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6.014 Recitation 1: 
Wireless Radio and Optical Links 

 
 
A. Review 
 
 Wireless radio links were introduced in Lecture 1.  The basic equations 
introduced there are repeated in Figure R1-1 and below.  First is the equation for the gain 
over isotropic Gt of the transmitting antenna, which is defined as the ratio of: (1) the 
power Pr [W m-2] at distance r transmitted in a particular direction θ,φ, to (2) the power 
that would be radiated if the antenna were isotropic (radiating equally in all 4π 
directions); isotropic power [W m-2] is the total power transmitted PT divided by 4πr2.  
 
  Gt(θ,φ) = Pr(θ,φ,r)/(PT/4πr2) (1) 
 
 The power received at the other end of the link Prec [W] equals the radiation 
intensity there Pr(θ,φ,r) [W m-2] times the antenna effective area Ae(θ,φ) [m2]: 
 
  Prec = Pr(θ,φ,r)Ae(θ,φ) = Pr(θ,φ,r)Grec(θ,φ)λ2/4π (2) 
         = Gt(θ,φ)(PT/4πr2)Grec(θ,φ) λ2/4π 
 
where we have used the very important relation between the gain and effective area of 
any antenna [A=Gλ2/4π].  Therefore, 
 
  Prec = PT Gt Grec (λ/4πr)2  Watts (3) 
 
 The energy received per bit at the receiver Eb [Joules] must be greater than some 
nominal sensitivity threshold, which for most good receivers is:  
 
  Eb > ~4×10-20 Joules/bit for typical digital radio receivers (4) 
 
Therefore a link handling data at a rate of M [bits/sec] must receive at least: 
 
  Prec = M Eb [Watts = J/sec] (5) 
 
 Finally, a circuit connected to a lossless antenna, whether it is transmitting or 
receiving, will see impedance with a real part called the radiation resistance Rr [ohms] 
and a reactive part.  The radiation resistance of a transmitting antenna corresponds to the 
power lost, not as heat, but as radiation as the current i(t) into it transmits PT Watts.  
Simple power considerations yield: 
 
  Rr = PT/< i2(t) > (6) 
 
 
B. Example of a Wireless Link for Interstellar Communications 
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 Since distance clearly limits the ease of communications, let’s consider an 
ambitious goal—communications with another star system, perhaps one light year away, 
so r =  ct  ≅  3×108 × 3×107 = 9×1015 meters.  Powerful antennas today have gain ≅ 107 or 
more, and we can assume we have one such antenna on each end of the link.  We can 
further assume λ = 0.1 [m] and that M = 1 bit/sec.  The necessary received power is MEb 
≅ 1 × 4×10-20 [W].  Using (3) we can now calculate the required radiated power PR: 
 
 PR = Prec/[GtGrec(λ/4πr)2] ≅ 4×10-20/[1014(0.1/4π 9×1015)2] = 512 [W] (7) 
 
 This required transmitter power is so low that we can easily achieve higher data 
rates by boosting that power. If we increase it to a nominal maximum of 1.3 Mwatt, the 
link could then support 2.4 kbps, enough to handle a compressed voice link in “real time” 
(plus a one-year delay each way).  Thus distance is not necessarily a barrier to wireless 
communications. 
 
C. Photonic Links 
 
 Optical links are increasingly being used for long distance high-data-rate 
communications because the antenna gains can be so very high.  Before analyzing an 
optical interstellar link, let’s review the basic principals of optical detection.  First we 
recall that radio waves and light are governed by exactly the same Maxwell’s equations, 
and both are also comprised of photons.  The energy E [J]of a single photon is:  
 
  E = hf [J] (8) 
 
Where Planck’s constant h ≅ 6.625×10-34 and f is frequency [Hz].  Therefore the energy 
of optical photons is roughly 7 orders of magnitude greater than for radio photons, so we 
generally always have many photons in radio systems.  Even at the given nominal radio 
threshold of sensitivity, 4×10-20 [J/bit] (see (4)), we require thousands of photons, e.g., at 
1 GHz we need Eb/hf ≅ 6×104 photons.  This compares to 5-50 photons required per bit 
for communications at visible wavelengths, provided that we are not limited by optical 
interference like sunlight or detector noise.  Fewer optical photons are required because 
we can often detect single-photon arrivals, and we need only enough photons to ensure 
that they are not due to interference. 
 
