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Problem 11.1 
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Problem 11.2 

a) TE10 mode:  m = 1; n = 0 from which it follows that 0; == yx k
a

k
π

. In section 

7.4 the general solutions of the magnetic and electric fields for TE and TM modes 
are given. We thus have: 

0=xE  (from equation 7.4.13); 0=zE  (because we are dealing with a transverse 
electric field); 
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  (from equation 7.4.14); 
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(from equation 7.4.15); 0=yH (from equation 7.4.15); 
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(from equation 7.4.15). The surface current density on the guide walls is related to 
the magnetic field intensity by, HnJ s ×= ˆ , where n̂  is the outward normal from 
the wall surface and H  is the magnetic field intensity at the wall. At t=0 and 
evaluating the surface current densities at the walls of the waveguide we find: 
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(Figure is adapted from “Field and Wave Electromagnetics”, D.K. Cheng, p. 554, 
2nd edition) 
 

b)  In order to break the current minimally thin slots can be placed: 
• On the in the middle of the top or bottom surfaces (e.g. when by ,0=  we 

need the slot to be placed at 
2
a

x = ). Note we are not specifying the 

length of the slot 
• Vertical orientated thin slots on the side walls will also work (e.g. when 

ay ,0= ). 
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Problem 11.3 
 
a) 2TM  
 
b)  
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Problem 11.4 
 
a) That the optical pulse can propagate on this line before distorting does not depend on 

the constants 10 , ββ .  From the dispersion relationship given 
( 2/)()( 2

020100 ωωβωωβωβ −+−+≅k ) we can calculate the group and the phase 

velocity as follows:  gv
d
dk
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and pvk /1/ 00 =β=ω  respectively. The 
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dispersion relationship only pertains to the 2β  constant, and thus the distance that 
optical pulses can propagate on this line before distorting does not depend on 10 ,ββ  . 

 
b) Assume the velocity of the wave is the speed of light.  Thus the width of the pulse 

train period is cm
f
c

30= . The pulse train consists of a “1” and “0” that span half this 

width each. Thus half the width of a pulse is 0.075m. The group velocity as a function 
of frequency is given as follows: 
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distortion will happen when the highest velocity signals have moved ahead of the 
slowest signals by a distance of one-half the width of a single pulse, thus 
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From the above we make T the subject. The distance traveled then is 
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