MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science

6.014 Electrodynamics

Problem Set 8 Solutions	Available in Tutorials:	April 15, 2002
-------------------------	-------------------------	----------------

Problem 8.1

a) For t < 0 the transistor is a short circuit and the transmission line system is shorted out. For t ≥ 0 the circuit we are investigating is in the standard transmission line problem format. Thus we have a DC voltage source of 10V; a source resistor of 200 Ω ; a RL load with R = 100 Ω , L = 0.4 μ H; a transmission line with a characteristic impedance of Z₀ and for this line the time it takes to traverse the line is

$$v = \frac{1}{\sqrt{\mu\epsilon}} = \frac{c}{2} \Longrightarrow t_{\text{traverse}} = \frac{\ell}{v} = \frac{3(2)}{c} = 2 \times 10^{-8} \text{ s}.$$

For $0 \le t < \frac{\ell}{v}$ the waveform does not see the load impedance yet. Therefore the voltage is divided between the source impedance and the line as follows,

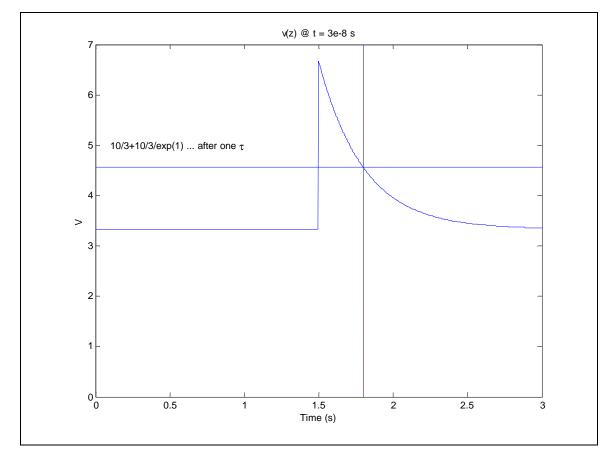
- b) In this problem a Thevenin equivalent (which will be a lumped parameter circuit) is constructed of the transmission line system w/o the load. This equivalent circuit is then used to solve a lumped parameter linear circuit. This circuit is a straight forward first order RL circuit with a voltage source V_{th} , resistance $(Z_{th} + R_L)$ and inductance
 - L_L . The time constant for this circuit is $\tau = \frac{L_L}{R_L + Z_{th}}$.

<u>Thevenin Equivalent Circuit:</u> We are required to look at the transmission line system with the load removed and we then consider the two cases where the subsequent system is open circuited and short circuited.

<u>Open Circuit</u>, now we have $V_L \mid_{oc} = V^+ + V^- = 2V^+ = V_{th}$ because of the positive unity voltage reflection coefficient at the load.

<u>Close Circuit</u>, now we have $I_L|_{sc} \equiv \frac{1}{Z_0} (V^+ - V^-) = \frac{1}{Z_0} (2V^+) = I_{th}$ because of the negative unity voltage reflection coefficient due to the short circuit. Now $\left| Z_{th} = \frac{V_{th}}{I_{th}} = Z_0 \right|, \quad V_{th} = \frac{20}{3} u(t - \frac{3}{v}) = \frac{20}{3} u(t - 2 \times 10^{-8}) V \text{ and } \tau = 2 \times 10^{-9} \text{ s}.$ The total voltage on the line at $t = 3 \times 10^{-8}$ s is given as (derived in problem 8.2a) $V_{\text{total}}(t = 3 \times 10^{-8}, z) = \frac{10}{3} + \frac{10}{3} \exp\left(-\frac{(z-1.5)}{0.3}\right) \mu(z-1.5)[V]$, and is visualized as

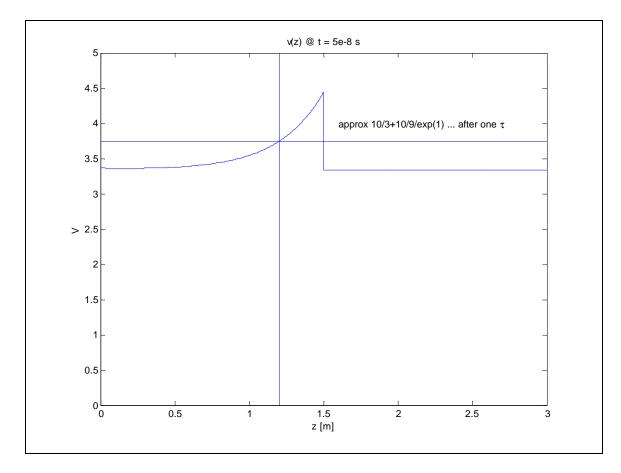
follows ...