 Typical photon detectors include phototubes and semiconductors.  Phototubes 
detect photons having hf > Φ using the photoelectric effect, where Φ is the work function 
[J] of the metal surface (cathode) that intercepts the photons.  Since the work function of 
most metals is ~2-6 electron volts (one electron volt is e = 1.602×10-19 Joules)1, 
phototubes do not work well for infrared or longer wavelengths.  Higher energy photons, 
however, can eject an electron from the cathode with a quantum efficiency η (probability) 
on the order of 10-30 percent.  These electrons are then pulled in vacuum toward the 
positively charged anode as they contribute current through the load resistor R, as 
illustrated in Figure R1-4.  The total current is proportional to the number of incident 
photons per second. 

                                                
1 Note that the energy associated with charge Q moving through potential V is QV Joules, so QV = 1 e.v. = 
e×1 = 1.602×10-19 Joules. 
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 Since the thermal noise from the resistor typically exceeds the signal due to a 
single photon, photomultiplier tubes are commonly used for detecting very low light 
levels, one photon at a time.  Their operation is suggested in Figure R1-1, where the 
photoelectrons from the cathode are accelerated electrically toward a nearby positively 
charged dynode, which they impact with sufficient energy (say 50-100 volts) that they 
dislodge perhaps five new electrons.  Each of these electrons is then accelerated toward 
the second dynode at a still higher voltage where it too dislodges another ~5 electrons.  A 
typical photomultiplier tube with n dynodes might then have a gain of 5n, where n might 
typically be 7-12.   Although only a fraction η of the incident photons produce an original 
electron, this becomes, for example, a flood of ~5n ≅ 104-107 at the anode.  Such current 
pulses are sufficient to overwhelm most noise sources, so each detected photon can then 
be counted individually.  Spontaneously emitted electrons, due perhaps to cosmic rays or 
thermal effects, then constitute the dominant noise. 
 
 The collecting areas of such tubes can be enhanced with lenses or mirrors having 
cross-sections of A [m2], where the effective area Ae of such telescopes approximates A 
and, as before: 
 
  Ae = Goλ2/4π  [m2] (9) 
 
 Phototubes are generally large, expensive, and fragile, and therefore 
semiconductor photodiodes are more commonly used.  Semiconductors have the 
additional advantage that they can be made to respond better to infrared wavelengths.  
Figure R1-5A illustrates the energy diagram for a typical pn junction, where the vertical 
axis is electron energy and the horizontal axis is distance perpendicular to the planar 
junction.  The lower cross-hatched area is the valance band and the upper area is the 
conduction band.  They are separated by the band gap, which is ~1.12 electron volts for 
silicon, and ranges from 0.16 for InSb to ~7.5 for BN, depending on the semiconductor.   
 
 Electrons can move freely if they have been excited into the conduction band, but 
not if they remain in the valence band.  In semiconductors the Fermi level is that energy 
level which characterizes the maximum energy of abundant electrons available for 
excitation into the conduction band.  It is analogous to sea level.  Photons thus can excite 
electrons from the Fermi level into the conduction band to enhance device conductivity.  
Since the Fermi level lies within the band gap, this photon-excitation energy gap is less 
than the band gap.  Impurities in the semiconductors create electron donor or acceptor 
sites that easily release or hold, respectively, electrons, and these sites determine the 
Fermi level, which sits just above the valence band for p-type semiconductors and just 
below the conduction band for n-type semiconductors, as illustrated 
 
 If the pn junction is short-circuited externally, the Fermi level must be the same 
on both halves.  The random thermal excitation of electrons produces an exponential 
(Boltzmann) distribution in energy, the upper tails of which are in the conduction band on 
both halves of the junction.  When the device is short-circuited, these current flows from 
excitations in the p and n halves of the junction must balance, so the external current is 
zero.  If, however, the diode is back-biased by VB volts as illustrated in Figure R5-5B, 
then the two exponential tails do not balance and a net back-current current flows, as 
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suggested in Figure R5-5C, which is the I-V characteristic for a pn junction.  The back 
current approaches an asymptote equal to the integrated number of electron excitations 
per second into the conduction band for the p-semiconductor.  When the junction is 
forward biases, the current increases roughly exponentially. 
 
 Such pn junctions operate as photodiodes when they are back-biased, for any 
photon penetrating the p-semiconductor near the junction can excite an electron into the 
conduction band so it can move to the n-semiconductor and out into the external circuit.  
The quantum efficiencies of good semiconductor diodes are often above 90 percent, but 
the small band gap results in substantial excitations by heat alone.  Therefore such diodes 
may be cooled or are used with light sources sufficiently intense that photoelectrons 
dominate the current flow. 
 
