MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.014 Electrodynamics

Problem 8.1

a) For $\mathrm{t}<0$ the transistor is a short circuit and the transmission line system is shorted out. For $t \geq 0$ the circuit we are investigating is in the standard transmission line problem format. Thus we have a DC voltage source of 10 V ; a source resistor of 200Ω; a RL load with $\mathrm{R}=100 \Omega, \mathrm{~L}=0.4 \mu \mathrm{H}$; a transmission line with a characteristic impedance of Z_{0} and for this line the time it takes to traverse the line is

$$
v=\frac{1}{\sqrt{\mu \varepsilon}}=\frac{c}{2} \Rightarrow t_{\text {traverse }}=\frac{\ell}{v}=\frac{3(2)}{c}=2 \times 10^{-8} \mathrm{~s}
$$

For $0 \leq \mathrm{t}<\frac{\ell}{v}$ the waveform does not see the load impedance yet. Therefore the voltage is divided between the source impedance and the line as follows,

$$
\begin{aligned}
& \mathrm{V}(\mathrm{z}, \mathrm{t})=\frac{\mathrm{Z}_{0}}{\mathrm{Z}_{0}+\mathrm{R}_{\mathrm{s}}} \mathrm{~V}_{\mathrm{s}} \mathrm{u}\left(\mathrm{t}-\frac{\mathrm{z}}{\mathrm{v}}\right)=\frac{10}{3} \mathrm{u}\left(\mathrm{t}-\frac{\mathrm{z}}{\mathrm{v}}\right) \text {, for } \mathrm{t} \in\left[0, \frac{\ell}{\mathrm{v}}\right) \text {. From this it follows, } \\
& \mathrm{v}(\mathrm{z})=\mathrm{V}\left(\mathrm{z}, \mathrm{t}=10^{-8}\right)=\left\{\begin{array}{c}
\frac{10}{3}, \text { for } \mathrm{z} \in\left[0, \frac{\ell}{2}\right] \\
0, \mathrm{o} / \mathrm{w}
\end{array}\right. \\
& \hline \mathrm{v}(\mathrm{z}) \\
& 10 / 3 \mathrm{~V} \\
& \hline
\end{aligned}
$$

b) In this problem a Thevenin equivalent (which will be a lumped parameter circuit) is constructed of the transmission line system w/o the load. This equivalent circuit is then used to solve a lumped parameter linear circuit. This circuit is a straight forward first order RL circuit with a voltage source $V_{t h}$, resistance ($\mathrm{Z}_{\mathrm{th}}+\mathrm{R}_{\mathrm{L}}$) and inductance L_{L}. The time constant for this circuit is $\tau=\frac{L_{L}}{R_{L}+Z_{\text {th }}}$.

Thevenin Equivalent Circuit: We are required to look at the transmission line system with the load removed and we then consider the two cases where the subsequent system is open circuited and short circuited.
Open Circuit, now we have $\left.V_{L}\right|_{o c}=V^{+}+V^{-}=2 \mathrm{~V}^{+}=V_{\mathrm{th}}$ because of the positive unity voltage reflection coefficient at the load.

Close Circuit, now we have $\left.\mathrm{I}_{\mathrm{L}}\right|_{\mathrm{sc}} \equiv \frac{1}{\mathrm{Z}_{0}}\left(\mathrm{~V}^{+}-\mathrm{V}^{-}\right)=\frac{1}{\mathrm{Z}_{0}}\left(2 \mathrm{~V}^{+}\right)=\mathrm{I}_{\mathrm{th}}$ because of the negative unity voltage reflection coefficient due to the short circuit. Now $\mathrm{Z}_{\mathrm{th}}=\frac{\mathrm{V}_{\mathrm{th}}}{\mathrm{I}_{\mathrm{th}}}=\mathrm{Z}_{0}, \quad \mathrm{~V}_{\mathrm{th}}=\frac{20}{3} \mathrm{u}\left(\mathrm{t}-\frac{3}{\mathrm{v}}\right)=\frac{20}{3} \mathrm{u}\left(\mathrm{t}-2 \times 10^{-8}\right) \mathrm{V}$ and $\tau=2 \times 10^{-9} \mathrm{~s}$.
The total voltage on the line at $\mathrm{t}=3 \times 10^{-8} \mathrm{~s}$ is given as (derived in problem 8.2a) $\mathrm{V}_{\text {total }}\left(\mathrm{t}=3 \times 10^{-8}, \mathrm{z}\right)=\frac{10}{3}+\frac{10}{3} \exp \left(-\frac{(\mathrm{z}-1.5)}{0.3}\right) \mathrm{u}(\mathrm{z}-1.5)[\mathrm{V}]$, and is visualized as
follows ...

