MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Department of Electrical Engineering and Computer Science

6.014 Electrodynamics

Problem Set 11 Solutions
Available in Tutorials: \quad May 6, 2002

Problem 11.1

$$
\begin{aligned}
& \bar{E}(x, y, z)=\hat{y} 2 j E_{0} \sin \left(k_{x} x\right) e^{-\alpha z} \\
& \therefore \bar{E}(x, y, z, t)=-\hat{y} 2 E_{0} \sin \left(k_{x} x\right) e^{-\alpha z} \sin (\omega t) \\
& \bar{H}(x, y, z)=\frac{\nabla \times \bar{E}}{-j \omega \mu}=\frac{j}{\omega \mu}\left[\hat{x} \alpha \sin \left(k_{x} x\right)+\hat{z} k_{x} \cos \left(k_{x} x\right)\right] \cdot 2 j E_{0} e^{-\alpha z} \\
& \therefore \bar{H}(x, y, z, t)=-\frac{2 E_{0}}{\omega \mu}\left[\hat{x} \alpha \sin \left(k_{x} x\right)+\hat{z} k_{x} \cos \left(k_{x} x\right)\right] e^{-\alpha z} \cos (\omega t)
\end{aligned}
$$

$\bar{E}(\omega t=0)=\bar{H}(\omega t=\pi / 2)=0$

Problem 11.2

a) TE_{10} mode: $\mathrm{m}=1 ; \mathrm{n}=0$ from which it follows that $k_{x}=\frac{\pi}{a} ; k_{y}=0$. In section 7.4 the general solutions of the magnetic and electric fields for TE and TM modes are given. We thus have:
$E_{x}=0$ (from equation 7.4.13); $E_{z}=0$ (because we are dealing with a transverse electric field);
$E_{y}(x, y, z)=-\frac{k_{x}}{k_{0}} E_{0} \sin \left(k_{x} x\right) e^{-j k_{z} z} \rightarrow E_{y}(x, y, z, t)=-\frac{k_{x}}{k_{0}} E_{0} \sin \left(k_{x} x\right) \cos \left(\omega t-k_{z} z\right)$
(from equation 7.4.14);

$$
H_{x}(x, y, z)=\frac{E_{0} k_{x} k_{z}}{\eta k_{0}^{2}} \sin \left(k_{x} x\right) e^{-j k_{z} z} \rightarrow H_{x}(x, y, z, t)=\frac{E_{0} k_{x} k_{z}}{\eta k_{0}^{2}} \sin \left(k_{x} x\right) \cos \left(\omega t-k_{z} z\right)
$$

(from equation 7.4.15); $H_{y}=0$ (from equation 7.4.15);
$H_{z}(x, y, z)=-j \frac{E_{0} k_{x}^{2}}{\eta k_{0}^{2}} \cos \left(k_{x} x\right) e^{-j k_{z} z} \rightarrow H_{z}(x, y, z, t)=\frac{E_{0} k_{x}^{2}}{\eta k_{0}^{2}} \cos \left(k_{x} x\right) \sin \left(\omega t-k_{z} z\right)$
(from equation 7.4.15). The surface current density on the guide walls is related to the magnetic field intensity by, $\bar{J}_{s}=\hat{n} \times \bar{H}$, where \hat{n} is the outward normal from the wall surface and \bar{H} is the magnetic field intensity at the wall. At $\mathrm{t}=0$ and evaluating the surface current densities at the walls of the waveguide we find:
@ $x=0: H_{z}(x=0, y, z, t=0)=-\frac{E_{0} k_{x}^{2}}{\eta k_{0}^{2}} \sin \left(k_{z} z\right)$ and
$H_{x}(x=0, y, z, t=0)=0$ from which it follows
$\bar{J}_{s}(x=0)=-\hat{x} \times \hat{z} H_{z}(x=0, y, z, t=0)=-\hat{y} \frac{E_{0} k_{x}^{2}}{\eta k_{0}^{2}} \sin \left(k_{z} z\right)$.
@ $x=a: H_{z}(x=a, y, z, t=0)=-\frac{E_{0} k_{x}^{2}}{\eta k_{0}^{2}}(-1) \sin \left(k_{z} z\right)$ and
$H_{x}(x=a, y, z, t=0)=0$ from which it follows
$\bar{J}_{s}(x=a)=\hat{x} \times \hat{z} H_{z}(x=a, y, z, t=0)=-\hat{y} \frac{E_{0} k_{x}^{2}}{\eta k_{0}^{2}} \sin \left(k_{z} z\right)=\bar{J}_{s}(x=0)$.
@ $y=0: H_{z}(x, y=0, z, t=0)=-\frac{E_{0} k_{x}^{2}}{\eta k_{0}^{2}} \cos \left(k_{x} x\right) \sin \left(k_{z} z\right)$ and
$H_{x}(x, y=0, z, t=0)=\frac{E_{0} k_{x} k_{z}}{\eta k_{0}^{2}} \sin \left(k_{x} x\right) \cos \left(k_{z} z\right)$ from which it follows
$\bar{J}_{s}(y=0)=-\hat{y} \times\left(\hat{x} H_{x}(x, y=0, z, t=0)+\hat{z} H_{z}(x=0, y, z, t=0)\right)$
$=\hat{x} \frac{E_{0} k_{x}^{2}}{\eta k_{0}^{2}} \cos \left(k_{x} x\right) \sin \left(k_{z} z\right)+\hat{z} \frac{E_{0} k_{x} k_{z}}{\eta k_{0}^{2}} \sin \left(k_{x} x\right) \cos \left(k_{z} z\right)$
@ $y=b: H_{z}(x, y=b, z, t=0)=-\frac{E_{0} k_{x}^{2}}{\eta k_{0}^{2}} \cos \left(k_{x} x\right) \sin \left(k_{z} z\right)$ and
$H_{x}(x, y=b, z, t=0)=\frac{E_{0} k_{x} k_{z}}{\eta k_{0}^{2}} \sin \left(k_{x} x\right) \cos \left(k_{z} z\right)$ from which it follows
$\bar{J}_{s}(y=b)=\hat{y} \times\left(\hat{x} H_{x}(x, y=0, z, t=0)+\hat{z} H_{z}(x=0, y, z, t=0)\right)$
$=-\hat{x} \frac{E_{0} k_{x}^{2}}{\eta k_{0}^{2}} \cos \left(k_{x} x\right) \sin \left(k_{z} z\right)-\hat{z} \frac{E_{0} k_{x} k_{z}}{\eta k_{0}^{2}} \sin \left(k_{x} x\right) \cos \left(k_{z} z\right)=-\bar{J}_{s}(y=0)$.

