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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
Department of Electrical Engineering and Computer Science 

 
6.014 Electrodynamics 

 
Problem Set 4 Solutions                                    Available in Tutorials: March 11, 2002 
 
Problem 4.1 
  

a) Following the text in section 9.4. We would look at the element factor and 
array factor for the 2 dipole case. The gain of the antenna array is computed 
using Eq. (9.4.9) and substituting (9.4.10) into (9.2.17) and the antenna pattern 
in the x-y plane, we obtain the radiation pattern formula given in Equations 
(2.4.8).  
For our case we have A = 1, α = 0, and D = 1.5λ, from which the following 
radiation pattern is obtained ))cos(3cos(5.05.0)(p θπ+=θ  with its associated 
x-y plane sketch. Note that we have equal excitation implying that we can get 
nulls. (θ is the angle measured from the x axis to the y axis.) 
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Antenna Pattern for Prob 4.1a: A = 1, alpha = 0, D = 1.5λ
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b) λ=π=α= 5.1D,2,2A . We do not have equal excitation, hence we will not 

have any nulls. We obtain ))cos(3sin(
9
4

9
5

)(p θπ−=θ  where this radiation 

pattern is sketched below. 
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Antenna Pattern for Prob 4.1b: A = 2, alpha = π/2
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Note that we have half gain at { }o180;0=θ . 
 

c) If L = 1000λ, then kL = 2000π.  Assuming A = 1, and α = 0, we have 
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 The angles of the min’s:  ( ) ( )π−=θπ 1n2sin2000   or ( )
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 For small angles, 
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L1000
1 λ

=≈θ∆  between nulls. 

 

 The angles of the max’s:  ( ) π=θπ n2sin2000  or ( )
1000

n
sin =θ . 

 
 There will be 1000 maxima and 1000 nulls (or 1000 lobes) between 0=θ  

 and
2
π

=θ . 
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The first null occurs at 
L
λ

=θ  and the second null occurs at 
L
2λ

=θ . 

 
Problem 4.2 
 

a) For two paths at f∆  between nulls is 1
12 )tt( −− Hz. 
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kHz300)tt(f 1
12 ±=−=∆ − . Thus we have nulls at the nearest frequencies to 

100MHz at: MHz3.100;MHz7.99  
 
b) m3f/c ==λ . The distance between the two ‘dipoles’ is L=1km. Thus 

3
2000

L
2

kL
π

=
λ
π

= . The antenna gain for this system is proportional to: 

)))cos(
3
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cos(1()(G α+φ

π
+∝φ , from which it follows that the noise 

bursts will be obtained when  

003.0)cos()cos(2)cos(
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π
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π

These noise bursts occur approximately  
m90)003.0(1030)tan(1030 33 =×≈φ∆×  or λ30 ’s apart.  

 
c)  
       40m/s 
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The component of velocity in the direction of the propagating wave is 
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Problem 4.3 
 

a) Let ẑEŷEx̂EE z2y2x22 ++= , and using the boundary condition (BC) 

0)EE(n̂ 21 =−× where n̂  is directed from material 2 to 1 (i.e., ẑ− ) we find, 
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0E,1E0ŷEx̂)E1( x2y2x2y2 ==⇒=+− . Nothing can be stated about z2E  yet. We 
know that the boundary condition used, states that the tangential components of an E 
field are continuous across an interface (which we verified above).  
Now look at the BC: s21 )DD(n̂ ρ=−•  
For materials 1 and 2 σ=0. Thus the loss tangents of the materials are zero, hence the 
materials are lossless and at the boundary surface we have 0s =ρ . 

Substituting ]2,1[i,ED iii ∈∀ε=  into the BC we find:  

5.0E0))E(ẑ)(ŷ(ẑ
2

1
z2z22121 =

ε
ε

=⇒=ε−ε+ε−ε•−  thus ẑ5.0ŷE 2 +=  

 
b) If 02 =σ , material 2 is an ideal conductor. We know that the electric and 

magnetic field disappear in an ideal conductor (see page 123). For oblique wave 
incidence we have incident, reflected and transmitted waves. The transmitted 
wave is not going to exist. 
For )y(s

−
ρ : The reflected wave is given as: )zy.(jk

0r
reEx̂E −−Γ= . At the 

material boundary (z=0) and we look at the BC: 0)EE(n̂ 21 =−× we know that 
the tangential components of the electric field across the boundary should be 
continuous. Thus  0eEeE )y.(jk

0
)y.(jk

0
r =Γ+ −−  holds for 1−=Γ  and kk r = . 

Because ME are linear )ee(eEx̂EEE jkzjkzjky
0ri1

+−− −=+=  and using 

111 ED ε=  in the BC: 0)y()y()D(n̂ ss1 =ρ⇒ρ=•
−−

. 

For )y(J s
−

: Assuming time harmonic form the general way to calculate an H field 

from an E field is: 
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j

E
H
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×

=
ωµ
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−= . Also ri1 HHH += , and calculating the 

incident and reflected H fields we find: 
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. Using the BC (and setting 

z=0): jky

1

0
ss1 e
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η
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Test (setting z = 0) BC: 0))eEeE(ẑŷ(ẑ)H(n̂ jky
0

jky
010 =−+ζ•−=µ• −−  which 

holds true. 
 

 
Problem 4.4 
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a) Using Snell’s law, we find: )sin(
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b) Using Snell’s law:  o47.19
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c) Medium 2 is the incident medium. Medium 1 is the transmission medium. From 
the phase matching condition the projection of the phases onto the z axes should 
be matched for the incident, reflected and transmitted waves. 
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=θ= , from which we can calculate 
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Problem 4.5 
 

a) The plasma frequency of the ionosphere is: 

]s/rad[10638.5
)10854.8(10107.9

)106.1(10
m

qn 7
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21912

0
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×−
=
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, and also 

for the problem we have 0it µ=µ=µ  and 01 ε=ε .  

The permitivity of the plasma is: 










ω

ω
−ε=ε 2

2
p

0 1 . We have perfect reflection 

when 1|| 2 =Γ . We encounter 2 cases: 
• 1−=Γ , the reflected electric field is 180 degree out of phase with the 

incident electric field. This case is encountered when material 2 is 
highly conducting (see page 127 of text for a discussion), 

• 1=Γ , the reflected electric field is in phase with the incident electric 
field. This case is encountered when material 2 has a very low value of 
for its permitivity (again page 127). 

Seeing that for the plasma the permitivity can be made very small by playing 
around with the frequency. Moreover ε  tends to zero when the frequency tens 
to the plasma frequency. Thus we are dealing with the second case, and the 
maximum frequency for which we will get perfect reflection 
( 0tn =ε⇒∞→η ) is when MHz973.8f maxp =⇒ω=ω  
 

b) For oblique wave incidence when the grazing angle θ is greater than a critical 
angle cθ , then we will get perfect reflection. Thus setting o85c =θ  and using 
Snell’s law (where we realize that for perfect reflection 2t π=θ ), thus we 
have: 
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