c) At the source side we do not have a matched conditions and the backward traveling wave will be reflected and then travel forward on the line. The reflection coefficient is $\Gamma_{\mathrm{S}}=\frac{\mathrm{R}_{\mathrm{S}}-\mathrm{Z}_{0}}{\mathrm{R}_{\mathrm{S}}+\mathrm{Z}_{0}}=\frac{1}{3}$. Thus $\mathrm{V}_{2}^{+}=\frac{1}{3} \mathrm{~V}_{1}^{-}$, and $\mathrm{V}_{\text {total }}=\mathrm{V}_{1}^{+}+\mathrm{V}_{1}^{-}+\mathrm{V}_{2}^{+}$and at $\mathrm{t}=5 \times 10^{-8} \mathrm{~s}$ it can be shown that:
$\left.\mathrm{v}(\mathrm{z})=\frac{10}{3}\left(1+\exp \left(-\frac{(\mathrm{z}+1.5)}{0.3}\right)+\frac{1}{3} \exp \left(-\frac{(1.5-\mathrm{z})}{0.3}\right) \mathrm{u}(1.5-\mathrm{z})\right) \mathrm{V}\right]$ where $\mathrm{v}(\mathrm{z})$ can
be visualized as follows ...

d) In order to find the asymptotic voltage across the transistor we know that the transients would have died away and that $\mathrm{V}(\mathrm{t} \rightarrow \infty)=\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}} \mathrm{V}_{\mathrm{S}}=\frac{10}{3} \mathrm{~V}$. The maximum voltage across the transistor will be encountered at $t=\frac{2 \ell}{\mathrm{~V}}=4 \times 10^{-8} \mathrm{~s}$ when we have the summation of three voltage wavefronts $\left(\mathrm{V}_{1}^{+}, \mathrm{V}_{1}^{-}, \mathrm{V}_{2}^{+}\right)$and thus we have $\mathrm{V}_{\text {max }}(\mathrm{t})=\frac{10}{3}+\frac{10}{3}+\frac{1}{3} \cdot \frac{10}{3}=\frac{70}{9}=7.78 \mathrm{~V}>6.67 \mathrm{~V}$. We see that the maximum voltage across the transistor is greater than twice the equilibrium voltage on the line. The actual maximum voltage is a function of the DC voltage source, line characteristics, source impedance and load impedance. The worst scenario would have been if we had a reflection coefficient of 1 at the source end and then the voltage spike across the transistor would have been three times the steady state voltage on the line. Thus as a rule of thumb we can specify the breakdown voltage of the transistor to be three times the steady state voltage on the line. The voltage across the switching transistor as a function of time ${ }^{1} \ldots$

[^0]

Problem 8.2

a) For $0<t<\frac{l}{v}$,
$V_{+}(t, z)=\frac{Z_{0}}{Z_{0}+R_{s}} V_{s} u(t-z / v)$.
When V_{+}reaches the load at $t=l / v$, we look at the thevinin equivalent network at the load to solve the problem. The governing equation for the current at $z=l$ is
$L \frac{d i(t)}{d t}+\frac{Z_{0}+R_{L}}{L} i(t)=2 V_{+}(t, z=l)$
$\therefore i(t)=\frac{2 V_{+}(t, z=l)}{Z_{0}+R_{L}}\left(1-e^{-(t-l / v) / \tau}\right)$ where $\tau=\frac{L}{Z_{0}+R_{L}}=2 \mathrm{~ns}$.
$V_{L}(t)=L \frac{d i(t)}{d t}+R_{L} i(t)=\frac{2 V_{+}(t, z=l)}{Z_{0}+R_{L}}\left(R_{L}-Z_{0} e^{-(t-l / v) / \tau}\right)$
Since $V_{L}(t)=V_{+}(t, z=l)+V_{-}(t, z=l)$,
$V_{-}(t, z=l)=V_{L}(t)-V_{+}(t, z=l)=\frac{Z_{0}}{Z_{0}+R_{s}} V_{s} e^{-(t-l / v) / \tau} u(t-l / v)$
$\therefore V_{-}(t, z)=\frac{Z_{0}}{Z_{0}+R_{s}} V_{s} e^{-(t+z / v-2 l / v) / \tau} u(t+z / v-2 l / v)$
Due to reflection at the source,
$\therefore V_{+}^{(2)}(t, z)=\frac{R_{s}-Z_{0}}{R_{s}+Z_{0}} V_{-}(t,-z)=\frac{1}{3} V_{-}(t,-z)=\frac{Z_{0}}{3\left(Z_{0}+R_{s}\right)} V_{s} e^{-(t+z / v-2 l / v) / \tau} u(t+z / v-2 l / v)$
$\therefore V_{\text {total }}(t, z)=V_{+}+V_{-}+V_{+}^{(2)}$

