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Problem 4.1
a) Following the text in section 9.4. We would look at the element factor and

array factor for the 2 dipole case. The gain of the antenna array is computed
using Eqg. (9.4.9) and substituting (9.4.10) into (9.2.17) and the antenna pattern
in the x-y plane, we obtain the radiation pattern formula given in Equations
(2.4.8).

For our casewe have A =1,a =0, and D = 1.51 , from which the following
radiation pattern is obtained \ p(g) = 0.5+ 0.5cos(3p cos(q)) \ with its associated
x-y plane sketch. Note that we have equal excitation implying that we can get
nulls. (q is the angle measured from the x axisto the y axis.)

Antenna Pattern for Prob 4.1a: A=1, alpha=0,D =19
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The angles of min: Setting [p(g) =0P g =aco

integers. g, ={O°;170.53";1109.47";180"}

The angles of max: Setting [p(q) =1P q= acosgé?g," n={- 101} |integers.
€3 g

O = 1% 48.19°1490°;+131.81° |



b) A =2a=p/2,D=15 . Wedo not have equal excitation, hence we will not

have any nulls. We obtain |p(q) = g - gsi n(3p cos(q)) | where this radiation

pattern is sketched below.

Antenna Pattern for Prob 4.1b: A = 2, alpha = p/2
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The angles of min's |p(q) =1/9pb q:acos?:éé+§n9," n={-101
e a

Qi = {+ 33.56°;480.41;+120° |

1 2na
The angles of max’s: |p(q) =1pP q:acosg? 6+;9," n={-101
e a

O =1%146.44°;+99.59°;+60°}
Note that we have half gain at q = {0;180°} :

c) If L =1000l, then kKL =2000p. Assuming A =1, anda =0, we have
p(?) ; + ; cog2000p cos(90- ?)] = ; + ; cog2000psin(?)]

The angles of the min's: [2000psin(q) = (2n - 1)p| or Sin(q):(zzr(])(-)ol)'

For small angles, q,,,, » (2n- 1) ,and |Dqg » L

= I— between nulls.
2000 1000 L

The angles of the max’s: |2000psin(q) = 2np| or |sin(q) :10r(])O .

There will be 1000 maxima and 1000 nulls (or 1000 lobes) between g =0
_p
andq=".
g 2
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Thefirst null occurs at |g = —| and the second null occurs at|q = —|.

Problem 4.2

a) For two pahs a Df beween nulls is (t,-t,) " Hz
_l, 30" 10°

1

- 3
——=1"10""%s, t2:|—2 31, 108 =1.03"10%s
c 3710 c 310

Df =(t, - t,)"" =+300kHz|. Thus we have nulls at the nearest frequencies to
100MHz at: [99.7MHZ;100.3MHz

b) | =c/f =3m. The distance between the two ‘dipoles is L=1km. Thus

o = 2P _ 2000p

. The antenna gain for this system is proportional to:

G(f)p 1+ cos(zogOp cos(f)+a)), from which it follows that the noise

bursts will be obtained when

ZOgOp ZOgOp cog(f ,)+a =2pb cos(f,)- cos(f,) » Df » 0.003

These noise bursts occur approximately
30" 10° tan(Df ) » 30" 10%(0.003) = 90m| or |30l |'s apart.

cog(f,)+a =0; and

c)
40m/s
»
30km >

1km

The component of velocity in the direction of the propagating wave is

v =40cosq = 40c0s(88.07°) =1.3326

fo=f (- Y) =100M (1- 1332 = 0.444H2

C C

Problem 4.3

a Let E,=E,X+E,y+E,Z, and using the boundary condition (BC)
n" (E, - E,) =0where i isdirected from material 2to 1 (i.e,, - Z) wefind,



(- E,)X+E,y=0P E, =1E, =0

. Nothing can be stated about E,, yet. We

know that the boundary condition used, states that the tangential components of an E
field are continuous across an interface (which we verified above).

