MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.014 Electrodynamics

	Issued:	April 2, 2002
Problem Set 8	Due in Recitation:	April 10, 2002

Suggested Reading: Text: Sections 6.5, plus Supplementary notes for L14, R15.

Problem 8.1

A TEM control line in a certain computer has 100-ohm characteristic impedance, $\varepsilon = 4\varepsilon_0$, and length 3 cm. It is driven as illustrated. The transistor is either a perfect short circuit or a perfect open circuit.

- a) The circuit is at rest for t < 0 with the transistor switch closed; at t = 0 the switch opens. Sketch and dimension the voltage v(z) on the line at $t = 10^{-8}$ seconds.
- b) Sketch and dimension v(z) on the line at $t = 3 \times 10^{-8}$ seconds. Please indicate quantitatively any exponential time constants.
- c) Repeat (b) at 5×10^{-8} seconds.
- d) Sketch the voltage across the switching transistor as a function of time t. What are the maximum and asymptotic $(t \rightarrow \infty)$ values of this voltage? Note that the maximum voltage is more than twice its equilibrium values that result when the switch is either on or off. Does this suggest a rule of thumb for specifying transistor breakdown voltages?

Problem 8.2

- a) Repeat your answer for part (b) of Problem 8.1, but using quantitative function expressions (e.g. in terms of $u(t-t_1)$, etc.) rather than sketches.
- b) Repeat Part (b) of Problem 8.1 for a load consisting of only an ideal diode in series with a 5-volt battery; in equilibrium the diode is back-biased when the switch is short-circuited.

Problem 8.3

The illustrated circuit is in equilibrium for t < 0, and then the switch is opened.

- a) Prior to opening the switch, what are the voltages and currents associated with the forward and backward moving waves on this TEM line?
- b) Sketch and dimension the total voltage v(z) and current i(z) at t = 10^{-8} seconds. 200 Ω

Problem 8.4

In certain parts of the world locusts can pose serious threats. Let's assume a single locust has a radar scattering cross-section of one square centimeter and that we have been asked to design a mobile radar for tracking swarms of these pests. If it is to fit on the back of a Jeep, it might reasonably have an antenna of diameter one meter and a peak pulse power of 1kW. Let's assume our receiver can detect a locust with received pulses of 10⁻¹⁹ Joules. We might distinguish flying insects from ground and tree clutter by their small Doppler shifts.

- a) What maximum wavelength λ should we use if we wish to observe one locust at a range R of 1 km?
- b) At what maximum range R could we detect a swarm of 10^5 locusts at a wavelength of 1 cm?