$$
\begin{aligned}
& =\frac{1}{3} V_{s} u(t-z / v)+\frac{1}{3} V_{s} e^{-(t+z / v-2 l / v) / \tau} u(t+z / v-2 l / v)+\frac{1}{9} V_{s} e^{-(t-z / v-2 l / v) / \tau} u(t-z / v-2 l / v) \\
& \therefore V_{\text {total }}\left(t=3 \times 10^{-8}, z\right)=\frac{1}{3} V_{s} u(t-z / v)+\frac{1}{3} V_{s} e^{-(t+z / v-2 l / v) / \tau} u(t+z / v-2 l / v)
\end{aligned}
$$

b)

Problem 8.3

a) Prior to the switch opening all the transient waveforms on the line have died away and we are left with a standing waveform. This is motivated by the statement that the system is in equilibrium for $\mathrm{t}<0$. Thus it does not make sense to talk about forward and backward traveling waves.
We have $\mathrm{V}(\mathrm{z}, \mathrm{t}<0 \mid$ equilibriu m$)=\mathrm{V}(\mathrm{z}, \tau \rightarrow \infty)=\frac{\mathrm{R}_{\mathrm{L}}}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{S}}} \mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$ (where τ is
another time axis and related to our t time axis such that when $\tau \rightarrow \infty \Rightarrow \mathrm{t}=0$). The current waveform is also be a constant along the line and is
$\mathrm{I}(\mathrm{z}, \mathrm{t}<0 \mid$ equilibriu m$)=\mathrm{I}(\mathrm{z}, \tau \rightarrow \infty)=\frac{1}{\mathrm{R}_{\mathrm{L}}+\mathrm{R}_{\mathrm{s}}} \mathrm{V}_{\mathrm{S}}=\frac{1}{25} \mathrm{~A}$.
b) When the circuit is broken at the load a new boundary condition is enforced at the load. For the open circuit we know that the current at $\mathrm{z}=3 \mathrm{~m}$ must be 0 for all time $t \geq 0$. Thus a backward traveling current wave will be induced with an amplitude of $I_{-}(\mathrm{z}, \mathrm{t})=-\frac{1}{25} \mathrm{~A}, \forall \mathrm{t} \in\left[0,2 \times 10^{-8}\right)$ and $\mathrm{z} \in[0,3]$, yielding the resultant current at the point in space to be zero. The accompanying voltage wave is calculated as: $\mathrm{V}_{-}(\mathrm{z}, \mathrm{t})=-\mathrm{I}_{-}(\mathrm{z}, \mathrm{t}) \mathrm{Z}_{0}=4 \mathrm{~V}, \forall \mathrm{t} \in\left[0,2 \times 10^{-8}\right)$ and $\mathrm{z} \in[0,3]$. The total voltage $\mathrm{V}\left(\mathrm{z}, \mathrm{t}=10^{-8}\right)=\mathrm{v}(\mathrm{z})$ and current $\mathrm{I}\left(\mathrm{z}, \mathrm{t}=10^{-8}\right)=\mathrm{i}(\mathrm{z})$ waveforms thus look as follows:

Problem 8.4

a) $\quad P_{r e c}=E_{\text {rec }} f_{D}=P_{t r}\left(\frac{G \lambda}{4 \pi r^{2}}\right)^{2} \frac{\sigma_{s}}{4 \pi}=P_{t r}\left(\frac{\lambda}{4 \pi r^{2}}\right)^{2}\left(\frac{4 \pi A}{\lambda^{2}}\right)^{2} \frac{\sigma_{s}}{4 \pi}=P_{t r} \frac{A^{2} \sigma_{s}}{r^{4} \lambda^{2} 4 \pi}$

Since $f_{D}=f_{0}(1-v / c) \approx \frac{c}{\lambda} \quad(v \ll c)$
$\lambda=P_{t r} \frac{A^{2} \sigma_{s}}{4 \pi r^{4} E_{\text {rec }} c}=0.16 \mathrm{~mm}$
b) $\quad r^{4}=P_{t r} \frac{A^{2} \sigma_{s}}{4 \pi \lambda E_{\text {rec }} c}$
$\therefore r=6360 m$

[^0]: ${ }^{1}$ Thanks to bigjim@ mit.edu for the neat figure ...