Now look at the BC: h- (D, - D,) =r |
For materials 1 and 2 s=0. Thus the loss

tangents of the materials are zero, hence the

materials are lossless and at the boundary surfacewehave r , =0.
Substituting D, =e,E,," i1 [12] into the BC we find:

5. (J(e,- e,) +2(e, - &,E, ) =0P E,, :% = 0.5|thus|E, = §+0.52

2

b) If s, =0, material 2 is an ided conductor. We know that the electric and

magnetic field disappear in an ideal conductor (see page 123). For oblique wave
incidence we have incident, reflected and transmitted waves. The transmitted

wave is not going to exist.

For r(y): The reflected wave isgivenas. E, = XGE ;e  *~ (V"2 At the

A

material boundary (z=0) and we look at the BC: 1" (E,- E,) = 0we know that
the tangential components of the electric field across the boundary should be

continuous. Thus E e ¥ +GE e

k® =0 holds for G=-1 and k, =k.

Because ME are liner E,=FE, +E, =XE,e™™(e™-e"™) and using

D, =eFE, intheBC:|A- (D) =r ,(y) P r(y)=0|

For J_(y): Assuming time harmonic

form the general way to calculate an H field

from an E field is H = - —E K E Aiso H, =H, +H,, and calculating the
JWMT, W
incident and reflected H fields we find:

H = (k¥ +k2) ()A(Eoe-jk.(yu)) B Eoe—jk.(y+z)

(-z+V) and

jwm,

ﬁ - (k)A/- ki)' (' )A(Eoe_jk'(y_ Z)) - Eo

1
g ik{y-2)

r

jwm,

(z+y). Using the BC (and setting

1

2=0): [A" (A) = 3.(y) P 3,(y) = x%e

1

A

Test (setting z = 0) BC: - (mH,)
holds true.

Problem 4.4

=-2 - (yz+Z(E,e - E,e')) =0 which



b)

b)

Using Snell’s law, we find: |Sin(q,) =

Ki mye,

smq):ésmq)

k_t m,9e,
i =1) k. m9e . 1
Usng S]d"s'a/v M:_': rTb 0 ) Sn(qc):—p qC :19470
sn(g,) k. Jme, 3
Medium 2 is the incident medium. Medium 1 is the transmisson medium. From

the phase matching condition the projection of the phases onto the z axes should
be matched for the incident, reflected and transmitted waves.

ki, =k;sin(q;) =

w,/9m,e, o Kk

from which we can caculate

\/E tz?

k2 =k?- ki =w’me,(1- 9/2) =w’me,(-7/2). From this follows that

7 7 7
k. =ijw,/me,— b a=w,/me,— =2p,/— *
Y PR o N

Problem 4.5
a) The plasma frequency of the ionosphere is:
2 12 4 -1942
wo= (M | 10701610 )" g aae 107[rad/g], and dso
me, 9.107" 10°%(8.854" 10°™)

for the problemwehave m =m =m, and e, = e,.

& wo

The permitivity of the plasmais. e= eoél- —=. We have perfect reflection
I

2

when | G|*=1. We encounter 2 cases:

C =-1, the reflected electric field is 180 degree out of phase with the
incident electric field. This case is encountered when material 2 is
highly conducting (see page 127 of text for a discussion),

C =1, the reflected electric field is in phase with the incident electric
field. This case is encountered when materia 2 has a very low value of
for its permitivity (again page 127).

Seeing that for the plasma the permitivity can be made very small by playing
around with the frequency. Moreover e tends to zero when the frequency tens
to the plasma frequency. Thus we are dealing with the second case, and the
maximum frequency for which we will get perfect reflection

(h,® ¥ b e =0)iswhenjw=w, b f . =8973MHz

For oblique wave incidence when the grazing angle q is greater than a critica
angle g, then we will get perfect reflection. Thus setting g, =85 and using
Snell’s law (where we redlize that for perfect reflection g, = p/2), thus we
have:



from which we caculate




