MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.014 Electrodynamics

Problem Set 6 Solutions

Available in Tutorials: April 1, 2002

Problem 6.1

a) Charge relaxation time (p. 88):
$$\tau = \frac{\varepsilon}{\sigma} = \frac{4.8 \times 10^{-19}}{10^{-14}} = 4.8 \times 10^{-5} \text{ s}$$

b) Resistance of the parallel plate structure: $R = \frac{d}{A\sigma} = \frac{1}{10 \times 10^{-14}} = 1 \times 10^{13} \Omega$

c) Capacitance of the structure:
$$C = \frac{\varepsilon A}{d} = \frac{4.8 \times 10^{-19} (10)}{1} = 4.8 \times 10^{-18} \text{ F}$$

d) For N capacitors in parallel, we have $C_{eq} = NC$ and $R_{eq} = \frac{R}{N}$. From circuit theory we know that $\tau = R_{eq}C_{eq}$ and we notice that the N's cancel and that $\tau = RC$ and from lecture 10 we know that $\tau = RC = \frac{\varepsilon}{\sigma} = 4.8 \times 10^{-5} \text{ s}$

e) For M capacitors in series, we have $C_{eq} = \frac{C}{M}$ and $R_{eq} = RM$. From circuit theory we know that $\tau = R_{eq}C_{eq}$ and we notice that the M's cancel and that $\tau = RC$ and as before $\tau = RC = \frac{\varepsilon}{\sigma} = 4.8 \times 10^{-5} \,\mathrm{s}$

Note: that for the same capacitors in series or parallel the charge relaxation time is the same.

Problem 6.2

For a solenoid filled with permeability μ ,

$$L = \frac{\mathbf{m} \mathbf{N}^2 A}{2\mathbf{p}R} = \frac{\mathbf{m} \mathbf{N}^2 A}{4\mathbf{p} \sqrt{A}} = \frac{\mathbf{m} \mathbf{N}^2 \sqrt{A}}{4\mathbf{p}}$$

For a toroidal solenoid with gap d,

$$L = \frac{\boldsymbol{m}_0 N^2 A}{d} \text{ if } d \ge 2\boldsymbol{p} R(\boldsymbol{m}_0 / \boldsymbol{m})^2 \text{ as stated on Lecture Slide 11-9.}$$

Since
$$d = \frac{2\boldsymbol{p}R\boldsymbol{m}_0}{\boldsymbol{m}} > 2\boldsymbol{p}R\left(\frac{\boldsymbol{m}_0}{\boldsymbol{m}}\right)^2$$
 for $\boldsymbol{m} = 10^5 \,\boldsymbol{m}_0$,
 $L = \frac{\boldsymbol{m}_0 N^2 A}{d} = \frac{\boldsymbol{m}N^2 A}{2\boldsymbol{p}R} = \frac{\boldsymbol{m}N^2 A}{4\boldsymbol{p}\sqrt{A}} = \frac{\boldsymbol{m}N^2 \sqrt{A}}{4\boldsymbol{p}}$.

Therefore, the inductances for the two configurations are equal. The ratio between the two inductances is 1.

Note: Even though the magnetic energy stored in the gap comprises about half the total stored magnetic energy ($d = 2pR(\mathbf{m}_0 / \mathbf{m})$, the magnetic energy density in the gap still dominates the magnetic energy density in the torus.

Problem 6.3

Approach: Draw radial lines outward emanating from the center of the inner ellipsiod. Then divide the resulting radial lines into four equal distance sections. Connecting the ith equal distance points of all the radial lines the ith equipotential line can be drawn. The E-field lines are then drawn such that it is directed from the inner conductor towards the outer conductor. The E-field lines are orthogonal to both conductor surfaces and the equipotential lines.

$$E_{\text{max}} = \frac{V}{d_1}$$
 and $E_{\text{min}} = \frac{V}{d_2}$ hence we have $\frac{E_{\text{max}}}{E_{\text{min}}} = \frac{d_2}{d_1}$.

Problem 6.4

a)
$$\Phi(x, y) = (A + Bx)(C + Dy)$$
Using
$$\Phi(x, b) = \frac{x}{a}V$$

$$\Phi(a, y) = \frac{y}{b}V$$

$$\Phi(0,0) = 0 \text{ and}$$

$$\Phi(a, b) = V \text{, we can conclude that } \Phi(x, y) = \frac{xy}{ab}V$$
b)
$$\int y$$

$$F = -\nabla \Phi = -\frac{V}{ab}(y\hat{x} + x\hat{y})$$