Surface currents on guide walls for TE_{10} mode in rectangular waveguide.
(Figure is adapted from "Field and Wave Electromagnetics", D.K. Cheng, p. 554, $2^{\text {nd }}$ edition)
b) In order to break the current minimally thin slots can be placed:

- On the in the middle of the top or bottom surfaces (e.g. when $y=0, b$ we need the slot to be placed at $x=\frac{a}{2}$). Note we are not specifying the length of the slot
- Vertical orientated thin slots on the side walls will also work (e.g. when $y=0, a)$.

Problem 11.3

a) $\quad T M_{2}$
b)

c) $\quad \theta=\tan ^{-1}\left(\frac{k_{z}}{k_{x}}\right)$

$$
\theta_{c}=\sin ^{-1}\left(\sqrt{\frac{k_{z}^{2}-\alpha^{2}}{k_{z}^{2}+k_{x}^{2}}}\right)
$$

Problem 11.4

a) That the optical pulse can propagate on this line before distorting does not depend on the constants β_{0}, β_{1}. From the dispersion relationship given $\left(k \cong \beta_{0} \omega_{0}+\beta_{1}\left(\omega-\omega_{0}\right)+\beta_{2}\left(\omega-\omega_{0}\right)^{2} / 2\right)$ we can calculate the group and the phase velocity as follows: $\left.\frac{d k}{d \omega}\right|_{\omega_{0}}=\beta_{1}=1 / v_{g}$ and $k / \omega_{0}=\beta_{0}=1 / v_{p}$ respectively. The
dispersion relationship only pertains to the β_{2} constant, and thus the distance that optical pulses can propagate on this line before distorting does not depend on β_{0}, β_{1}.
b) Assume the velocity of the wave is the speed of light. Thus the width of the pulse train period is $\frac{c}{f}=30 \mathrm{~cm}$. The pulse train consists of a " 1 " and " 0 " that span half this width each. Thus half the width of a pulse is 0.075 m . The group velocity as a function of frequency is given as follows:
$v_{g}(\omega)=\left.\left(\frac{d k}{d \omega}\right)^{-1}\right|_{\omega \neq \omega_{0}}=\frac{1}{\beta_{1}+\beta_{2}\left(\omega-\omega_{0}\right)}=\frac{1}{v_{g}^{-1}+\beta_{2}\left(\omega-\omega_{0}\right)}$. We are told that distortion will happen when the highest velocity signals have moved ahead of the slowest signals by a distance of one-half the width of a single pulse, thus
$\left|D_{\omega H}-D_{\omega L}\right|$
$=T\left|\frac{1}{v_{g}^{-1}+\beta_{2} 2 \pi\left(3 \times 10^{14}+10^{10}-3 \times 10^{14}\right)}-\frac{1}{v_{g}^{-1}+\beta_{2} 2 \pi\left(3 \times 10^{14}-10^{10}-3 \times 10^{14}\right)}\right|$
$=0.075 \mathrm{~m}$
From the above we make T the subject. The distance traveled then is
$D=c T=\frac{3 \times 10^{8}(0.075)}{\left|\frac{1}{v_{g}^{-1}+\beta_{2} 2 \pi\left(10^{10}\right)}-\frac{1}{v_{g}^{-1}+\beta_{2} 2 \pi\left(-10^{10}\right)}\right|}$.

