MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.014 Electrodynamics

Issued:
February 12, 2002
Problem Set 2
Due in Recitation: February 20, 2002

Suggested Reading: Text: Sections 1.4-1.6, 2.1-2.3, and 9.2<p414.
In general, each homework and related reading assignment covers the material presented in the preceding week's lectures and recitations (e.g. February 12-15).

Problem 2.1

a) For the uniform plane wave in vacuum $\overline{\bar{E}}=2 \hat{x} \mathrm{e}^{\mathrm{jy}}$, please give the direction of propagation, the wavelength $[\mathrm{m}]$, frequency $[\mathrm{Hz}]$, power $\left[\mathrm{W} / \mathrm{m}^{2}\right]$, and sketch the polarization ellipse (e.g. see Fig. 1.4 in text).
b) \quad Sketch the polarization ellipse for the wave $\overline{\bar{E}}=(3 \mathrm{j} \hat{x}-\hat{y}) \mathrm{e}^{-\mathrm{j} 2 \pi z}$.

Problem 2.2

Any monochromatic wave $\overline{\bar{E}}$ can be represented as the linear combination of two opposite circularly polarized waves such as $\underline{\underline{E}}_{R}=(\hat{x}-\mathrm{j} \hat{y}) \mathrm{e}^{-\mathrm{jkz}}$ and $\underline{\underline{E}}_{\mathrm{L}}=(\hat{x}+\mathrm{j} \hat{y}) \mathrm{e}^{-\mathrm{jkz}}$, where the subscripts R and L indicate right- and left-circularly polarized waves.
a) If we have the elliptically polarized wave $\underline{\overline{\mathrm{E}}}=\underline{\mathrm{a}} \underline{\overline{\mathrm{E}}}_{\mathrm{R}}+\underline{\mathrm{b}} \underline{\overline{\mathrm{E}}}_{\mathrm{L}}=2 \hat{x}+(1-5 \mathrm{j}) \hat{y}$ at z $=0$, then what are the complex constants $\underline{\mathrm{a}}$ and $\underline{\mathrm{b}}$ associated with the equivalent two superimposed circular waves?
b) If the left-circular wave is then delayed a quarter wavelength relative to the rightcircularly polarized wave as they propagate together through a certain magnetized plasma, what is the polarization of the emerging wave?

Problem 2.3

A uniform x-polarized wave is propagating in vacuum in the +z direction with a wavelength of 1 micron and a flux density of $10^{12} \mathrm{~W} / \mathrm{m}^{2}$ (e.g., a 100 -watt CW laser focused on a square spot 10 microns on a side). The electric and magnetic fields are proportional to $\cos (\omega t-k z)$.
a) What are $\overline{\mathrm{E}}(\overline{\mathrm{r}}, \mathrm{t})$ and $\overline{\mathrm{H}}(\overline{\mathrm{r}}, \mathrm{t})$ for this wave? Evaluate all constants numerically. Note how high the field strengths get in such high-power laser beams, and that some lasers can create brief Terawatt pulses with fields that are 10^{5} greater.
b) Two such beams are made to propagate in opposite directions so that $\overline{\mathrm{E}}$ is proportional to $\cos (\omega t-\mathrm{kz})+\cos (\omega \mathrm{t}+\mathrm{kz})$. Please evaluate quantitatively the electric and magnetic energy densities $\left(\mathrm{J} / \mathrm{m}^{3}\right)$, i.e., $\mathrm{W}_{\mathrm{e}}(\mathrm{z})$ and $\mathrm{W}_{\mathrm{m}}(\mathrm{z})$, for $\mathrm{t}=0$, and also $\mathrm{W}_{\mathrm{e}}(\mathrm{t})$ and $\mathrm{W}_{\mathrm{m}}(\mathrm{t})$ for $\mathrm{z}=0$.
c) For the wave of (a) evaluate Poynting's vector $\overline{\mathrm{S}}(\mathrm{z}=0, \mathrm{t})\left(\mathrm{W} / \mathrm{m}^{2}\right)$, and $\overline{\mathrm{S}}(\mathrm{z}, \mathrm{t}=0)$.
d) For the waves of parts (a) and (b), evaluate the complex Poynting vector $\underline{\bar{S}}$.

Problem 2.4

a) What charge Q centered inside a sphere 1 mm in radius would produce an electric field strength at its surface that equals the nominal air breakdown voltage of $3 \times 10^{7} \mathrm{~V} / \mathrm{m}$?
b) What is the corresponding electrostatic potential Φ (volts) at this surface?

Problem 2.5

A certain computer drives a printer using commands through a single wire that for a portion of its length is isolated in space and carries digital signals consisting of 2-mA pulses. For the purposes of this problem these pulses can be modeled as a sine wave at 1 MHz with a $2-\mathrm{mA}$ peak-to-peak amplitude.
a) What is the total power radiated by this current assuming it is uniform along its $10-\mathrm{cm}$ length? Use the Hertzian dipole approximation.
b) If we want to monitor this printer at a distance and need then to intercept 10^{-19} $\mathrm{J} /$ pulse, or $\sim 10^{-13}$ watts, what is the maximum range r we can do so if our receiving antenna has gain $\mathrm{G}=2$?

