

exponential horn
matches imepedances

mirrorimage = u; =0

U, u parabolic mirror

Phased Arrays: | null = f(».)

— ear has nulls that
N are frequency
In-phase excitation dependent

Human Ears:

Have horizontal and vertical directionality
And can sense distances close to the head
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ACOUSTIC WAVEGUIDES AND RESONATORS

Boundary Conditions:  FeElle RN ITTERETI LECH I T e EEE

Velocity u; must be zero at rigid bod
tyuL g . Y Modes have m,n, #/2’s in x.y

\/ ::” £ = A, , mode
p o ) u//« Resonators have m,n,p
»f2's in x,y,z directions
= A, resonator modes

fring

\ﬁ i/ surface
Resonant Frequencies of a Box:
(wic.)” = k? = Lk? = Z(2n/n)* = (2n)y[(m/D,)* + (/D )* + (a/D,¥]
i

frnp = CcI(m (n/D,)? + (a/D,)°I" 5 Hz

mnp
where:

=4

C, = (Y fP,)"”
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