c) At the source side we do not have a matched conditions and the backward traveling wave will be reflected and then travel forward on the line. The reflection coefficient

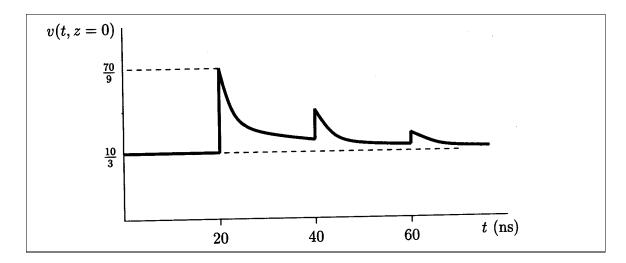
is
$$\Gamma_{\rm S} = \frac{R_{\rm S} - Z_0}{R_{\rm S} + Z_0} = \frac{1}{3}$$
. Thus $V_2^+ = \frac{1}{3}V_1^-$, and $V_{\rm total} = V_1^+ + V_1^- + V_2^+$ and at
 $t = 5 \times 10^{-8}$ s it can be shown that:
 $v(z) = \frac{10}{3} \left(1 + \exp\left(-\frac{(z+1.5)}{0.3}\right) + \frac{1}{3} \exp\left(-\frac{(1.5-z)}{0.3}\right) u(1.5-z) V \right]$ where v(z) can
be visualized as follows ...

- 2 -



d) In order to find the asymptotic voltage across the transistor we know that the transients would have died away and that $V(t \rightarrow \infty) = \frac{R_L}{R_L + R_S} V_S = \frac{10}{3} V$. The maximum voltage across the transistor will be encountered at $t = \frac{2\ell}{v} = 4 \times 10^{-8} s$ when we have the summation of three voltage wavefronts (V_1^+, V_1^-, V_2^+) and thus we have $V_{max}(t) = \frac{10}{3} + \frac{10}{3} + \frac{1}{3} \cdot \frac{10}{3} = \frac{70}{9} = 7.78V > 6.67V$. We see that the maximum voltage across the transistor is greater than twice the equilibrium voltage on the line. The actual maximum voltage is a function of the DC voltage source, line characteristics, source impedance and load impedance. The worst scenario would have been if we had a reflection coefficient of 1 at the source end and then the voltage spike across the transistor would have been three times the steady state voltage on the line. Thus as a rule of thumb we can specify the breakdown voltage across the switching transistor as a function of time¹...

¹ Thanks to <u>bigjim@mit.edu</u> for the neat figure ...



Problem 8.2

a) For
$$0 < t < \frac{l}{v}$$
,
 $V_{+}(t,z) = \frac{Z_{0}}{Z_{0} + R_{s}} V_{s} u(t - z/v)$.

When V_+ reaches the load at t = l/v, we look at the thevinin equivalent network at the load to solve the problem. The governing equation for the current at z = lis

$$L \frac{di(t)}{dt} + \frac{Z_0 + R_L}{L} i(t) = 2V_+(t, z = l)$$

$$\therefore i(t) = \frac{2V_+(t, z = l)}{Z_0 + R_L} (1 - e^{-(t - l/\nu)/t}) \text{ where } \mathbf{t} = \frac{L}{Z_0 + R_L} = 2\text{ns.}$$

$$V_L(t) = L \frac{di(t)}{dt} + R_L i(t) = \frac{2V_+(t, z = l)}{Z_0 + R_L} (R_L - Z_0 e^{-(t - l/\nu)/t})$$

Since $V_L(t) = V_+(t, z = l) + V_-(t, z = l),$

$$V_-(t, z = l) = V_L(t) - V_+(t, z = l) = \frac{Z_0}{Z_0 + R_s} V_s e^{-(t - l/\nu)/t} u(t - l/\nu)$$

$$\therefore V_-(t, z) = \frac{Z_0}{Z_0 + R_s} V_s e^{-(t + z/\nu - 2l/\nu)/t} u(t + z/\nu - 2l/\nu)$$

