6.014 Electrodynamics

Problem 9.1

Using $V_{T h}=\left(\frac{-j Z_{0} \csc k l}{Z_{L}-j Z_{0} \cot k l}\right) V_{0}$ and $Z_{T h}=Z_{0}\left(\frac{Z_{L}+j Z_{0} \tan k l}{Z_{L}+j Z_{0} \tan k l}\right)$
a) $Z_{T h}=100 j, V_{T h}=0$
b) $Z_{T h}=80+60 j, V_{T h}=0$
c) $Z_{T h}=100, V_{T h}=-j \underline{V_{0}}$

Problem 9.2

a) The reflection coefficient at the load is $\Gamma_{L}=\frac{R_{L}-Z_{0}}{R_{L}+Z_{0}}=-\frac{1}{3}$. The power absorbed in the load can be calculated as $\mathrm{P}_{\mathrm{d}}=\frac{1}{2 \mathrm{Z}_{0}}\left|\mathrm{~V}_{+}\right|^{2}\left(1-\left|\Gamma_{\mathrm{L}}\right|^{2}\right)$ and the incident power at the load is $\frac{1}{2 \mathrm{Z}_{0}}\left|\mathrm{~V}_{+}\right|^{2}$, thus the power reflected at the load is $\frac{1}{2 Z_{0}}\left|\mathrm{~V}_{+}\right|^{2}\left|\Gamma_{\mathrm{L}}\right|^{2} \Rightarrow$ ratio power reflected $=\left|\Gamma_{\mathrm{L}}\right|^{2}=\frac{1}{9}$.
b) Now we have $\Gamma_{\mathrm{L}}=\frac{\mathrm{R}_{\mathrm{L}}-\mathrm{Z}_{0}}{\mathrm{R}_{\mathrm{L}}+\mathrm{Z}_{0}}=-3$. The ratio power reflected $=\left|\Gamma_{\mathrm{L}}\right|^{2}=9$, but this does not make sense because you are reflecting more than the power incident at the load. Notice that the load is no longer a passive element but rather an active element. Thus the load is adding power to the circuit.

Problem 9.3

a) $D=\frac{\lambda}{4}$
$Z_{A}=\sqrt{Z_{0} R}=\sqrt{100 \cdot 200}=100 \sqrt{2}$
b) In order to match impedences, we start at $Z_{L n}=(100+100 j) / 100=1+\mathrm{j}$ on the Smith Chart. We then rotate towards the generator until we reach the $\mathrm{R}=1$ circle in
the lower half of the Smith Chart (we end up at $1-\mathrm{j}$). The required rotation corresponds to
$D=\frac{\lambda}{6}$
Furthermore, $-j \omega L=-j Z_{0}$
$\therefore L=\frac{100}{\omega}$
c) Since the inductor is connected in parallel, it is easier to look at the admittance (admittances add in parallel). In order to match admittances, we start at $Y_{L n}=100 /(100+100 j)=(1-j) / 2$. We then rotate towards the generator until we reach the $\mathrm{G}=1$ circle on the upper half of the Smith Chart. The required rotation corresponds to

$D=\frac{\lambda}{4}$
$L=\frac{100}{\omega}$

Problem 9.4

a) Series RLC resonator: The resonant (natural) frequency of the oscillator is $\omega_{0}=\frac{1}{\sqrt{\mathrm{LC}}}=20 \pi \times 10^{6} \ldots(1)$. For the series circuit we know that the decay rate of the resonator is $\alpha_{0}=\frac{\mathrm{R}}{2 \mathrm{~L}}$. Furthermore we have $\mathrm{Q}=\frac{\omega_{0}}{2 \alpha_{0}}=\frac{1}{\mathrm{R}} \sqrt{\frac{\mathrm{L}}{\mathrm{C}}}=100 \ldots$ (2). Thus we have two equations and we solve for L and C . From (1) we find $\mathrm{L}=\left(\left(20 \pi \times 10^{6}\right)^{2} \mathrm{C}\right)^{-1}$ and using this relationship in (2) we find $\mathrm{C}=\left((100)\left(20 \pi \times 10^{6}\right) \mathrm{R}\right)^{-1}$. Substituting $\mathrm{R}=1 \Omega$ into the latter we find $\mathrm{C}=\frac{1}{2 \pi} \mathrm{nF}$ and $L=\frac{10}{2 \pi} \mu \mathrm{H}$.
b) Parallel $\mathrm{R}(\mathrm{G}) \mathrm{LC}$ resonator: The resonant frequency is unchanged. For the parallel circuit we know that the decay rate of the resonator is $\alpha_{0}=\frac{G}{2 C}$ (discharging of the capacitor). Furthermore we have $\mathrm{Q}=\frac{\omega_{0}}{2 \alpha_{0}}=\frac{1}{\mathrm{G}} \sqrt{\frac{\mathrm{C}}{\mathrm{L}}}=100 \ldots$ (2). Thus we have two equations and we solve for L and C. From (1) we find $L=\left(\left(20 \pi \times 10^{6}\right)^{2} C\right)^{-1}$ and using this relationship in (2) we find $\mathrm{C}=\left((100) /\left(20 \pi \times 10^{6}\right)\right) \mathrm{G}$. Substituting
$\mathrm{G}=1$ mho into the latter we find $\mathrm{C}=\frac{10}{2 \pi} \mu \mathrm{~F}$ and $\mathrm{L}=\frac{1}{2 \pi} \mathrm{nH}$. (Note that the conversion from series to parallel resonator is obtained by interchanging the variables as follows $G \leftrightarrow R$ and $L \leftrightarrow C$ (see page 362)).

Problem 9.5

a) Connect the capacitor in series with the inductor in order to achieve an open-circuit. For $l=\lambda / 4$ and $\mathrm{R}=100, Z_{T h}=100$ (the resistance of the lumped circuit, therefore, is 200Ω).
Since $Q=\frac{\omega_{0} L}{R+R_{T h}}$,
$L=\frac{Q \cdot R}{\omega_{0}}=\frac{100 \cdot 200}{2 \pi \cdot 10^{7}}=318 \mu H$.
Furthermore, $Q=\frac{1}{R} \sqrt{\frac{L}{C}}$,
$\therefore C=\frac{L}{(Q R)^{2}}=0.79 p F$.
b) $Q_{I}=\frac{\omega_{0} L}{R_{I}}=200$
$Q_{E}=\frac{\omega_{0} L}{R_{E}}=200$
c) $\alpha=\alpha_{0}=\frac{\omega_{0}}{2 Q_{L}}=\frac{2 \pi \cdot 10^{7}}{200}=\pi \cdot 10^{5}$

