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Problem 9.1 
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a) jZTh 100= , 0=ThV  
b) jZTh 6080 += , 0=ThV  
c) 100=ThZ , 0VjVTh −=  

 
Problem 9.2 
 

a) The reflection coefficient at the load is 
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b) Now we have 3
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L =Γ= , but this 

does not make sense because you are reflecting more than the power incident at the 
load. Notice that the load is no longer a passive element but rather an active 
element. Thus the load is adding power to the circuit. 

 
Problem 9.3 
 

a) 
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b) In order to match impedences, we start at =+= 100/)100100( jZ Ln 1+j on the 

Smith Chart.  We then rotate towards the generator until we reach the R=1 circle in 
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the lower half of the Smith Chart (we end up at 1-j).  The required rotation 
corresponds to 
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c) Since the inductor is connected in parallel, it is easier to look at the admittance 

(admittances add in parallel).  In order to match admittances, we start at 
2/)1()100100/(100 jjYLn −=+= .  We then rotate towards the generator until we 

reach the G=1 circle on the upper half of the Smith Chart.  The required rotation 
corresponds to 
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Problem 9.4 
 
a) Series RLC resonator: The resonant (natural) frequency of the oscillator is 
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0 K×π==ω . For the series circuit we know that the decay rate of 

the resonator is 
L2

R
0 =α . Furthermore we have )2(100

C
L

R
1

2
Q

0

0 K==
α

ω
= . 

Thus we have two equations and we solve for L and C. From (1) we find 
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b) Parallel R(G)LC resonator: The resonant frequency is unchanged. For the parallel 

circuit we know that the decay rate of the resonator is 
C2

G
0 =α  (discharging of the 

capacitor). Furthermore we have )2(100
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equations and we solve for L and C. From (1) we find  ( ) 126 C)1020(L
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using this relationship in (2) we find ( )G)1020/()100(C 6×π= . Substituting 
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mho1G =  into the latter we find F
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conversion from series to parallel resonator is obtained by interchanging the 
variables as follows RG ↔  and CL ↔  (see page 362)). 

 
Problem 9.5 
 
a) Connect the capacitor in series with the inductor in order to achieve an open-circuit.  

For 4/λ=l  and R=100, 100=ThZ  (the resistance of the lumped circuit, therefore, 
is 200 Ω ). 
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