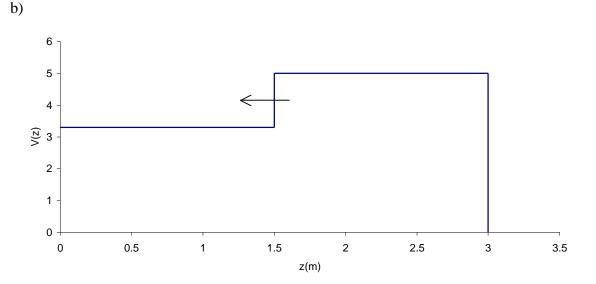
Due to reflection at the source,

$$\therefore V_+^{(2)}(t, z) = \frac{R_s - Z_0}{R_s + Z_0} V_-(t, -z) = \frac{1}{3} V_-(t, -z) = \frac{Z_0}{3(Z_0 + R_s)} V_s e^{-(t + z/\nu - 2l/\nu)/t} u(t + z/\nu - 2l/\nu)$$

$$\therefore V_{total}(t, z) = V_+ + V_- + V_+^{(2)}$$

$$= \frac{1}{3}V_{s}u(t-z/v) + \frac{1}{3}V_{s}e^{-(t+z/v-2l/v)/t}u(t+z/v-2l/v) + \frac{1}{9}V_{s}e^{-(t-z/v-2l/v)/t}u(t-z/v-2l/v)$$

$$\therefore V_{total}(t=3\times10^{-8},z) = \frac{1}{3}V_{s}u(t-z/v) + \frac{1}{3}V_{s}e^{-(t+z/v-2l/v)/t}u(t+z/v-2l/v)$$

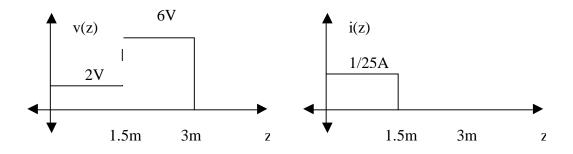


Problem 8.3

a) Prior to the switch opening all the transient waveforms on the line have died away and we are left with a standing waveform. This is motivated by the statement that the system is in equilibrium for t < 0. Thus it does not make sense to talk about forward and backward traveling waves.

We have
$$V(z, t < 0 | \text{equilibriu m}) = V(z, \tau \rightarrow \infty) = \frac{R_L}{R_L + R_S} V_S = 2V$$
 (where τ is
another time axis and related to our t time axis such that when $\tau \rightarrow \infty \Rightarrow t = 0$).
The current waveform is also be a constant along the line and is
 $I(z, t < 0 | \text{equilibriu m}) = I(z, \tau \rightarrow \infty) = \frac{1}{R_L + R_S} V_S = \frac{1}{25} A$.

b) When the circuit is broken at the load a new boundary condition is enforced at the load. For the open circuit we know that the current at z = 3m must be 0 for all time $t \ge 0$. Thus a backward traveling current wave will be induced with an amplitude of $I_{-}(z, t) = -\frac{1}{25}A$, $\forall t \in [0, 2 \times 10^{-8})$ and $z \in [0,3]$, yielding the resultant current at the point in space to be zero. The accompanying voltage wave is calculated as: $V_{-}(z,t) = -I_{-}(z,t)Z_{0} = 4V$, $\forall t \in [0,2 \times 10^{-8})$ and $z \in [0,3]$. The total voltage $V(z,t = 10^{-8}) = v(z)$ and current $I(z,t = 10^{-8}) = i(z)$ waveforms thus look as follows:



Problem 8.4

a)
$$P_{rec} = E_{rec} f_D = P_{tr} \left(\frac{Gl}{4pr^2}\right)^2 \frac{s_s}{4p} = P_{tr} \left(\frac{l}{4pr^2}\right)^2 \left(\frac{4pA}{l^2}\right)^2 \frac{s_s}{4p} = P_{tr} \frac{A^2 s_s}{r^4 l^2 4p}$$

Since $f_D = f_0 (1 - v/c) \approx \frac{c}{l}$ ($v \ll c$)
 $l = P_{tr} \frac{A^2 s_s}{4pr^4 E_{rec}c} = 0.16mm$
b) $r^4 = P_{tr} \frac{A^2 s_s}{4pl E_{rec}c}$
 $\therefore r = 6360m$