 If photodiodes are sufficiently back-biased, they can enter the avalanche region 
where the excited electron is accelerated sufficiently as it moves through the 
semiconductor that it can excite another electron into the conduction band; these two can 
now accelerate and excite even more, exponentially, until they have all lost sufficient 
energy that further excitations are not possible.  In response to single detected photons 
such avalanche photodiodes (APD’s) can produce output pulses of ~104 electrons that 
stand out sufficiently above the noise that the photons can again be counted individually.  
Note that the number of photons per second is proportional to input power, and therefore 
to the square of the incident electric field strength. 
 
D. Optical Systems 
 
 The principal function of optical systems is to concentrate or focus energy from a 
source onto a detector, or from a source onto a distant target.  Typical optical systems are 
illustrated in Figure R1-6, starting with parabolic mirrors that have an infinite focal 
length f, or that focus rays at a finite distance a.  Convex lenses intercepting parallel rays 
also generally focus them at some focal length f.  If we have an object B located at 
distance b from a convex lense, then light rays from that source are focused on A, 
forming an image at distance a, where f-1 = a-1 + b-1.  Also, if object B and image A have 
heights B and A, respectively, then a/A = b/B, so we can have magnification (if a > b) or 
demagnification (if a < b).  Note that a ray from B which passes straight through the 
center of the (thin) lense is generally not bent, which explains why a/A = b/B. 
 
 Systems can have multiple lenses.  For example, the illustrated combination of a 
convex and concave lense intercepts rays from a distant object on the right so as to 
produce a real image on the left.    Conversely, an object on the left will produce a real 
image on the right, and also a virtual image, which is the apparent source of rays 
emanating to the right from the convex lense. 
 
 Diffraction-limited optical systems have angular resolution (or beamwidth) θB 
that is no better than ~λ/D radians, where λ is wavelength and D is the aperture diameter 
[m].  In general, the better the angular resolution, the higher the corresponding gain G, 
where we can show later that G ≅ 4π/θB

2. 
 
E. Examples of Optical Communications Links 
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 Section B examined a system for interstellar communications over a one-light-
year link using 10-cm wavelength.  Let’s now assume we want instead to communicate 
with the planet Mars (say r ≅ 1011 meters) using a very modest 1-watt 0.5-micron 
wavelength laser attached to a 10-cm telescope.  Such a telescope has a diffraction limit 
of ~1 arc second (60 arc minutes per degree, 60 arc seconds per arc minute) which 
approximates the limits imposed by the terrestrial atmosphere.  Let’s further assume we 
are using a 1-meter telescope on Mars (atmospheric seeing does not limit telescope size 
on Mars because the atmosphere is so thin) together with an APD or photo-multiplier 
tube that can extract an average of one bit of information per 10 photons (or 10hf Joules 
= Eb).  We can find the maximum data rate M(bps): 
 
  M = Prec/Eb = Gt(PR/4πr2)Grecλ2/(4π×10hf) (10) 
 
Where Gt = 4πAt/λ2 = (πDt/λ)2 and where Ar = 100At.  Therefore: 
 
 M = 100(πDt/λ)4(PR/4πr2)λ2/(4π×10hf) 
     =100(0.1π/[5×10-7])4(1/π1022)(5×10-7)2/(4π×10×6.625×10-34×[3×108/5×10-7]) 
     = 620 kbps  (11) 
 
where we used f = c/λ, and this data rate is the same in both directions.  The propagation 
delay is r/c =1011/(3×108) ≅ 5.5 minutes.  This could support hundreds of compressed 
telephone channels or excellent internet access. 
 
 Suppose instead we wanted to send data among computers and peripherals within 
a single room (r ≅ 10 m) with one-milliwatt photodiode emitters (PR) with nearly 
isotropic (G = 1 ≅ [πDt/λ]2) diffraction-limited transmitters and receivers.  In this case 
(11) becomes: 
 
  M = (PR/4πr2)λ2/(4π×10hf) 
       = (10-3/4π102)(5×10-7)2/(4π10×6.625×10-34×[3×108/5×10-7]) 
       = 0.004 bits per second! (12) 
 
The reason it is easier to reach Mars than across the room is that we assumed the 
antennas were diffraction limited and isotropic (G=1), implying that their effective areas 
A were extremely small.  Recall that A = Gλ2/4π = λ2/4π = 25×10-14/4π.  In practice we 
would instead use ~omni-directional receiving photodiodes of perhaps 1-cm diameter that 
would intercept many more photons (×~1010) incoherently.  Even though the noise and 
interference levels would be higher with such a detector, the data rates could then be in 
the desired 1-Mbps range. 


